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Multiscale Densely-Connected Fusion Networks for
Hyperspectral Images Classification

Jie Xie, Student Member, IEEE, Nanjun He, Student Member, IEEE, Leyuan Fang, Senior Member, IEEE, and
Pedram Ghamisi, Senior Member, IEEE

Abstract—Convolutional neural network (CNN) has demon-
strated to be a powerful tool for hyperspectral images (HSIs)
classification. Previous CNN-based HSI classification methods
only adopt the fixed-size patches to train the CNN model,
and such single scale patches may not reflect the complex
spatial structural information in the HSIs. In addition, although
different layers of CNN can extract features of multiple scales,
the traditional CNN model can only utilize features from the
highest level for the classification task. These features, however,
do not fully consider the strong complementary yet correlated
information among different layers. To address these issues, in
this paper, a multiscale densely-connected convolutional network
(MS-DenseNet) framework is proposed to sufficiently exploit mul-
tiple scales information for the HSIs classification. Specifically,
for each pixel, the MS-DenseNet, first, extracts its surrounding
patches of multiple scales. These patches can separately constitute
multiple scale training and testing samples. Within each specific
scale sample, instead of using the forward convolutional layers,
the MS-DenseNet adopts the dense blocks, which can connect
each layer to other layers in a feed-forward fashion and thus can
exploit the information among different layers for training and
testing. Furthermore, since high correlations exist in patches of
different scales, the MS-DenseNet introduces several dense blocks
to fuse the multiscale information among different layers for
the final HSI classification. Experimental results on several real
HSIs demonstrate the superiority of the proposed MS-DenseNet
over single scale-based CNN classification model and several well-
known classification methods.

Index Terms—Hyperspectral images (HSIs) classification, mul-
tiscale, convolutional neural networks, densebolck.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) consist of hundreds of
observation bands among the electromagnetic spectrum

with high spectral resolution [1] and have attracted consid-
erable attention in the remote sensing community. With such
rich spectral information, HSIs can be effectively utilized to
differentiate the categories of different land covers. In addition,
HSIs have also played an important role in many practical
applications, such as environmental monitoring [2], object
detection [3], military defense [4], and among others [5], [6].

The objective of HSIs classification is to assign each
spectral pixel to one specific class. In the last decades, a

This paper was supported by the National Natural Science Foundation of
China under Grant No.61922029, the National Natural Science Foundation
under Grant No. 61771192, and the Science and Technology Planning Project
of Hunan Province NO. 2019RS2016.

J. Xie, N. He, and L. Fang are with the College of Electrical and
Information Engineering, Hunan University, Changsha 410082, China (e-mail:
xj xj@hnu.edu.cn; henanjun@hnu.edu.cn; fangleyuan@gmail.com).

P. Ghamisi is with Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz
Institute Freiberg for Resource Technology, Exploration Chemnitzer Str. 40,
D-09599 Freiberg, Germany (e-mail: p.ghamisi@gmail.com).

vast of methods have been developed to address the HSIs
classification task. Among them, the support vector machines
(SVMs) [7] are a powerful classifier, which can learn an
optimal hyperplane to classify the HSIs. As another widely
used HSIs classifier, multinomial logistic regression [8] uses
the logistic function to compute the posterior probability for
the classification. The random forest [9] develops several trees
from randomly sampled subspaces and then combines the
outputs with a majority voting, which has also been applied
for HSI classification [10]. In general, although the spectral
information can be effectively utilized in the aforementioned
classification methods, the spatial contexts of the HSIs are not
considered and thus their classification maps usually appear
noisy. To enhance the classification performance, recent ap-
proaches have attempted to incorporate the spatial information
of the HSI into the classification task (e.g., composite kernel
[11], superpixel-based sparse representation [12], [13], and
random fields [14], [15]). In addition, other kinds of classifica-
tion methods focus on the design of effective spatial-spectral
feature extraction techniques (e.g., mathematical morphology
[16], loopy belief propagation [17] and Random Walker [18]).
Although the above-mentioned methods can provide promising
classification results, they adopt the “shallow” models, and
thus has limited ability to handle the highly nonlinear HSI
data.

All of the above methods are based on hand-crafted fea-
tures, which rely heavily on the experience of experts. Deep
learning can automatically achieve effective feature extraction
by means of hierarchical layers, thereby extracting high-
level and abstract features for the input nonlinear data. It
has achieved great success in many applications, including
image classification [19], object detection [20], and super-
resolution [21]. Recently, deep learning models have also been
extended to HSIs classification [22]. In [23], Chen et al. used a
deep stacked auto-encoder (SAE) to extract features from the
spectral domain of HSIs for the classification task. In [24],
Tao et al. introduced a modified auto-encoder model called
as multiscale sparse SAE to construct features from unlabeled
data in HSIs. The learned features were input into the SVMs
for classification. In [25], Chen et al. further adopted the
singular restricted Boltzmann machine (RBM) and a multiple-
layer deep network to learn the spectral-based features from
HSIs for classification. The above-mentioned networks (e.g.,
SAE and RBM) are equipped with fully connected layers, and
thus a lot of parameters are required to be estimated in those
networks, causing very high computational cost. In addition,
the above methods only adopt the 1-D spectral vector to train
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networks and thus do not utilize the 2-D spatial structures in
the HSI.

Chen et al. first introduces the convolutional neural network
(CNN) into the HSIs classification in [26]. In this method,
first, the principal component analysis (PCA) is used to reduce
the spectral dimension of the HSI and the fixed-size spatial
patches are extracted as the training samples. Then, several
convolutional layers are adopted to automatically extract spa-
tial feature maps from the training samples and different layers
can extract the features from different scales. The better exper-
imental results verify that the spatial information contributes
to the performance of CNN-based HSIs classification methods.
In addition, the CNN uses the local connections and shared
weights to greatly reduce the number of parameters, which
can speed the training and testing process. A self-improving
CNN model is proposed in [27] to adaptively select several
informative spectral bands to train the CNN model. A CNN-
based pixel-pairs model is proposed in [28] to combine the
center pixel and each of the surrounding pixels in a patch
to create pixel-pairs, which is expected to extract more spatial
information in the CNN model. Therefore, the CNN can jointly
exploit the spatial-spectral information within the patches,
which can provide a very high classification accuracy. How-
ever, the above-mentioned CNN models only adopt the fixed-
size patches and thus have the limited capacity to reflect the
complex structures in HSIs. Furthermore, such CNN networks
simply pass the feature maps from one convolutional layer to
the next layer in a single-pass forward way. Different layers
can extract features of different scales, and thus, this multiple
scale information within the CNN model is not effectively
utilized to train the network.

