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Abstract

The guiding centre approximation for the motion of charged particles in axially symmetric
magnetic and electric fields is formulated and stopping as well as small angle scattering on
a multicomponent plasma are included. The developed code has been applied to the design
of a 14-MeV neuntron source according to the concept of the Budker Institute Novosibirsk.
It is demonstrated that the self-interaction of injected D-and T ions by stopping, scattering
and induced internal fields has to be taken into account, if the injected power exceeds a few
megawatt.
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1 Introduction

The present paper can be viewed as a part of the efforts made commonly by the Budker Institute
Novosibirsk and FZR for demonstrating the feasibility of an intense 14-MeV neutron source based
on the Novosibirsk concept of an open trap. Recently the whole subject has been presented in a
broader context in [1].

The special topic here is the modelling of the transport of the fast ions originating from the injected
neutral atoms of the hydrogen isotopes by ionization in the target plasma. The method adopted
here is the well known guiding centre approximation (g.c.a.), adapted to cylinder coordinates and
axially symmetric fields. Of course, one could instead integrate numerically the particles equations
of motion with the Lorentz force as the right hand side, although in this case one has to take
special care in order to conserve the necessary accuracy even after some 10% Larmor revolutions
performed by the ion during its life. But the g.c.a. seems to offer advantages in terms of computing
time. At the same time the accuracy of the g.c.a. approach adopted here is amply sufficient, as has
been demonstrated by comparison with results from the direct integration.

The interaction of the fast ions with the plasma is taken into account by means of the relaxation
times 7 and 74 for stopping and deflection in a multicomponent plasma including the population
of the fast ions themselves.

The only place where random numbers are used is in the description of small angle scattering. But
for as long as Coulomb scattering does not play a decisive role, the statistical error in the final
results due to this randomness is insignificant (< 5% in the example considered).

2 Recapitulation of the guiding centre approximation

There exist several formulations of guiding centre approximations in the literature, some of them
differing in certain details. We adopt the version of ref.[2]. In the following we recall briefly the
essence of the method, in order to introduce the terminology. The meaning of symbols is repeated
in the index of notations at the end of the paper.

The method starts with a series of transformations of the dynamic variables of the particle:

: (6‘117) = (’Tsvu:'v.u.,@) = (‘T:g:/l»‘i’)=> (?:gvM;Q)

In the first of the above transformations the particle velocity 7 is represented by its components
parallel (v;) and perpendicular (v.) to a given external magnetic field B = Bb, as well as by
its phase ¢, the angle between the perpendicular component and the binormal to the field line
at point §. The quantity p after the second transformation, called the magnetic moment of the
Larmor rotation is defined by

me?

g (1)

In the last step, the transformation to guiding centre coordinates (17, &, M, ®) a small parameter
¢ is included artificially by making the following replacement in the equations of motion:
B, 2 @)

mc €

All quantities are expanded up to first order in €; afterwards is set ¢ = 1. The physical picture
behind this procedure is the assumption, that the time scale of an "average” motion is large
compared to the time scale of the Larmor rotation 1/Q.

The natural guiding centre variables (Y, £, M, ®) are defined by:

¥ = §+ea(d,E mep)+0() ()
M = ptep(d e ne)+ 0 (4)
® = p+ehildE )+ 0 (5)



and the unknown functions fi, p11, fi are determined by the condition that the right hand sides of
the equations of motion for the guiding centre variables be independent of .

q,&, 1, or q, vy, v, are called particle variables.

Y,E, M, ® are called (natural) guiding centre variables.

Unfortunately, the specialization of the _general formulation of the guiding centre approximation
contained in [2] to cylinder coordinates Y = (Y,,Yy,Y;), = (p,¥,z) leads to essential singular-
ities at p = 0. One arrives at a valid formulation by replacing condition (5) with: ’

®=p— v+ efi(d &, 1, 0) + O(e?) (6)

and repeating the derivations from [2] for the special case of cylinder coordinates. The result is
stated in the next two subsections.

