alpaka Parallel Programming - Online Tutorial ¢ ; CASUS

Lecture 30 - Portability with alpaka 9’ CENTER FOR ADVANCED

n SYSTEMS UNDERSTANDING
Lesson 35: The Platform Concept

WWwWWw.casus.science

STAATSMINISTERIUM

'SPONSORED BY THE
" . Federal Ministry Freistaat
M aﬁ?yENégﬁQE (CBG U@ HELMHOLTZ g@@ Uniwersytet ® o Education FUR WISSENSCHAFT S SACHSEN
HELMHOLTZ ZENTRUM DRESDEN / :fz;:ll:::ll;:-g:::-:i:lm Centre for Environmental Research b4 WrOC*GWSkI KULTUR UND TOURISMUS

nnnnnnnnnnn

DRESDEN ROSSENDORF

(' CASVUS

Q’ CENTER FOR ADVANCED
- SYSTEMS UNDERSTANDING

Lesson 35: The Platform Concept

Recap

Accelerator provides abstract view of all capable physical devices

Device represents a single physical device

Queue enables communication between the host and a single Device

Question: How is portability between back-ends achieved?

- - alpaka Parallel Programming - Online Tutorial - Lesson 35: The Platform Concept | 2

(' CASVUS

Q’ CENTER FOR ADVANCED
- SYSTEMS UNDERSTANDING

Lesson 35: The Platform Concept

alpaka Platform Accelerator Device

* Platform is meta-concept in alpaka

* Union of Accelerator, Device and Kernel Platform
functionality
* Accelerator gives structure to the host side and
functionality to the device side
* Device gives functionality to the host side
* Kernels are agnostic of Device details
- Portable Kernels

alpaka Parallel Programming - Online Tutorial - Lesson 35: The Platform Concept | 3

(' CASVUS

0’ CENTER FOR ADVANCED
» SYSTEMS UNDERSTANDING

Lesson 35: The Platform Concept

Changing the target platform

using namespace alpaka;

using Dim = dim::DimInt<lu>;
using Idx = std::size_t;

/**% BEFORE ***/
using Acc = acc::AccCpuOmp2Blocks<Dim, Idx>;

/**x AFTER *%%/
using Acc = acc::AccGpuHipRt<Dim, Idx>;

/* No change required - dependent types and variables are automatically changed */
auto myDev = pltf::getDevByIdx<Acc>(0Qu);

using Queue = queue: :Queue<Acc, queue::NonBlocking>;
auto myQueue = Queue{myDev};

- - alpaka Parallel Programming - Online Tutorial - Lesson 35: The Platform Concept | 4

(' CASVUS

Q’ CENTER FOR ADVANCED
- SYSTEMS UNDERSTANDING

Lesson 35: The Platform Concept

What alpaka does for you

* During configuration with CMake:
* Default behaviour: Enables all suitable back-ends for your system
* Behaviour is configurable with CMake variables
* CMake handles back-end dependencies

* After changing the Accelerator:
* Back-end switched automatically
* All Queue operations will be executed on associated devices

- - alpaka Parallel Programming - Online Tutorial - Lesson 35: The Platform Concept | 5

(' CASVUS

0’ CENTER FOR ADVANCED
» SYSTEMS UNDERSTANDING

Lesson 35: The Platform Concept

What you have to do for alpaka

* Device side: Make no assumptions about your hardware!
* Program your Kernels as abstract and portably as possible
* Use the Accelerator for device-side operations
* Kernels are instantiated for a specific platform at compile-time

* This is what the Accelerator template parameter is for!

template <typename Acc>
ALPAKA_FN_ACC void operator()(Acc const & acc, /* .. x/) const;

* Host side: Know your hardware!

* Use Devices for management of physical devices
* Adapt the work division (Blocks per Grid, Threads per Block, elements per Thread) to your hardware and

problem size

- - alpaka Parallel Programming - Online Tutorial - Lesson 35: The Platform Concept | 6

11N Il
NIVERSITA
DR)

)

@Encnsus

CENTER FOR ADVANCED
W gp* SYSTEMS UNDERSTANDING

www.casus.science

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7