To address the aforementioned issues, a novel framework
termed as multiscale densely-connected convolutional network
(MS-DenseNet) is proposed to integrate multiscale information
within and among the networks for HSIs classification. Firstly,
for each pixel, different sizes of surrounding patches are
extracted to construct the corresponding training and testing
samples, which can reflect the HSI structures in different
scales. Within samples of one specific scale, instead of using
the forward convolutional layers in CNN, the dense block
is introduced to connect each layer to other layers in a
feed-forward fashion and thus can exploit the multiple scale
information among different layers for training and testing. In
addition, since the patches among different scales contain high
correlated and complementary information, the MS-DenseNet
progressively combines the multiple-scale information among
different networks for the final HSI classification.

The main contributions of this study are summarized below.
1) To exploit multiscale information in both of the hyper-

spectral image and feature maps of different layers in the
CNN model, the MS-FC-DenseNet is proposed to fuse the
information of multiscale samples after the last pooling layer.

2) The MS-DenseNet is designed to fuse feature maps
of different scale samples after the first dense block, and
this fusion strategy enables the MS-DenseNet to have fewer
parameters and better classification performance than the MS-
FC-DenseNet.

3) A series of the comprehensive analysis and comparison

of the proposed network design have been implemented on five
real publicly hyperspectral images in term of the classification
performance (i.e., overall accuracy (OA), average accuracy
(AA), and Kappa coefficient (Kappa)).

The rest of this paper is organized as follows. Section II
reviews the traditional CNN model and CNN based HSIs
classification. Section III introduces the MS-DenseNet for
HSIs classification. Section IV shows experimental results on
several real hyperspectral data sets. Section V concludes this
paper and suggests some future works.

II. RELATED WORKS

A. CNN Model

Recently, the CNN has been widely applied to several im-
ages processing applications, especially for the natural images
classification [29], [30]. A CNN model can automatically
extract the effective features from the input images by adopting
a series of transforming layers. The commonly used layers
include: 1) convolutional layers; 2) pooling layers; 3) fully
connected layers; and 4) soft max classification layer. Details
of the above layers are described as follows.

1) Convolutional Layer: Convolutional layer is crucial to
extract features from input data, which consists of a number
of convolutional kernels (also called filters). The convolutional
layer utilizes the kernels to convolve the input images (or
feature maps), which can create different feature maps. Specif-
ically, let Xi = {x1,1,1,i, . . . , xm,h,c,i, . . . , xM,H,C,i} be the input
data in the i-th convolutional layer and its size is M ×H×C,
where M and H are the height and the width of the input data,
respectively, and C represents the number of the channel in the
feature maps or input images. Assume the convolutional layer
has J kernels and Wj,i = {w1,1,1,j,i, . . . ,wk,k,c,j,i, . . . ,wK,K,C,j,i}
represents the j-th kernel (1 6 j 6 J, 1 6 K 6 M and
1 6 K 6 H) in the i-th layer. The output of the i-th
convolutional layer Yi = {Y1,i, . . . ,Yj,i, . . . ,YJ,i} is obtained
by:

Yj,i = Xi ⊗Wj,i, (1)

where ⊗ represents convolution operation and Yj,i is the j-th
feature map in the i-th layer. The above mapping can also
be defined as Yi = f(Xi). As the number of convolutional
layer increases, the receptive field will become larger, which
means that each pixel in the later feature maps can cover more
spatial information of wider region. In other words, for differ-
ent convolutional layers, the corresponding extracted feature
maps can reflect spatial structures of different scales (from
fine to coarse scales). However, in the convolutional training
and testing process, the information only flows between two
adjacent layers.

2) Pooling Layer: In the convolutional layer, multiple ker-
nel convolution operations will greatly increase the number of
feature maps, thus creating very high computational burden
for the following steps. Therefore, a pooling layer is usually
adopted after the convolutional layer to reduce the spatial size
of the feature maps and the extracted features become more
abstract. Specifically, the pooling layer fuses the nearby spatial
information (within a window of size b×b) in the feature maps
by usually adopting the max or average operations.
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B. Fully Connected Layer

After several convolutional and pooling layers, fully con-
nected (FC) layers are adopted which have full connections to
all features in the previous layer and create a vector of size
K×1. Finally, such vector is fed into the softmax layer, which
can determine the probability of each image belonging to each
class and the probability is denoted as [31]:

Pk =
ezk,i∑K

n=1 ezk,i
, k = 1, . . . ,K, (2)

where K is the number of classes and zk,i is the k-th value
of the input Z = {z1,i, . . . , zk,i, . . . , zK,i}. Then, the class with
the maximal probability is used as the estimated label θn for
each image. Based on the estimated labels, the loss function
Lf can be obtained via a combination of logistic loss and an
additional weight decay term for regularization,

Lf = −
∑

Z

gk(z)log(Pk) + λ(
∥∥∥W(·)

∥∥∥2

F
+
∥∥∥S(·)

∥∥∥2

F
), (3)

where gk(z) is a vector with one for the true label and
zero entries for the others, the W(·) represents the set of all
parameters in the convolutional layers, the S(·) represents the
set of all parameters in the fully connected layers, and λ
represents the weight decay coefficient of the CNN model.

To minimize the loss function, the backward propagation
algorithm is used to optimize the aforementioned parameters
(W(·) and S(·)). Specifically, it propagates the predicted error
Lf from the last layer to the first layer and modifies parameters
according to the propagated error at each layer. In general,
the stochastic gradient descent (SGD) algorithm is applied to
achieve this goal. Based on the gradient of parameters, the
loss function can be updated to be optimal.

C. CNN based HSIs Classification

Based on its powerful ability to extract representative fea-
tures, CNN has recently been applied for the HSIs classifica-
tion [32], [33]. Specifically, let X be an HSI with the size of
M×H×C, where C is the number of spectral bands. For each
training pixel, we extract its fixed neighboring pixels within a
b× b block to construct the corresponding patch xi

Train of size
b × b × C. Then, these labeled training samples are inputted
to CNN. As mentioned in the above subsection, once the loss
function reaches convergence, the CNN model, which includes
optimal parameters, will be obtained. For the testing, we also
extract the fixed patch xi

Test of size b × b × C for each test
pixel, and then the trained CNN model is applied on the test
patches to determine the class label of the corresponding test
pixels.