2.1 Transformation equations Y, &, M,® — §, Vi, Uy, P
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The field quantities B,bz,ﬂp,Q, #,E,, E; depend on the particle coordinates (p, z) . Here B,b.,b,
represent the intensity and the components of the direction of the magnetic field, E,, E, the
components of the electric field, ¢ the electric potential. The following abbreviations for expressions
containing the derivatives of the fields have been used:

9B , OB

B. = (bzE - b,,a_z> /B

E. = bE,—b,E, (13)
B , OB

2.2 Equations of motion for guiding centre coordinates

Y, = Ub, } (14)

Y, = — (U B_+ MBB_/m—cE-/m) (15)
Y,0

Y, = Ub, (16)

¢ = Q (17)



E =0 (18)
M = 0 (19)

with U = :I:\/—:—l(é' —e¢p — MB) (20)

In contrast to the preceding set of the transformation equations in these equations of motion the
field quantities B,b;,b,,$2,$ as well as the derived expressions B_, E_ defined above are to be
understood as functions of the guiding centre coordinates Y,, Yy, Ys.

At first glance one might suppose a singularity at Y, — 0. But due to axial symmetry and the
Maxwell equations all of b,,0B/0p, E, — 0 as Y, — 0.

Inspecting the above equations (14-20) one sees immediately that there is no dependence on ®.
Their form is extremely simplified and their number reduced. As a consequence integration may
be done in large steps and no numerical troubles are to be expected. All these pleasant features
are in contrast to the case of directly using the equations of motion for the particle coordinates.
The fast Larmor rotation (dependence on ¢) is now contained in the transformation equations of
the preceding paragraph alone. But those are nondifferential equations, which can be solved by a
few iteration steps.

Comment: The guiding centre approximation comprises 2 number of phenomena: centrifugal drift,
gradB drift and nonconservation of the magnetic moment u.

3 Slowing down and small angle scattering in the frame-

work of the guiding centre approximation

Energy £ and mean square deflection angle {(42) obey
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T = = (21)
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The dependence of the relaxation times 7, and 74 on local plasma parameters like electron and ion
temperatures, density and plasma composition is stated by Trubnikov [3] and others. The problem
is how slowing down and scattering influence the guiding centre coordinates. Let us first evaluate
the changes of the particle coordinates due to stopping and deflection and afterwards translate
them into changes of the guiding centre coordinates by means of the transformation expressions in
zero order.

3.1 Change of generalized magnetic moment M due to scattering

The laws of binary scattering for deflection by a polar angle ¥ and azimuthal angle v lead to the
following expression for the relative change A of the generalized moment M:

o 192
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where & = cosy (24)
_ £ _ vﬁf 25
and A = MB—-I-:U?. (25)
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Now, ¥ is distributed according to:
29 92
fa(¥) = —cexp (———) for 0 <79 < o0, 26
CERRANNTE) (#6)
where (92} is evaluated in eq.(22).
On the other hand, 7 is distributed uniformly in 0 < ¥ < 2, for which reason:
1

fs(f)?-ﬂ_—l-:g- for —-1<¢<1. (27

Therefore the distribution for the relative change A of the constant of motion M due to scattering
reads:

2 92\ e /%)
fa(A)= m/& (A— A9 + 297 + 2V Agw (1 - -2—)) vierd dode,  (28)

where §(z) stands for the Dirac deltafunction. There is no obvious way to make the distribution
explicit. However, its mean A and mean square deviation o2 are easily evaluated:

/ Afa(A)dA = (A - %) (9%) (29)

o? / (A =AY fa(A)dA = 24(97) + <2A3 — A2 —5A+ %) (9?2 (30)
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A more detailed investigation shows, that for A > (9?), i.e. a bit away from the turning points of
the orbit, the distribution for A has the form of a Gaussian with the parameters cited above. At
the turning points themselves this distribution is an exponential one for the interval —co < A < 0.
But as the regions around the end points hardly contribute to the overall smearing out of the
orbit, for practical purposes one may generally adopt the Gaussian form with proper mean and
dispersion.

The above equations demonstrate A and o to be of the same order. Therefore a deterministic
treatment of small angle scattering is insufficient, and one has to resort to a Monte Carlo simulation.

