
www.casus.science

alpaka Parallel Programming – Online Tutorial
Lecture 30 – Portability with alpaka

Lesson 35: The Platform Concept

alpaka Parallel Programming – Online Tutorial – Lesson 35: The Platform Concept | 2

Lesson 35: The Platform Concept

Recap

● Accelerator provides abstract view of all capable physical devices

● Device represents a single physical device

● Queue enables communication between the host and a single Device

● Question: How is portability between back-ends achieved?

alpaka Parallel Programming – Online Tutorial – Lesson 35: The Platform Concept | 3

Lesson 35: The Platform Concept

alpaka Platform

● Platform is meta-concept in alpaka

● Union of Accelerator, Device and Kernel
functionality
● Accelerator gives structure to the host side and

functionality to the device side
● Device gives functionality to the host side
● Kernels are agnostic of Device details

 → Portable Kernels

Accelerator Device

Kernel

Platform

is part of is part o
f

is
 p

ar
t o

f

is not

is not is
no

t

alpaka Parallel Programming – Online Tutorial – Lesson 35: The Platform Concept | 4

Lesson 35: The Platform Concept

Changing the target platform

using namespace alpaka;

using Dim = dim::DimInt<1u>;
using Idx = std::size_t;

/*** BEFORE ***/
using Acc = acc::AccCpuOmp2Blocks<Dim, Idx>;

/*** AFTER ***/
using Acc = acc::AccGpuHipRt<Dim, Idx>;

/* No change required - dependent types and variables are automatically changed */
auto myDev = pltf::getDevByIdx<Acc>(0u);

using Queue = queue::Queue<Acc, queue::NonBlocking>;
auto myQueue = Queue{myDev};

alpaka Parallel Programming – Online Tutorial – Lesson 35: The Platform Concept | 5

Lesson 35: The Platform Concept

What alpaka does for you

● During configuration with CMake:
● Default behaviour: Enables all suitable back-ends for your system
● Behaviour is configurable with CMake variables
● CMake handles back-end dependencies

● After changing the Accelerator:
● Back-end switched automatically
● All Queue operations will be executed on associated devices

alpaka Parallel Programming – Online Tutorial – Lesson 35: The Platform Concept | 6

Lesson 35: The Platform Concept

What you have to do for alpaka

● Device side: Make no assumptions about your hardware!
● Program your Kernels as abstract and portably as possible
● Use the Accelerator for device-side operations
● Kernels are instantiated for a specific platform at compile-time
● This is what the Accelerator template parameter is for!

template <typename Acc>
ALPAKA_FN_ACC void operator()(Acc const & acc, /* … */) const;

● Host side: Know your hardware!
● Use Devices for management of physical devices
● Adapt the work division (Blocks per Grid, Threads per Block, elements per Thread) to your hardware and

problem size

www.casus.science

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7

