
www.casus.science

alpaka Parallel Programming – Online Tutorial
Lecture 20 – Thread Parallelism in alpaka

Lesson 22: 2D Work Division

alpaka Parallel Programming – Online Tutorial – Lesson 22: 2D Work Division | 2

Lesson 22: 2D Work Division

From 1D to 2D

● n-dimensional grids work in a similar way to 1D grids
● idx::getIdx<Grid, Threads>(acc) returns a vector containing n indices
● idx::getIdx<Grid, Threads>(acc)[dim] returns an integer

● Beware: In a 2D grid, y is dimension zero and x is dimension one
● idx::getIdx<Grid, Threads>(acc) returns a vector containing 2 indices: the y-index at position 0 and the x-

index at position 1
● idx::getIdx<Grid, Threads>(acc)[0] returns the y-index

alpaka Parallel Programming – Online Tutorial – Lesson 22: 2D Work Division | 3

Lesson 22: 2D Work Division

Computing the 2D index

● 2D gridThreadIdx can be computed manually, too

● Can be done per vector:
using Vec = vec::Vec<dim::DimInt<2>, uint32_t>;
Vec gridThreadIdx = gridBlockIdx * blockThreadExtent + blockThreadIdx;

● Or per index:

uint32_t gridThreadIdxY = gridBlockIdxY * blockThreadExtentY + blockThreadIdxY;
uint32_t gridThreadIdxX = gridBlockIdxX * blockThreadExtentX + blockThreadIdxX;

alpaka Parallel Programming – Online Tutorial – Lesson 22: 2D Work Division | 4

Lesson 22: 2D Work Division

Preparing the Host for 2D

● Open the helloWorld example again

● Go the top of main() and enable 2D dimensionality on the Host:
using Dim = dim::DimInt<2>;

● Further down in main(), set up a 2D Thread hierarchy:
auto blocksPerGrid = vec::Vec<Dim, Idx>{2u, 4u};
auto threadsPerBlock = vec::Vec<Dim, Idx>{1u, 1u};
auto elementsPerThread = vec::Vec<Dim, Idx>{1u, 1u};

alpaka Parallel Programming – Online Tutorial – Lesson 22: 2D Work Division | 5

Lesson 22: 2D Work Division

Obtaining the index

● Change the Kernel as
shown on the right side

● Switch to your build
directory and rebuild:

cmake --build . \
--config Release

● Execute the example
again

// Use these lines for obtaining the indices:
uint32_t gridThreadIdxY = idx::getIdx<Grid, Threads>(acc)[0];
uint32_t gridThreadIdxX = idx::getIdx<Grid, Threads>(acc)[1];

printf("Hello, World from alpaka thread (%u, %u)!\n",
 gridThreadIdxY, gridThreadIdxX);

alpaka Parallel Programming – Online Tutorial – Lesson 22: 2D Work Division | 6

Lesson 22: 2D Work Division

Obtaining the index

● 2D blocks work the same
way!

● Change the kernel again

● Switch to your build
directory and rebuild:

cmake --build . \
--config Release

● Execute the example

// Use these lines for obtaining the indices:
using Vec = vec::Vec<dim::DimInt<2>, uint32_t>;
Vec gridBlockIdx = idx::getIdx<Grid, Blocks>(acc);
Vec blockThreadIdx = idx::getIdx<Block, Threads>(acc);

printf("Hello, World from thread (%u, %u) in block (%u, %u)!\n",
 blockThreadIdx[0], blockThreadIdx[1],
 gridBlockIdx[0], gridBlockIdx[1]);

alpaka Parallel Programming – Online Tutorial – Lesson 22: 2D Work Division | 7

Lesson 22: 2D Work Division

Summary

● n-dimensional grids are very similar to 1D grids

● Pitfall: Reversed index ordering

● n-dimensional indices and extents can be obtained through API calls or by computing them

● n-dimensional blocks work the same way

www.casus.science

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8

