
www.casus.science

alpaka Parallel Programming – Online Tutorial
Lecture 30 – Portability with alpaka

Lesson 34: The Queue Concept

alpaka Parallel Programming – Online Tutorial – Lesson 34: The Queue Concept | 2

Lesson 34: The Queue Concept

Recap

● An alpaka Accelerator provides an abstract view of all physical devices

● An alpaka Device is a representation of exactly one concrete physical device

● Question: How are Kernels and memory operations offloaded to individual devices?

alpaka Parallel Programming – Online Tutorial – Lesson 34: The Queue Concept | 3

Lesson 34: The Queue Concept

Connecting Host and Device

● alpaka Queues enable communication
between Host and Device

● Two queue types: blocking and non-
blocking

● Blocking queues block the Host until
Device-side command returns

● Non-blocking queues return control to
Host immediately, Device-side
command runs asynchronously

// Choose queue behaviour - Blocking or NonBlocking
using QueueProperty = queue::NonBlocking;

// Define queue type
using Queue = queue::Queue<Acc, QueueProperty>;

// Create queue for communication with myDev
auto myQueue = Queue{myDev};

alpaka Parallel Programming – Online Tutorial – Lesson 34: The Queue Concept | 4

Lesson 34: The Queue Concept

Queue operations

● Queues execute Tasks (see next slide):
queue::enqueue(myQueue, taskRunKernel);

● Check for completion:
bool done = queue::empty(myQueue);

● Wait for completion, Events (see next slide), or other Queues:

wait::wait(myQueue); // blocks caller until all operations have completed
wait::wait(myQueue, myEvent); // blocks myQueue until myEvent has been reached
wait::wait(myQueue, otherQueue); // blocks myQueue until otherQueue’s ops have completed

alpaka Parallel Programming – Online Tutorial – Lesson 34: The Queue Concept | 5

Lesson 34: The Queue Concept

Tasks and Events

● Device-side operations (kernels, memory operations) are called Tasks

● Tasks on the same queue are executed in order (FIFO principle)
queue::enqueue(queueA, task1);
queue::enqueue(queueA, task2); // task2 starts after task1 has finished

● Order of tasks in different queues is unspecified
queue::enqueue(queueA, task1);
queue::enqueue(queueB, task2); // task2 starts before, after or in parallel to task1

● For easier synchronization, alpaka Events can be inserted before, after or between Tasks:
auto myEvent = event::Event<Queue>(myDev);
queue::enqueue(queueA, myEvent);
wait::wait(queueB, myEvent); // queueB will only resume after queueA reached myEvent

alpaka Parallel Programming – Online Tutorial – Lesson 34: The Queue Concept | 6

Lesson 34: The Queue Concept

Setting up Accelerator, Device and Queue

// Choose types for dimensionality and indices
using Dim = dim::DimInt<1>;
using Idx = std::size_t;

// Choose the back-end
using Acc = acc::AccGpuHipRt<Dim, Idx>;

// Obtain first device in the HIP GPU list
auto myDev = pltf::getDevByIdx<Acc>(0u);

// Create non-blocking queue for chosen device
using Queue = queue::Queue<Acc, queue::NonBlocking>;
auto myQueue = Queue{myDev};

// Done! We can now enqueue device-side operations.

www.casus.science

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7