III. THE PROPOSED MS-DENSENET METHOD FOR HSIS
CLASSIFICATION

In the previous CNN-based HSIs classification methods
described in Section II B, the extracted fixed-size patches are
used as the training samples. In general, single scale fixed-
size patches cannot well reflect the complex structures of the
HSI. This is due to the fact that large homogeneous regions
require large patches, whereas detailed structural regions need

small patches. In addition, as the number of convolutional
layers increases, different layers can extract features from
fine (more detail) to coarse (more abstract) scales. However,
traditional CNN networks simply pass the feature maps from
one convolutional layer to the next layer in a single forward
manner, and thus the multiple scale information in the CNN
model is not effectively exploited to train the network.

To address the above issues, the MS-DenseNet method
is proposed in this section to sufficiently utilize multiscale
information for the HSIs classification. Firstly, we discuss
how to create the multiscale samples used for MS-DenseNet
training and testing. Then, we introduce the dense blocks to
connect the multiscale information among different convolu-
tional layers and combine information of multiscale training
samples for HSI classification. The flowchart of the proposed
MS-DenseNet is illustrated in Fig. 1.

A. The Creation of Multiscale Samples

Since the HSIs contain hundreds of spectral bands, the PCA
dimension reduction algorithm is first applied on the spectral
dimension of the original HSIs and the first L numbers of
principle components are used as the feature image (of size
M×H×L) [34], [35]. For each pixel yi in the feature image,
we extract its T neighboring patches {Y1, · · · ,Yt, · · · ,YT} of
different scales. Then, the extracted patches are constructed as
the corresponding multiscale samples {U1, · · · ,Ut, · · · ,UT},
where Ut denotes all the extracted patches from the t-th scale.

B. Multiscale Fusion via Dense block

Since there exists multiscale information among different
convolutional layers, we first introduce the dense block to
connect each layer to other layers in a feed-forward fashion.
Specifically, for the i-th convolutional layer in dense block,
it receives the feature maps {Y1, . . . ,Yi-1} from all previous
convolutional layers and concatenates them as the input:

xi = Concate[Y1, . . . ,Yi-1]. (4)

where Concate[·] denotes the concatenation operation. The
example of one dense block with four convolutional layers
are shown in Fig. 2. As described in [36], to facilitate the
downsampling process, the whole network will be divided into
several dense blocks.

Given training samples of multiple scales, one simple fusion
strategy is first to use training samples of one specific scale to
train one network with several dense blocks. Then, networks
of different scales are fused in the final FC layer. Since the
network (MS-FC-DenseNet) in each scale requires several
dense block (see Fig. 3), such a fusion strategy will make the
whole multiscale fusion network very huge, thus will create
high computational cost. Alternatively, we introduce a novel
fusion strategy to reduce the number of required dense blocks.
Specifically, for training samples of each specific scale, we
first utilize one dense block to create the feature maps (see
Fig. 1). Then, the feature maps of different scales are fused
together (using the concatenation) and used as the input into
the next dense block one. In this way, instead of fusing all
feature maps in the final FC layer with many dense blocks,
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Fig. 1. The proposed framework (MS-DenseNet) to fuse multiscale information for HSIs classification.

Fig. 2. A four convolutional layer dense block. Each layer takes all feature
maps as the input.

we fuse the feature maps after the first dense block layer,
which can reduce the number of dense blocks. Note that,
since feature maps from different scales are of different sizes,
they cannot be directly concatenated together. Therefore, for
training and testing samples of different scales, we utilize
the Bicubic algorithm to interpolate the samples of different
scales to the size of the largest scale samples. After the last
dense block step, we further add one pooling layer and fully
connected layer to create one feature vector. This vector is
then fed into the softmax layer for the classification. After
the multiple-scale network is trained, for each testing, we will
input its corresponding extracted patches of multiple scales
into the trained network and finally will obtain one class label
for each center pixel.

IV. EXPERIMENTAL RESULTS

A. Data sets Description

To verify the effectiveness of the proposed MS-DenseNet
framework, it is tested on five real hyperspectral data sets:
The Washington DC image, the University of Pavia image,
the Houston University image, the Indian Pines image and the
Salinas image.

The first data set is the Washington DC image, which was
collected on the spectral information technology application
center of Virginia over the Washington DC Mall. After dis-
carding 19 bands in the spectral range 0.9-1.4 mm, this image
contains 191 bands in the 0.4 to 2.4 mm region of the visible
and infrared spectrum. Each band is of size 280 × 307. Fig.
7(a) and (b) show the three-band false color image and the
reference samples of the Washington DC data set, that contains
six different classes.

The second data set is the University of Pavia image, which
was acquired with the reflective optics system imaging spec-
trometer (ROSIS-03) sensor over the campus of the University
of Pavia, Italy. It contains 115 spectral bands ranging from
0.43 to 0.86 µm and has the spatial size of 610× 340 pixels

with a spatial resolution of 1.3 m. Before the classification,
12 spectral bands were removed due to the existence of high
amount of noise. A three-band false color image and the
corresponding reference data are illustrated in Fig. 8(a) and
(b), that contains nine classes.

The third data set is the Houston University image, which
covers the Houston University campus and its neighboring
area. This image was distributed in the 2013 GRSS Data
Fusion Contest. It contains 144 spectral bands and each band
is of size 349× 1905. The spatial resolution of this image is
2.5 m per pixel and the spectral coverage ranges from 380 nm
to 1050 nm. Heavy shadows contained in the observed data
were removed and a sub-region with the size of 349 × 1300
was retained for classification. Fig. 9(a) and (b) show the color
composite of the University of Pavia image and the reference
data, which considers fifteen classes of interest.

The fourth data set is the Indian Pines image, which was
captured by the airborne visible infrared imaging spectrometer
(AVIRIS) sensor over the Indian Pines test site in northwestern
Indiana. After removing 20 bands covering the region of water
absorption, this image is of size 145×145×200 with a spatial
resolution of 20 m per pixel and its spectral coverage ranges
from 0.2 to 2.4 µm. Sixteen classes of interest are considered
for the image and Fig. 10(a) and (b) show the false color
composite of the Indian Pines image and the corresponding
ground truth data.

The fifth data set is the Salinas image, which was acquired
by AVIRIS sensor over Salinas Valley, California. This scene
image has 224 spectral band and it has a spatial dimension of
512×217 with a spatial resolution of 3.7 m per pixel. As with
Indian Pines image, 20 water absorption bands are reduced
before the classification. A three-band false color composite
of the Salinas image and its ground truth data are seen in Fig.
11(a) and (b), that contains sixteen different classes.

