
www.casus.science

alpaka Parallel Programming – Online Tutorial
Lecture 30 – Portability with alpaka

Lesson 32: The Accelerator Concept

alpaka Parallel Programming – Online Tutorial – Lesson 32: The Accelerator Concept | 2

Lesson 32: The Accelerator Concept

Introduction

● alpaka’s Accelerator concept is an important tool

● Accelerator hides hardware specifics behind alpaka’s abstract API

● Chosen by programmer:
using Acc = acc::AccGpuCudaRt<Dim, Idx>;

● Used on both Host and Device

● Inside Kernel: contains thread state, provides access to alpaka’s device-side API

● On Host: Meta-parameter for choosing correct physical device and dependent types

alpaka Parallel Programming – Online Tutorial – Lesson 32: The Accelerator Concept | 3

Lesson 32: The Accelerator Concept

Accelerators and devices

● Accelerator concept is an abstraction of
concrete devices and programming models

● The programmer changes the accelerator in
just one line of code

● In the background, an entirely different code
path for the “new” device is chosen

● Accelerator provides portable access to
device-specific functions

/* Before the code change */
using Acc = acc::AccCpuOmp2Blocks<Dim, Idx>;

/* Kernels will run on CPUs */
/* Parallelism provided by OpenMP 2.x */

/* After the code change */
using Acc = acc::AccGpuHipRt<Dim, Idx>;

/* Kernels will run on AMD + NVIDIA GPUs */
/* Parallelism provided by HIP */

alpaka Parallel Programming – Online Tutorial – Lesson 32: The Accelerator Concept | 4

Lesson 32: The Accelerator Concept

Grid navigation

● The Accelerator provides the means to navigate the grid:
// get thread index on the grid
auto gridThreadIdx = idx::getIdx<Grid, Threads(acc);

// get block index on the grid
auto gridBlockIdx = idx::getIdx<Grid, Blocks>(acc);

// get thread index on the block
auto blockThreadIdx = idx::getIdx<Block, Threads>(acc);

// get number of blocks on the grid
auto gridBlockExtent = workdiv::getWorkDiv<Grid, Blocks>(acc);

// get number of threads on the block
auto blockThreadExtent = workdiv::getWorkDiv<Block, Threads>(acc);

alpaka Parallel Programming – Online Tutorial – Lesson 32: The Accelerator Concept | 5

Lesson 32: The Accelerator Concept

Memory management and synchronization

● The Accelerator gives access to alpaka’s shared memory (for threads inside the same block):
// allocate a variable in block shared static memory
auto & mySharedVar = block::shared::st::allocVar<int, __COUNTER__>(acc);

// get pointer to the block shared dynamic memory
float * mySharedBuffer = block::shared::dyn::getMem<float>(acc);

● It also enables synchronization on the block level:
// synchronize all threads within the block
block::sync::syncBlockThreads(acc);

// synchronize some threads within the block and evaluate predicate
block::sync::syncBlockThreadsPredicate(acc, predicate);

alpaka Parallel Programming – Online Tutorial – Lesson 32: The Accelerator Concept | 6

Lesson 32: The Accelerator Concept

Device-side functions

● Internally, the accelerator maps all device-side functions to their native counterparts

● Device-side functions require the accelerator as first argument:

● math::sqrt(acc, /* … */); (Math functions)

● atomic::atomicOp<atomic::op::Or>(acc, /* … */, hierarchy::Grids); (Atomics)

● rand::distribution::createNormalReal<float>(acc); (Random-number generation)

● time::clock(acc); (Clock cycles)

www.casus.science

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7