In concluding the treatment of the change of the magnetic moment M due to Coulomb scattering
we check the sign of A from eq.(29) with the help of the definition (25). It shows up that:

A>0ifvi>v2/2  and A<0ifvl <v?/2

Thus scattering tends to establish equipartition of energy between one degree of freedom for the
motion parallel to the field and two degrees of freedom for perpendicular motion. After all it is
comforting to see a general principle confirmed!

3.2 Change of guiding centre coordinates due to stopping

Stopping and scattering induce via changes in the velocity components v, and v, a shift in the
guiding centre space coordinates Y, and Y. (diffusion in a magnetic field). As the stopping time
73 is much shorter than the deflection time 74 for energies considered here (£ > 3keV'), stopping
determines the process. Including scattering at this point would make sense only in the case if
straggling, i.e. fluctuations in the stopping process were considered too.

Now, as the direction of ¥ is not changed by mere stopping ,
d& £ dv, Uy

=——leads to — = ——

—_ ) 31
dt T dt 27 ( )




The combination of eq.(8) with (9) leads to:

9 v, b, cos 2 v, sing 2
Y,,:(,o-.*ﬂ )+(‘Q ) (32)

This combined with eq.(31) yields up to first order in 1/ :

dY?  y,b,pcosp
p _ Vilg
dt 7582 (33)

Likewise:
dY,  w.bycosp

dt 21,92 (34)

4 Code implementation for axially symmetric fields

The principal structure of the implemented code will be explained by means of the block diagram
fig.1. The directions of the arrows generally show the corresponding calls. The only exceptions are
the arrows connected with the dashed boxes, representing flow of data. The subroutine MOVER
simulates the ionization process of the impinging beam of neutral atoms and generates the initial
particlé as well as guiding centre coordinates using eq.(7-12). The equations of motion (14-20) are
then solved by a standard method in steps of several Larmor turns. Due to the smoothness of
the guiding centre motion there are no such numerical problems as with direct treatments of the
particle’s motion.

For calculating the right hand sides of these equations the subroutine FIELDS evaluates the mag-
netic and electric fields by cubic spline interpolation from numeric tables. These tables on their -
part have been composed by means of previous calculations based on the distribution of currents
in the coils of the plasma device.

Before the next integration step is performed, the subroutine TRAPINT calculates small changes
to £, M, Y by means of an integration along the particle orbit according to the expressions derived
in section 3. The integration is performed by the trapeze rule with automatic accuracy control.
The grid points are obtained by linear interpolation of the guiding centre coordinates and solving
the inverse transformation equations (7-12) by iteration.

The subroutine TAU realizes a model for the evaluation of relaxation times 7, and 74 based on
{3] with components of thermal electrons, thermal hydrogen isotopes and fast deuteron and triton
ions. The temperatures of the thermal components are put in, the energy distributions have been
determined from trial runs.

5 Steps to self-consistence

If the power of the injected beams of deuterons and tritons approaches the level necessary for an
intense source of 14 MeV neutrons, the self-interaction among the population of fast ions cannot be
neglected any longer. At present the following three branches of feedback are included in an extra
routine PRESS (s. fig.1), the fourth one in the routine CROSSIN. Both routines are run off-line
after preceding runs of the MAIN code for deuterons and tritons have stored their results in the
RESULTS data file:

1. The coefficients of empirical fits to the space distributions of deuteron and triton densities
are conveyed to the PLASMA subroutine, where they influence the stopping and deflection
times. The energy distributions of both the fast ion species are supposed to depend on
the z coordinate only. They are iterated too. Stopping is increased exclusively by the rise
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Figure 1: Flow chart of the code




in electron density caused by filling in fast ions. Deflection is influenced by the fast ion
populations themselves.

2. The magnetic field B(r, z) inside the plasma is calculated by the following expression, valid
in paraxial approximation:

B(r,2) = \/ BLu(r, 2) — 87(pa + 1) (35)
Here Bey: is the external magnetic field and the pressure p; of species 7 (i = d, ) is defined
by:
mg ——————
pi(r,z) = '5""1'(7" z)vii (r,2) (36)

The pressures p;(r,z) are stored in discretized form in the RESULTS data file together
with the densities ni(r,z). In the subroutine FIELDS the r-dependence of the pressure is
represented by interpolating expressions.