B. Quantitative Metrics

To evaluate the effect of the parameters in the proposed
method, the OA is adopted in the following experiments. In
addition, AA, and Kappa are also introduced to measure the
performances of different methods. The full definitions of the
quantitative metrics, i.e., OA, AA, and Kappa are as follows.

Let Ng = {N1
g, · · · ,Nk

g, · · · ,NK
g } be the number of samples

in the ground truth, where the K represents the number
of the categories and Nk

g the number of samples in the k-
th categories. Assume Np = {N1

p, · · · ,Nk
p, · · · ,NK

p }, Nc =
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Fig. 3. The structure of the MS-FC-DenseNet.

{N1
c , · · · ,Nk

c, · · · ,NK
c } and the method predicts Nk

p samples for
the k-th categories including Nk

c correct samples. The OA is
defined as:

OA = Nc/N, (5)

the AA is defined as:

AA =

∑K
k=1 Nk

c/Nk
g

K
, (6)

and the Kappa is defined as:

Kappa =
OA−

∑K
k=1 Nk

p×Nk
g

Ng×Ng

1−
∑K

k=1 Nk
p×Nk

g

Ng×Ng

. (7)

All results are calculated by averaging the results obtained in
ten repeated experiments with ten groups of randomly selected
training samples.

C. Parameter Analysis

The parameter setting in the proposed fusion scheme for the
HSI classification is given as follows. To construct an effective
fusion network for HSIs classification, MS-DenseNet consists
of six dense blocks, in which four of them are utilized to
extract multiple-scale information from different scale samples
(in Fig. 1) and the others are used to extract middle and high
level features from the fused feature maps. The number of
convolutional layers in the first four dense blocks is set to be
7 and the number of convolutional kernels is set to be 16. The
numbers of convolutional layers in the other two dense blocks
are set to be 6. To obtain richer information, the number of
convolutional kernels is set to be 32 and 64 in the middle and
high level dense blocks, respectively. In addition, effects of
the number of multiple scale samples and principle component
(PC) will be analyzed by evaluating OAs on three data sets.

First, the effects of different single-scale patch sizes to the
performance of CNN method are analyzed on three real data
sets (i.e. Washington DC image, University of Pavia image
and Houston University image). As shown in Fig. 4, the
classification results vary when the CNN network considers
different sizes of raw patch as input, and larger patch sizes
cannot guarantee better results. As described in [37], a small
patch can well represent the detailed structural region, whereas
large patch can better reflect the large homogeneous region.
In this paper, four different patch sizes ({U1,U2,U3,U4})
are utilized in our framework, which are set to 3, 9, 15
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Fig. 4. Effects of different single-scale patch sizes to the performance of
CNN framework.
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Fig. 5. Effects of different single-scale patch sizes to the performance of
CNN framework.

and 31, respectively. By comparing with different numbers
of multiple-scale patches fused in the final model (in Fig. 5),
four patches of different sizes are enough to obtain satisfactory
classification performance for all three data sets used in the
experiments, which also consider the tradeoff between the
network complexity and classification accuracy.

Then, the effect of the number of principal components,
i.e., (L = 1, 2, 3, 5, 10), is analyzed. The experiment is
performed on three real data sets (i.e. Washington DC image,
University of Pavia image and Houston University image)
and tested on multiple scale networks. As shown in Fig. 6,
a small number of principal components, i.e., (L= 1) and
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Fig. 6. Effects of different single-scale patch sizes to the performance of
CNN framework.

TABLE I
COMPARISON BETWEEN THE MS-FC-DENSENET AND THE

MS-DENSENET.

Methods MS-FC-DenseNet MS-DenseNet

Washington DC image
300 training samples
9599 testing samples

Parameter amount 9.5 millions 4.5 millions
Overall accuracy 97.63% 97.74%

Training time 2523.82 seconds 1403.32 seconds
Testing time 13.57 seconds 9.52 seconds

University of Pavia image
450 training samples

42326 testing samples

Parameter amount 9.5 millions 4.5 millions
Overall accuracy 99.10% 99.32%

Training time 2523.82 seconds 1403.32 seconds
Testing time 53.12 seconds 36.06 seconds

Houston University image
450 training samples

29608 testing samples

Parameter amount 9.5 millions 4.5 millions
Overall accuracy 95.52% 95.91%

Training time 2523.82 seconds 1403.32 seconds
Testing time 37.67 seconds 25.18 seconds

Salinas image
800 training samples

53329 testing samples

Parameter amount 9.5 millions 4.5 millions
Overall accuracy 99.41% 99.50%

Training time 2523.82 seconds 1403.32 seconds
Testing time 66.77 seconds 44.37 seconds

Indian Pines image
520 training samples
9729 testing samples

Parameter amount 9.5 millions 4.5 millions
Overall accuracy 95.59% 97.66%

Training time 2523.82 seconds 1403.32 seconds
Testing time 13.87 seconds 9.17 seconds

(L= 2), are not able to represent raw data well, whereas a
large number of principal components, i.e., (L= 5) and (L=
10), generally show limited improvement (or even decrease)
in terms of classification accuracy. The reason is that the
first three principal components usually contain most of the
effective information [38]. Therefore, the number of principal
components L is set as 3 in the following experiments.

Finally, the comparison between the MS-FC-DenseNet and
the MS-DenseNet, in terms of accuracy, complexity and effi-
ciency, are performed on five real data sets (i.e. Washington
DC image, University of Pavia image, Houston University
image, Salinas image and Indian Pines image). As can be
observed from Table I, compared with the MS-FC-DenseNet,
the MS-DenseNet shows better classification performance on
five data sets with fewer parameters. Furthermore, fewer
parameters result in less training time and less testing time.
It is worth noting that, from Table I, since the same training
strategies (including the same batch size, the same number of
iterations, and the same input size) are adopted on all images,
the parameter amount and the training time on all images
of each method (MS-FC-DenseNet or MS-DenseNet) are the
same.

