alpaka Parallel Programming - Online Tutorial ¢ ; CASUS

Lecture 30 - Portability with alpaka 9’ CENTER FOR ADVANCED

n SYSTEMS UNDERSTANDING
Lesson 34: The Queue Concept

WWwWWw.casus.science

STAATSMINISTERIUM

'SPONSORED BY THE
" . Federal Ministry Freistaat
M aﬁ?yENégﬁQE (CBG U@ HELMHOLTZ g@@ Uniwersytet ® o Education FUR WISSENSCHAFT S SACHSEN
HELMHOLTZ ZENTRUM DRESDEN / :fz;:ll:::ll;:-g:::-:i:lm Centre for Environmental Research b4 WrOC*GWSkI KULTUR UND TOURISMUS

nnnnnnnnnnn

DRESDEN ROSSENDORF

(' CASVUS

Q’ CENTER FOR ADVANCED
- SYSTEMS UNDERSTANDING

Lesson 34: The Queue Concept

Recap

* An alpaka Accelerator provides an abstract view of all physical devices
* An alpaka Device is a representation of exactly one concrete physical device

* Question: How are Kernels and memory operations offloaded to individual devices?

- - alpaka Parallel Programming - Online Tutorial - Lesson 34: The Queue Concept | 2

(' CASVUS

0’ CENTER FOR ADVANCED
» SYSTEMS UNDERSTANDING

Lesson 34: The Queue Concept

Connecting Host and Device

alpaka Queues enable communication

between Host and Device // Choose queue behaviour - Blocking or NonBlocking

« Two queue types: blocking and non- using QueueProperty = queue: :NonBlocking;

blocking // Define queue type

i , using Queue = queue::Queue<Acc, QueueProperty>;
* Blocking queues block the Host until g Q 4 Q Q perty

Device-side command returns // Create queue for communication with myDev
auto myQueue = Queue{myDev};
* Non-blocking queues return control to

Host immediately, Device-side
command runs asynchronously

- - alpaka Parallel Programming - Online Tutorial - Lesson 34: The Queue Concept | 3

(' CASVUS

Q’ CENTER FOR ADVANCED
- SYSTEMS UNDERSTANDING

Lesson 34: The Queue Concept

Queue operations

* Queues execute Tasks (see next slide):
queue: :enqueue(myQueue, taskRunKernel);

* Check for completion:
bool done = queue::empty(myQueue);

* Wait for completion, Events (see next slide), or other Queues:

wait::wait(myQueue); // blocks caller until all operations have completed
wait::wait(myQueue, myEvent); // blocks myQueue until myEvent has been reached
wait::wait(myQueue, otherQueue); // blocks myQueue until otherQueue’s ops have completed

- - alpaka Parallel Programming - Online Tutorial - Lesson 34: The Queue Concept | 4

(' CASVUS

Q’ CENTER FOR ADVANCED
» SYSTEMS UNDERSTANDING

Lesson 34: The Queue Concept

Tasks and Events

Device-side operations (kernels, memory operations) are called Tasks

Tasks on the same queue are executed in order (FIFO principle)

queue: :enqueue (queueA, taskl);
queue: :enqueue(queueA, task2); // task2 starts after taskl has finished

Order of tasks in different queues is unspecified

queue: :enqueue (queueA, taskl);
queue: :enqueue(queueB, task2); // task2 starts before, after or in parallel to taskl

For easier synchronization, alpaka Events can be inserted before, after or between Tasks:

auto myEvent = event::Event<Queue>(myDev);
queue: :enqueue (queueA, myEvent);
wait::wait(queueB, myEvent); // queueB will only resume after queueA reached myEvent

- - alpaka Parallel Programming - Online Tutorial - Lesson 34: The Queue Concept | 5

‘:' CASVUS

Q’ CENTER FOR ADVANCED
- SYSTEMS UNDERSTANDING

Lesson 34: The Queue Concept

Setting up Accelerator, Device and Queue

// Choose types for dimensionality and indices
using Dim = dim::DimInt<1>;
using Idx = std::size_t;

// Choose the back-end
using Acc = acc::AccGpuHipRt<Dim, Idx>;

// Obtain first device in the HIP GPU list
auto myDev = pltf::getDevByIdx<Acc>(0Qu);

// Create non-blocking queue for chosen device
using Queue = queue: :Queue<Acc, queue: :NonBlocking>;
auto myQueue = Queue{myDev};

// Done! We can now enqueue device-side operations.

- - alpaka Parallel Programming - Online Tutorial - Lesson 34: The Queue Concept | 6

11N Il
NIVERSITA
DR)

)

@Encnsus

CENTER FOR ADVANCED
W gp* SYSTEMS UNDERSTANDING

www.casus.science

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7

