
www.casus.science

alpaka Parallel Programming – Online Tutorial
Lecture 20 – Thread Parallelism in alpaka

Lesson 26: Computing π – Part IV

alpaka Parallel Programming – Online Tutorial – Lesson 26: Computing π – Part IV | 2

Lesson 26: Computing π – Part IV

Recap

● Introduced parameter passing

● Introduced mathematical functions

● Introduced memory management

● Now: compute π

alpaka Parallel Programming – Online Tutorial – Lesson 26: Computing π – Part IV | 3

Lesson 26: Computing π – Part IV

Approach

● We will use the formula for the area of a circle
quarter:

● The number of points inside the circle (P) can
be used to approximate A:

● The PixelFinderKernel does the counting on
the Device, integration is done by the Host.

P
n

≈
A

r 2
= π

4
→ π ≈

4 P
n

r

A=
π⋅r 2

4

alpaka Parallel Programming – Online Tutorial – Lesson 26: Computing π – Part IV | 4

Lesson 26: Computing π – Part IV

Kernel execution and memory transfer

● We will measure the execution time:
auto start = std::chrono::steady_clock::now();

● Execute the kernel using alpaka::kernel::exec():
PixelFinderKernel pixelFinderKernel;
auto taskRunKernel = kernel::createTaskKernel<Acc>(workDiv, pixelFinderKernel,
 pointsAcc, r);
queue::enqueue(queue, taskRunKernel);

● Copy back the results and synchronize:
mem::view::copy(devQueue, insideBufferHost, insideBufferAcc, extents);
alpaka::wait::wait(queue);

alpaka Parallel Programming – Online Tutorial – Lesson 26: Computing π – Part IV | 5

Lesson 26: Computing π – Part IV

Integration

● First, determine P:
uint64_t P = 0;
for(std::size_t i = 0; i < n; ++i)
{
 if(pointsHost.inside[i])
 ++P;
}

● Then, divide by the radius to approximate π:

float pi = (4.f * P) / n;

● Measure the execution time:
auto end = std::chrono::steady_clock::now();

alpaka Parallel Programming – Online Tutorial – Lesson 26: Computing π – Part IV | 6

Lesson 26: Computing π – Part IV

Aftermath

● Print out π and execution time:
std::chrono::duration<double, std::milli> duration = end – start;
std::cout << "Computed pi is " << pi << "\n";
std::cout << "Execution time: " << duration.count() << "ms" << std::endl;

● Homework #1: Play around with n. How does this affect the precision of π and the execution
time?

● Homework #2: Implement the kernel in a more generic way, so that it works for any number of
threads, blocks and grids.
● The workload has to be distributed between all threads in the grid.
● It requires to have a loop over points inside the kernel. A sample is given in a Q&A answer from Tuesday.

www.casus.science

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7