D. Comparison of Different Methods

The classification results obtained by the proposed multiple-
scale information fusion method are visually and quantitatively
compared with several well-known methods, including SVM
[39], extended morphological profiles (EMP) [40], pixel-wise
sparse representation classification (SRC) [41], superpixel-
based classification via multiple kernels (SC-MK) [11], image
decomposition for feature extraction (IIDF) [42], PCA-Based
edge-preserving features (PCA-E) [43], multiscale superpixel-
based sparse representation (MSSRC) [44], correlation coeffi-
cient and joint sparse representation (CCJSR) [45], multiscale
dense networks (MSDNet) [46], deep feature fusion network
(DFFN) [47] and semisupervised and active learning (SOAL)
[18]. The SVM and SRC methods do not utilize spatial infor-
mation for HSIs classification, while the remaining ones are
among spectral-spatial classification methods. For the EMP,
the spectral-spatial feature is extracted by the morphological
method. The SC-MK, IIDF and PCA-E are feature-fusion
methods, which extract and fuse multiple types of spectral-
spatial features. The MSSRC and CCJSR are the modified
versions of the SRC, which make better use of the spectral
similarity among different pixels by correlation coefficient and
multiscale superpixel, respectively. The MSDNet and DFFN
are two CNN-based methods, which fuse the feature maps in
the different layers to accelerate the classification performance.
The SOAL is a method of semisupervised and active learn-
ing based on random walker. Furthermore, two other fusion
networks are also adopted for comparison: multiscale convo-
lutional network (MS-Net) and MS-FC-DenseNet (described
in section III B). Instead of using the dense block, the MS-
Net only adopts the convolutional layers to fuse samples of
different sizes, and the number of feature maps in each layer
is consistent with MS-DenseNet. The parameters of SVM,
EMP, SRC, SC-MK, PCA-E, MSSRC, CCJSR, MSDNet,
DFFN, and SOAL are set to the default values as reported
in their references [11], [18], [39]–[41], [43]–[47]. All the
classification methods are repeated ten times to reduce the
bias and the average values are reported in the Tables II-VI.

The first experiment is performed on the Washington DC
data set. With 50 samples per class (Nr = 50) being randomly
selected for training, the OA, AA, and Kappa, which are
calculated from different methods, are shown in Table II. It
can be observed that the OA, AA, and Kappa yielded by the
proposed MS-DenseNet framework are better than those from
other methods. Fig. 7 shows the classification maps of the
Washington DC image by various classification methods.

The second experiment is performed on the University of
Pavia data set. Table III shows the OA, AA, and Kappa
of different methods with 50 samples per class (Nr = 50)
being selected for training. Similar to the above experiment,
the best results are also obtained by the proposed methods,
which demonstrates the effectiveness of the proposed MS-
DenseNet framework. Fig. 8 shows the classification maps
of the University of Pavia image by fourteen classification
methods.

The third experiment is performed on the Houston Univer-
sity data set. With 30 training samples per class (Nr = 30), OA,
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TABLE II
CLASSIFICATION PERFORMANCE OF THE WASHINGTON DC DATA SET WITH THE SVM, EMP, SRC, SC-MK, IIDF, PCA-E, MSSRC, CCJSR,

MSDNET, DFFN, SOAL, MS-NET ,AS WELL AS THE PROPOSED MS-FC-DENSENET AND MS-DENSENET.

Class SVM EMP SRC SC-MK IIDF PCA-E MSSRC CCJSR MSDNet DFFN SOAL MS- MS-FC- MS-
Net DenseNet DenseNet

Roofs 92.69 89.45 80.23 95.17 96.93 99.15 92.47 99.96 95.12 88.29 96.22 94.01 96.28 95.75
Road 96.97 97.63 96.14 97.69 97.38 97.00 97.00 94.99 97.76 94.41 100.00 96.44 98.73 99.29
Grass 76.31 87.76 88.83 92.11 89.00 92.15 95.79 82.92 92.51 89.46 96.59 93.81 96.47 97.11
Trail 91.95 97.38 96.94 98.37 99.06 98.21 98.57 93.57 97.32 96.69 97.11 97.53 99.47 99.65
Trees 95.35 96.71 95.14 97.36 96.83 97.50 94.79 97.69 97.79 95.11 98.77 97.93 99.42 99.16

Shadow 98.82 96.67 98.17 96.63 98.68 87.93 81.98 91.02 89.45 90.41 87.76 93.80 98.09 98.12
OA 91.59 93.37 90.21 96.03 96.19 96.01 93.64 93.88 95.20 92.58 96.43 95.31 97.63 97.74
AA 92.01 94.27 92.58 96.22 96.31 95.32 93.43 93.36 94.99 92.40 96.07 95.59 98.08 98.18

Kappa 89.59 91.80 88.57 95.04 95.27 95.05 92.35 92.68 94.11 90.13 95.54 94.18 97.10 97.20

(a) (b) (c) (d)

(e) (h)(g)(f)

(l)(k)(j)

Roofs
Grass
Road
Trail
Trees
Shadow

(i)

(p)(o)(n)(m)

Fig. 7. Washington DC data set. (a) Three-band color image. (b) Corresponding reference data and maps from different compared methods. (c) SVM
(OA=91.46%), (d) EMP (OA=94.35%), (e) SRC (OA=90.19%), (f) SC-MK (OA=96.16%), (g) IIDF OA=97.37%), (h) PCA-E (OA=95.43%), (i) MSSRC
(OA=93.79%), (j) CCJSR (OA=94.82%), (k) MSDNet (OA=95.61%), (l) DFFN (OA=93.42%), (m) SOAL (OA=98.03%), (n) MS-Net (OA=95.17%), (o)
MS-FC-DenseNet (OA=97.54%), (p) MS-DenseNet (OA=98.11%).

Authorized licensed use limited to: Helmholtz-Zentrum Dresden-Rossendorf. Downloaded on December 22,2020 at 07:52:34 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2020.2975566, IEEE
Transactions on Circuits and Systems for Video Technology

8

TABLE III
CLASSIFICATION PERFORMANCE OF THE UNIVERSITY OF PAVIA DATA SET WITH THE SVM, EMP, SRC, SC-MK, IIDF, PCA-E, MSSRC, CCJSR,

MSDNET, DFFN, SOAL, MS-NET ,AS WELL AS THE PROPOSED MS-FC-DENSENET AND MS-DENSENET.

