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Lesson 34: The Queue Concept

Recap

* An alpaka Accelerator provides an abstract view of all physical devices
* An alpaka Device is a representation of exactly one concrete physical device

* Question: How are Kernels and memory operations offloaded to individual devices?
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Lesson 34: The Queue Concept

Connecting Host and Device

alpaka Queues enable communication

between Host and Device // Choose queue behaviour - Blocking or NonBlocking

« Two queue types: blocking and non- using QueueProperty = queue: :NonBlocking;

blocking // Define queue type

i , using Queue = queue::Queue<Acc, QueueProperty>;
* Blocking queues block the Host until g Q 4 Q Q perty

Device-side command returns // Create queue for communication with myDev
auto myQueue = Queue{myDev};
* Non-blocking queues return control to

Host immediately, Device-side
command runs asynchronously
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Lesson 34: The Queue Concept

Queue operations

* Queues execute Tasks (see next slide):
queue: :enqueue(myQueue, taskRunKernel);

* Check for completion:
bool done = queue::empty(myQueue);

* Wait for completion, Events (see next slide), or other Queues:

wait::wait(myQueue); // blocks caller until all operations have completed
wait::wait(myQueue, myEvent); // blocks myQueue until myEvent has been reached
wait::wait(myQueue, otherQueue); // blocks myQueue until otherQueue’s ops have completed
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Lesson 34: The Queue Concept

Tasks and Events

Device-side operations (kernels, memory operations) are called Tasks

Tasks on the same queue are executed in order (FIFO principle)

queue: :enqueue (queueA, taskl);
queue: :enqueue(queueA, task2); // task2 starts after taskl has finished

Order of tasks in different queues is unspecified

queue: :enqueue (queueA, taskl);
queue: :enqueue(queueB, task2); // task2 starts before, after or in parallel to taskl

For easier synchronization, alpaka Events can be inserted before, after or between Tasks:

auto myEvent = event::Event<Queue>(myDev);
queue: :enqueue (queueA, myEvent);
wait::wait(queueB, myEvent); // queueB will only resume after queueA reached myEvent
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Setting up Accelerator, Device and Queue

// Choose types for dimensionality and indices
using Dim = dim::DimInt<1>;
using Idx = std::size_t;

// Choose the back-end
using Acc = acc::AccGpuHipRt<Dim, Idx>;

// Obtain first device in the HIP GPU list
auto myDev = pltf::getDevByIdx<Acc>(0Qu);

// Create non-blocking queue for chosen device
using Queue = queue: :Queue<Acc, queue: :NonBlocking>;
auto myQueue = Queue{myDev};

// Done! We can now enqueue device-side operations.
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