
www.casus.science

alpaka Parallel Programming – Online Tutorial
Lecture 30 – Portability with alpaka

Lesson 36: Programming Heterogeneous Systems

alpaka Parallel Programming – Online Tutorial – Lesson 36: Programming Heterogeneous Systems | 2

Lesson 36: Programming Heterogeneous Systems

Recap

● Accelerator provides abstraction for a programming model and compatible physical devices

● Device represents a single physical device

● Queue enables communication between Host and a single Device

● Platform is a union of Accelerator, Device and Kernel

● Question: How to use multiple back-ends?

alpaka Parallel Programming – Online Tutorial – Lesson 36: Programming Heterogeneous Systems | 3

Lesson 36: Programming Heterogeneous Systems

Heterogeneous Systems

● Real-world scenario: Use all available compute
power

● Also real-world scenario: Multiple different
hardware types available

● Requirement: Usage of one back-end per
hardware platform

● Requirement: Back-ends need to be
interoperable

Host

CPU

NVIDIA GPU

alpaka Parallel Programming – Online Tutorial – Lesson 36: Programming Heterogeneous Systems | 4

Lesson 36: Programming Heterogeneous Systems

Using multiple Platforms

● alpaka enables easy heterogeneous
programming!

● Create one Accelerator per back-end

● Acquire at least one Device per
Accelerator

● Create one Queue per Device

// Define Accelerators
using AccCpu = acc::AccCpuOmp2Blocks<Dim, Idx>;
using AccGpu = acc::AccGpuCudaRt<Dim, Idx>;

// Acquire Devices
auto devCpu = pltf::getDevByIdx<AccCpu>(0u);
auto devGpu = pltf::getDevByIdx<AccGpu>(0u);

// Create Queues
using QueueProperty = queue::NonBlocking;
using QueueCpu = queue::Queue<AccCpu, QueueProperty>;
using QueueGpu = queue::Queue<AccGpu, QueueProperty>;

auto queueCpu = QueueCpu{devCpu};
auto queueGpu = QueueGpu{devGpu};

alpaka Parallel Programming – Online Tutorial – Lesson 36: Programming Heterogeneous Systems | 5

Lesson 36: Programming Heterogeneous Systems

Communication

● Buffers are defined and created
per Device

● Buffers can be copied between
different Devices / Queues

● Not restricted to a single
platform!

● Restriction: CPU to GPU copies
(and vice versa) require GPU
queue

// Allocate buffers
auto bufCpu = mem::buf::alloc<float, Idx>(devCpu, extent);
auto bufGpu = mem::buf::alloc<float, Idx>(devGpu, extent);

/* Initialization … */

// Copy buffer from CPU to GPU - destination comes first
mem::view::copy(gpuQueue, bufGpu, bufCpu, extent);

// Execute GPU kernel
queue::enqueue(gpuQueue, someKernelTask);

// Copy results back to CPU and wait for completion
mem::view::copy(gpuQueue, bufCpu, bufGpu, extent);

// Wait for GPU, then execute CPU kernel
wait::wait(cpuQueue, gpuQueue);
queue::enqueue(cpuQueue, anotherKernelTask);

alpaka Parallel Programming – Online Tutorial – Lesson 36: Programming Heterogeneous Systems | 6

Lesson 36: Programming Heterogeneous Systems

Heterogeneous programming with alpaka

● alpaka gives you access to all of your system’s computation resources

● alpaka eases programming for different device types

● alpaka enables simple data transfers between different devices

● alpaka makes your code reusable

● alpaka makes your code portable

Write once, scale everywhere!

www.casus.science

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7