Class SVM EMP SRC SC-MK IIDF PCA-E MSSRC CCJSR MSDNet DFFN SOAL MS- MS-FC- MS-
Net DenseNet DenseNet

Asphalt 88.41 96.84 69.03 98.13 93.14 98.21 76.48 95.99 98.72 90.88 99.93 97.53 97.75 96.82
Meadows 92.89 95.28 92.07 99.81 98.72 99.64 94.37 90.57 99.40 98.77 100.00 95.52 99.03 99.78

Gravel 67.21 87.08 55.66 91.54 99.15 96.63 99.60 60.16 99.86 99.91 99.43 99.90 100.00 99.97
Trees 95.31 91.58 73.18 93.01 93.56 94.72 85.78 78.34 89.62 91.99 82.02 97.96 98.74 98.80

Metal sheets 98.06 99.70 98.63 98.54 100.00 97.53 95.26 75.85 99.86 99.93 100.00 99.98 100.00 100.00
Bare soil 95.53 63.12 43.85 99.84 99.85 99.99 100.00 50.64 100.00 100.00 100.00 99.76 100.00 100.00
Bitumen 79.30 92.80 68.30 100.00 99.29 96.45 100.00 61.84 100.00 99.97 100.00 99.92 100.00 100.00
Bricks 79.67 93.30 70.71 96.44 87.83 92.74 96.92 57.18 98.92 97.49 99.92 98.44 99.61 99.93

Shadows 99.94 99.35 93.72 99.89 99.75 95.17 62.71 71.83 97.12 97.33 98.86 99.97 100.00 100.00
OA 83.58 87.75 71.69 97.85 96.62 98.04 91.68 74.67 98.65 97.54 98.83 97.33 99.10 99.32
AA 88.48 91.01 73.91 97.47 96.81 96.79 90.12 71.37 98.17 97.36 97.80 98.78 99.46 99.48

Kappa 78.05 84.38 63.70 97.15 95.52 97.40 89.00 67.18 98.13 96.11 98.33 96.67 98.81 99.09

(a) (b) (c) (d)

(e) (f) (g) (h) (j)

(k) (l)

Asphalt

Meadows
Gravel

Trees
Painted metal sheets

Bare Soil

Bitumen

Self-Blocking Bricks

Shadows

(i)

(n) (o) (p)(m)

Fig. 8. University of Pavia data set. (a) Three-band color image. (b) Corresponding reference data and maps from different compared methods. (c) SVM
(OA=88.92%), (d) EMP (OA=91.05%), (e) SRC (OA=77.66%), (f) SC-MK (OA=98.05%), (g) IIDF (OA=98.75%), (h) PCA-E (OA=99.03%), (i) MSSRC
(OA=93.71%), (j) CCJSR (OA=76.35%), (k) MSDNet (OA=98.83%), (l) DFFN (OA=97.72%), (m) SOAL (OA=98.83%), (n) MS-Net, (OA=97.35%), (o)
MS-FC-DenseNet (OA=98.92%), (p) MS-DenseNet (OA=99.09%).

Authorized licensed use limited to: Helmholtz-Zentrum Dresden-Rossendorf. Downloaded on December 22,2020 at 07:52:34 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2020.2975566, IEEE
Transactions on Circuits and Systems for Video Technology

9

AA, and Kappa of all fourteen methods are shown in Table IV.
It can be observed that the proposed MS-DenseNet and MS-
FC-DenseNet still obtains the best results in the terms of the
OA, AA, and Kappa. Specifically, the classification accuracies
in terms of OA metric by the MS-FC-DenseNet and MS-
DenseNet frameworks are 95.52% and 95.91%, respectively,
while the rest competetive methods have the OA of less than
94%. Furthermore, the accuracies of the eighth class obtained
by all methods are not satisfactory. The reason is that within
class variability is high which cannot be fully represented
using a limited number of training samples. Fig. 9 shows the
classification maps of the Houston University data set obtained
by different methods.

The fouth experiment is performed on the Indian Pines
data set. Table V shows the OA, AA, and Kappa of different
methods with 5% samples per class (Nr = 5%) being selected
for training. The Indian Pines data set is an imbalanced data
set with fewer than 50 samples in three categories. Except
for the SOAL, the proposed MS-DenseNet framework has
better classification performance than other methods. But, the
SOAL is an active learning-based methods which is hardly
affected by the number of training samples. Fig. 10 shows the
classification maps of the Indian Pines data set obtained by all
fourteen methods.

The fifth experiment is performed on the Salinas data set.
With 50 training samples per class (Nr = 50), OA, AA,
and Kappa of all fourteen methods are shown in Table VI.
Except for the SOAL, the classification result in terms of
OA metric of the MS-DenseNet framework is better than
classification results from other methods. From Fig 11 and
Table VI, compared with the SOAL, more misclassification
results from the categories of the vinyard untrained and the
grapes untrained are obtained by the proposed method. Fig. 11
shows the classification maps of the Salinas data set obtained
by different methods.

E. Effect of Different Number of Training Samples

In this section, the influence of different training sets on
the performance of the MS-DenseNet is analyzed using three
test images (i.e. Washington DC image, University of Pavia
image and Houston University image), as shown in Fig. 12.
As can be observed, more training samples can improve the
performance of the proposed framework in classification tasks
and the robustness of the proposed MS-DenseNet framework.
From Fig. 12, Table V and VI, the proposed method delivers
slight inferior performance to the SOAL method on the Indian
Pines data set, the Salinas data set, and some sets of training
samples of the Washington DC data set, the University of
Pavia data set and the Houston University data set. This is
because the SOAL is a semisupervised and active learning-
based method, which can iteratively detect and then add new
samples for training. Therefore, it is hardly affected by the
training samples and thus can achieve very good results.
Because the proportion number of the labeled samples of the
Indian Pines image (10249 labeled samples/21025 samples)
and the Salinas image (54129 labeled samples/111104 sam-
ples) are more than those of the University of Pavia image

(42776 labeled samples/207400 samples), the Washington DC
image (9899 labeled samples/85960 samples) and the Houston
University image (15029 labeled samples/664845 samples)
[48], and thus the Indian pines image and the Salinas image are
comparatively simple to be classified. Even so, the proposed
MS-DenseNet can consistently outperform other compared
methods in most different sets of training samples when
conducting experiments on the Washington DC data set, the
University of Pavia data set and the Houston University data
set.

V. CONCLUSION RESULTS AND DISCUSSION

In this paper, a novel densely-connected convolutional net-
work framework is proposed to integrate the multiple scale
information of HSIs for the classification task. Specifically,
both multiple scale information in multiple scale patches
and different layers are utilized to improve the classification
accuracy. The surrounding patches of multiple scales for each
pixel are extracted to reflect complex spatial structures. In ad-
dition, the dense block is then adopted to fuse complementary
yet correlated information among different layers and jointly
extract multiple scale features. Experimental results demon-
strated that, compared with other state-of-the-art frameworks
recently presented in the literature, the proposed MS-DenseNet
framework can obtain better classification accuracies on three
real HSIs.

