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Lesson 35: The Platform Concept

Recap

Accelerator provides abstract view of all capable physical devices

Device represents a single physical device

Queue enables communication between the host and a single Device

Question: How is portability between back-ends achieved?
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Lesson 35: The Platform Concept

alpaka Platform Accelerator Device

* Platform is meta-concept in alpaka

* Union of Accelerator, Device and Kernel Platform
functionality
* Accelerator gives structure to the host side and
functionality to the device side
* Device gives functionality to the host side
* Kernels are agnostic of Device details
- Portable Kernels
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Changing the target platform

using namespace alpaka;

using Dim = dim::DimInt<lu>;
using Idx = std::size_t;

/**% BEFORE ***/
using Acc = acc::AccCpuOmp2Blocks<Dim, Idx>;

/**x AFTER *%%/
using Acc = acc::AccGpuHipRt<Dim, Idx>;

/* No change required - dependent types and variables are automatically changed */
auto myDev = pltf::getDevByIdx<Acc>(0Qu);

using Queue = queue: :Queue<Acc, queue::NonBlocking>;
auto myQueue = Queue{myDev};
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Lesson 35: The Platform Concept

What alpaka does for you

* During configuration with CMake:
* Default behaviour: Enables all suitable back-ends for your system
* Behaviour is configurable with CMake variables
* CMake handles back-end dependencies

* After changing the Accelerator:
* Back-end switched automatically
* All Queue operations will be executed on associated devices
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Lesson 35: The Platform Concept

What you have to do for alpaka

* Device side: Make no assumptions about your hardware!
* Program your Kernels as abstract and portably as possible
* Use the Accelerator for device-side operations
* Kernels are instantiated for a specific platform at compile-time

* This is what the Accelerator template parameter is for!

template <typename Acc>
ALPAKA_FN_ACC void operator()(Acc const & acc, /* .. x/) const;

* Host side: Know your hardware!

* Use Devices for management of physical devices
* Adapt the work division (Blocks per Grid, Threads per Block, elements per Thread) to your hardware and

problem size
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