
www.casus.science

alpaka Parallel Programming – Online Tutorial
Lecture 30 – Portability with alpaka

Lesson 31: Changing the Accelerator



alpaka Parallel Programming – Online Tutorial – Lesson 31: Changing the Accelerator | 2

Lesson 31: Changing the Accelerator

Moving from CPU to GPU

alpaka allows for easy …
● … exchange of the accelerator
● … porting of programs across accelerators
● … experimentation with different devices
● … mixing of accelerator types

User

CPU

alpaka

GPU



alpaka Parallel Programming – Online Tutorial – Lesson 31: Changing the Accelerator | 3

Lesson 31: Changing the Accelerator

Architectural differences

● Rule of thumb: Offload computationally 
intensive parts to GPUs

● GPUs are designed for high throughput
● Many lightweight threads
● High memory latency

● CPUs are designed for low latency
● Few heavyweight threads
● Low memory latency

Memory

Cache

Logic
ALU

ALU

ALU

ALU

CPU

Memory

GPU

Source: Pradeep Gupta, CUDA Refresher: Reviewing the Origins of GPU 
Computing. https://developer.nvidia.com/blog/cuda-refresher-reviewing-
the-origins-of-gpu-computing/. Access date: 25 June 2020



alpaka Parallel Programming – Online Tutorial – Lesson 31: Changing the Accelerator | 4

Lesson 31: Changing the Accelerator

Switching the Accelerator

● alpaka provides a number of pre-defined 
Accelerators in the acc namespace.

● For GPUs:
● AccGpuCudaRt for NVIDIA GPUs
● AccGpuHipRt for AMD and NVIDIA GPUs

● For CPUs
● AccCpuFibers based on Boost.fiber
● AccCpuOmp2Blocks based on OpenMP 2.x
● AccCpuOmp4 based on OpenMP 4.x
● AccCpuTbbBlocks based on TBB
● AccCpuThreads based on std::thread

// Example: CPU accelerator                 
using Acc = acc::AccCpuOmp2Blocks<Dim, Idx>;
                                            
// Example: CUDA GPU accelerator            
using Acc = acc::AccGpuCudaRt<Dim, Idx>;    
                                            
// Example: HIP GPU accelerator             
using Acc = acc::AccGpuHipRt<Dim, Idx>;     



alpaka Parallel Programming – Online Tutorial – Lesson 31: Changing the Accelerator | 5

Lesson 31: Changing the Accelerator

Changing the work division

● GPUs have many more cores than CPUs
 → More parallel threads possible

● GPUs have several multiprocessors

● Each multiprocessor can execute multiple threads

● Threads are grouped into blocks

● Blocks are scheduled to run on multiprocessors

// CPU work division (example)
Idx blocksPerGrid     = 8;    
Idx threadsPerBlock   = 1;    
Idx elementsPerThread = 1;    
                              
// GPU work division (example)
Idx blocksPerGrid     = 64;   
Idx threadsPerBlock   = 512;  
Idx elementsPerThread = 1;    



alpaka Parallel Programming – Online Tutorial – Lesson 31: Changing the Accelerator | 6

Lesson 31: Changing the Accelerator

GPU performance hints

● Avoid divergent if-else-blocks
● GPU threads are organized into groups (NVIDIA: warp, AMD: wavefront)
● Groups are executed in lock step

 → If there is divergence, all threads execute the if block first and the else block next

● GPU threads are much more lightweight than CPU threads
● Context switch is much cheaper on GPUs
● Spawn many more threads than you have GPU cores

 → Hide memory latency behind computation



www.casus.science


	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7