In this paper, the input of the MS-DenseNet is some princi-
pal components produced by the PCA method from raw data
due to the limitation of computer hardware, which may not
well consider correlations among spectral bands. Moreover, a
limited number of training samples cannot fully reflect effec-
tive features to achieve an accurate classification task when the
within class variance is high. Therefore, how to classify the
HSIs without preprocessing and enhance the characterization
ability of the training samples to reflect information will be
the focuses of our future works.
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TABLE IV
CLASSIFICATION PERFORMANCE OF THE HOUSTON UNIVERSITY DATA SET WITH THE SVM, EMP, SRC, SC-MK, IIDF, PCA-E, MSSRC, CCJSR,

MSDNET, DFFN, SOAL, MS-NET ,AS WELL AS THE PROPOSED MS-FC-DENSENET AND MS-DENSENET.

Class SVM EMP SRC SC-MK IIDF PCA-E MSSRC CCJSR MSDNet DFFN SOAL MS- MS-FC- MS-
Net DenseNet DenseNet

Healthy grass 94.87 96.40 92.22 92.15 93.70 94.26 87.61 96.41 92.39 90.97 85.43 93.61 95.34 96.64
Stressed grass 95.61 91.58 97.83 87.47 97.03 84.57 85.13 87.76 94.77 98.03 86.12 96.54 97.06 97.43
Synthetic grass 99.70 94.72 99.73 100.00 100.00 100.00 100.00 99.75 99.62 99.11 100.00 99.80 100.00 99.87

Trees 96.13 93.11 91.01 89.54 98.88 93.27 95.72 95.86 83.53 80.64 85.67 95.72 98.84 99.68
Soil 91.48 92.07 96.91 94.54 95.51 100.00 99.02 87.87 99.67 98.10 100.00 98.65 99.98 99.5

Water 99.13 98.98 94.51 96.27 98.51 86.26 87.23 100.00 99.58 97.23 87.30 98.87 98.51 98.71
Residential 84.15 88.06 68.58 85.32 93.67 73.25 58.48 87.01 94.91 92.56 88.46 93.38 97.65 99.35
Commercial 77.42 77.23 71.24 76.43 86.43 83.07 74.52 93.01 82.87 77.18 90.86 74.16 78.82 80.08

Road 70.99 69.43 67.43 82.34 85.85 77.14 86.51 85.86 74.06 68.98 94.85 85.87 88.87 90.29
Highway 81.45 82.30 86.38 92.67 94.59 94.92 95.09 75.63 100.00 96.67 99.16 95.38 98.01 94.97
Railway 82.96 69.43 64.20 93.93 96.59 95.71 92.87 81.25 97.52 97.77 98.34 87.30 96.35 97.86

Parking lot1 73.58 71.21 65.80 89.66 91.33 97.91 91.53 78.07 96.76 92.86 96.26 88.50 97.46 97.22
Parking lot2 54.84 86.10 37.31 76.72 77.13 89.47 77.56 79.93 98.47 98.58 81.14 91.95 95.35 95.26
Tennis court 94.54 93.42 98.79 100.00 100.00 100.00 100.00 81.83 100.00 100.00 100.00 99.83 100.00 100.00

Running track 99.49 99.71 98.98 99.87 99.29 100.00 98.48 99.87 98.81 95.56 100.00 99.63 100.00 100.00
OA 86.04 85.06 81.38 89.51 93.53 89.89 87.80 87.16 92.90 90.83 93.03 92.13 95.52 95.91
AA 86.43 86.92 82.06 90.46 93.90 91.32 88.65 88.67 94.20 92.28 92.91 93.28 96.15 96.46

Kappa 84.89 83.84 79.86 88.68 93.01 89.07 86.95 86.04 92.33 90.15 92.42 91.49 95.16 95.58

Healthy grass
Stressed grass

Synthetic grass

Trees
Soil
Water
Residential
Commercial
Road
Highway
Railway

Parking lot1

Parking lot2
Tennis court
Running track

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p)

Fig. 9. Houston University data set. (a) Three-band color image. (b) Corresponding reference data and maps from different compared methods. (c) SVM
(OA=86.04%), (d) EMP, (OA=85.06%), (e) SRC (OA=81.21%), (f) SC-MK (OA=89.77%), (g) IIDF (OA=93.42%), (h) PCA-E (OA=89.94%), (i) MSSRC
(OA=87.23%), (j) CCJSR (OA=92.50%), (k) MSDNet (OA=93.11%), (l) DFFN (OA=91.01%), (m) SOAL (OA=94.57%), (n) MS-Net (OA=92.12%), (o)
MS-FC-DenseNet (OA=95.35%), (p) MS-DenseNet (OA=96.12%).

TABLE V
CLASSIFICATION PERFORMANCE OF THE INDIAN PINES DATA SET WITH THE SVM, EMP, SRC, SC-MK, IIDF, PCA-E, MSSRC, CCJSR, MSDNET,

DFFN, SOAL, MS-NET ,AS WELL AS THE PROPOSED MS-FC-DENSENET AND MS-DENSENET.

Class SVM EMP SRC SC-MK IIDF PCA-E MSSRC CCJSR MSDNet DFFN SOAL MS- MS-FC- MS-
Net DenseNet DenseNet

Alfalfa 43.37 77.56 25.97 98.28 100.00 100.00 96.40 100.00 93.06 97.58 100.00 90.70 98.92 87.67
Corn-notill 73.09 76.71 45.23 96.67 89.97 95.42 93.72 89.97 93.67 93.42 98.89 96.61 91.30 96.26

Corn-mintill 72.79 80.01 41.63 93.66 86.84 96.88 99.37 90.57 97.54 97.75 99.24 99.11 92.26 99.87
Corn 45.50 62.82 37.72 87.58 88.69 97.94 99.76 85.76 85.01 94.49 96.89 92.00 81.33 90.18

Grass-pasture 91.15 81.57 77.46 88.38 97.08 96.78 98.69 96.87 93.05 91.83 98.03 95.85 95.63 95.50
Grass-trees 77.38 85.71 90.58 100.00 96.86 98.75 99.96 89.94 98.31 97.02 99.86 98.70 99.28 100.00

Grass-pasture-mowed 38.61 86.88 88.85 89.97 71.03 86.38 99.90 65.68 96.19 80.68 96.15 84.62 92.31 96.82
Hay-windrowed 83.95 99.56 93.56 100.00 99.34 100.00 100.00 98.75 100.00 100.00 100.00 100.00 100.00 100.00

Oats 31.98 35.47 37.23 100.00 48.18 94.04 100.00 84.67 78.99 94.65 100.00 68.42 73.68 100.00
Soybean-notill 71.50 81.28 64.85 91.87 93.28 96.25 98.53 87.88 95.64 92.54 100.00 95.56 93.93 94.19

Soybean-mintill 72.71 86.61 69.34 98.71 95.62 98.48 92.97 93.54 99.27 96.31 99.96 97.64 97.47 98.26
Soybean-clean 51.91 73.29 37.69 91.97 89.12 94.41 93.44 88.82 97.55 98.49 99.29 96.45 97.16 97.92

Wheat 81.90 99.71 91.11 99.85 98.73 97.72 99.67 95.53 95.92 96.82 100.00 94.33 100.00 100.00
Woods 91.56 98.67 86.24 99.11 98.51 99.77 99.75 98.39 97.38 96.91 100.00 99.25 99.08 100.00

Buildings-Grass-Trees-Drives 46.68 95.21 32.90 98.84 97.43 98.94 98.75 93.63 93.48 98.82 98.63 99.68 99.73 100.00
Stone-Steel-Towers 95.74 86.32 84.48 98.21 98.43 99.02 99.48 97.45 90.03 87.41 98.86 96.64 100.00 100.00

OA 73.95 86.61 64.86 96.25 94.03 97.49 96.60 92.50 96.64 95.82 99.49 97.40 95.59 97.66
AA 66.86 81.71 62.80 95.82 90.57 96.92 98.15 91.09 94.01 94.67 99.11 94.10 94.51 97.29

Kappa 70.47 84.74 59.79 95.65 93.27 97.15 95.96 91.44 96.15 95.25 99.41 97.04 94.97 97.46
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Fig. 10. Indian Pines data set. (a) Three-band color image. (b) Corresponding reference data and maps from different compared methods. (c) SVM
(OA=75.30%), (d) EMP, (OA=86.37%), (e) SRC (OA=66.19%), (f) SC-MK (OA=96.31%), (g) IIDF (OA=94.21%), (h) PCA-E (OA=97.73%), (i) MSSRC
(OA=93.47%), (j) CCJSR (OA=92.71%), (k) MSDNet (OA=96.60%), (l) DFFN (OA=95.91%), (m) SOAL (OA=99.32%), (n) MS-Net (OA=97.47%), (o)
MS-FC-DenseNet (OA=95.57%), (p) MS-DenseNet (OA=98.65%).

TABLE VI
CLASSIFICATION PERFORMANCE OF THE SALINAS DATA SET WITH THE SVM, EMP, SRC, SC-MK, IIDF, PCA-E, MSSRC, CCJSR, MSDNET, DFFN,

SOAL, MS-NET ,AS WELL AS THE PROPOSED MS-FC-DENSENET AND MS-DENSENET.

Class SVM EMP SRC SC-MK IIDF PCA-E MSSRC CCJSR MSDNet DFFN SOAL MS- MS-FC- MS-
Net DenseNet DenseNet

Brocoli green weeds 1 100.00 94.18 98.64 100.00 100.00 100.00 100.00 99.95 100.00 99.79 100.00 100.00 100.00 100.00
Brocoli green weeds 2 98.13 87.09 98.23 100.00 99.95 100.00 100.00 100.00 99.95 100.00 100.00 100.00 100.00 100.00

Fallow 94.48 86.49 97.53 99.08 99.99 99.46 99.50 97.84 98.67 100.00 100.00 100.00 100.00 100.00
Fallow rough plow 99.37 99.55 99.59 99.18 97.65 96.69 98.93 99.22 99.54 99.93 99.93 99.11 99.03 99.40

Fallow smooth 98.60 96.50 93.23 98.34 99.99 99.67 98.85 97.04 99.63 99.89 99.48 99.92 99.31 99.96
Stubble 100.00 98.85 99.32 99.51 100.00 100.00 99.47 99.77 99.95 99.72 100.00 99.97 100.00 100.00
Celery 99.65 96.83 98.90 99.72 99.96 99.68 99.41 99.07 99.97 99.97 100.00 99.55 99.04 99.97

Grapes untrained 77.62 76.46 63.41 94.97 98.69 98.27 96.33 85.83 98.38 96.95 99.69 90.76 99.18 98.81
Soil vinyard develop 99.32 97.53 97.32 99.79 99.97 99.74 100.00 99.22 100.00 99.52 100.00 99.66 99.62 99.98

Corn senesced green weeds 85.55 96.93 85.93 97.42 98.07 99.67 93.36 95.54 99.94 99.99 99.91 99.47 98.10 98.51
Lettuce romaine 4wk 92.91 98.87 99.02 98.01 99.94 99.60 100.00 97.70 100.00 99.91 100.00 99.51 100.00 100.00
Lettuce romaine 5wk 99.67 82.78 99.76 99.49 99.95 99.67 100.00 97.19 99.95 99.17 100.00 99.63 100.00 100.00
Lettuce romaine 6wk 96.14 98.07 96.35 98.24 96.63 98.79 96.69 96.63 99.14 99.88 99.56 99.42 99.28 100.00
Lettuce romaine 7wk 97.42 95.64 96.67 94.42 96.66 96.96 96.16 97.92 99.86 100.00 99.72 99.61 100.00 99.71

Vinyard untrained 65.17 75.92 59.27 97.38 99.01 98.04 99.42 64.74 98.01 99.27 99.97 98.96 99.20 99.02
Vinyard vertical trellis 99.81 97.42 97.70 100.00 100.00 99.69 96.77 99.19 100.00 100.00 98.95 98.29 99.18 99.83

OA 88.79 88.42 84.68 98.02 99.31 99.08 98.36 90.35 99.28 98.46 99.85 97.69 99.41 99.50
AA 93.99 92.44 92.55 98.47 99.15 99.12 99.43 95.43 99.56 99.62 99.83 98.99 99.50 99.70

Kappa 87.51 87.15 82.98 97.82 99.22 99.01 98.23 89.24 99.19 98.24 99.83 97.43 99.38 99.44
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Fig. 11. Salinas data set. (a) Three-band color image. (b) Corresponding reference data and maps from different compared methods. (c) SVM (OA=88.69%),
(d) EMP, (OA=88.27%), (e) SRC (OA=84.87%), (f) SC-MK (OA=98.24%), (g) IIDF (OA=99.58%), (h) PCA-E (OA=99.61%), (i) MSSRC (OA=98.86%),
(j) CCJSR (OA=89.41%), (k) MSDNet (OA=99.22%), (l) DFFN (OA=98.01%), (m) SOAL (OA=99.78%), (n) MS-Net (OA=97.69%), (o) MS-FC-DenseNet
(OA=99.71%), (p) MS-DenseNet (OA=99.51%).
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