3. Finally the ambipolar electric potential ¢(2) is evaluated from the condition of electric neu-
trality:
el = Njon + Ng + Ny, (37)

where all the n depend on z only, and ny as well as n; are obtained from the RESULTS file
by averaging over radius and summing over energy and angle. The electrons as well as the
target plasma are supposed to be in thermal equilibrium. Consequently holds:

ner(z) = neoexp [e¢(2)/Tei] and  nien(2) =m0 exp [—ed(2)/Tion] (38)

The temperatures Te1, Tion as well as the target plasma ion density n;g at the point zgp where
#(z0) = 0, e.g. zg = 0 are supposed to be known. In this respect the code is not totally
self-consistent , but should rather be regarded as a part of a future comprehensive code
system for the overall design of a mirror neutron source. With known T.;, T}, nio €q.(37)
is a transcendent equation for the unknown ¢ at every point z. The function ¢(z) is then
transmitted to the subroutine FIELDS.

4. Last not least the stored densities for deuterons and tritons in the trap are used for calculating
the proper distribution of the injection points of D and T ions originating from the impinging
beams of neutrals. To this end the following expression for the macroscopic total ionization
cross-section Xp is evaluated numerically:

1

Yo =
0 271'110

> [ 0= (B2 ) reaBe) + 0ion (BN d Bed e (39)

i=d,t
Here the index 0 refers to the impinging atom (D or T), index i to the plasma species d or t.
The microscopic cross-sections dez and ojon for charge exchange and ionization respectively

are taken from [5]. The further evaluation of the expression for Tp to a certain extent is
analogous to the procedure for the d,t-reaction given in the next section.

6 Calculation of neutron source density
The neutron source density N[neutrons/(m3s)] is expressed as:

1 » - )
N=-—7 / [ta — Te| nanuoa (B, ) dEg d By d(y dé, dpa dipe (40)
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Here Eq, E; are the deuteron and triton kinetic energies, E, their relative energy defined below.
For both the particle species the following quantities are defined:

C=y/y/v3 + 3. (41)

and ¢4, ¢; are their phases.

The density nq has the the following dependences n4(Eg,(4,, 2), but is independent of 4. The
same is true for the index ¢. Therefore the ¢ are averaged, whereas the E and ¢ are integrated.

Some vector algebraic transformations allow to express the relative velocity |y — #;] in the variables
FE,( instead of v, v, :

- - 2F 2F EF
[a — %) = 77174 + -n;f -4 m:mi [CdCt + /(1 = ¢(1 — ¢?) cos(pa ~ <Pt)] (42)

Once the dependence on ¢4, ¢ is contained exclusively in cos ¢ with ¢ = @4—¢; one may transform:

2 27 T
/ dpg / dp; — 47 / dy
0 0 0

The energy of relative motion E, is defined as

M4

E. = = (T4 — "7t)2, (43)
~where the reduced mass mg; is defined as
mam;
o _mame_ 44
i my +my (44)

and the difference in brackets has already been made explicit in equ.42.

The cross-section of the T(d,n)-reaction o4;(E;) can be extracted from any neutron data file.
Within the energy range concerned here it is also well reproduced by the semiempiric formula [4] :

1.86-10~%%  exp(—4,35-10~7E; /%)

var(Br) = —5 (B, —7.82-10-13)2 + 4.38 - 10-%°

(45)

where E,. and 04 are measured in SI units. The above formulae are implemented in the code
SDENS using the results for the densities nq and n; from the main program (s. fig.1). It is operated
independently and only after several runs of the main program, when the self-consistent fields have
converged.

7 An example

As an example a version has been selected corresponding to a predesign of a plasma neutron source
based on the gas dynamic trap proposed by the Efremov Institute St. Peterburg [6]. It has been
treated by other methods in the Budker Institute Novosibirsk [8]. Its main characteristic feature
is the injection of both reacting species deuterons as well as tritons in the form of atomic beams.
The intention here is to keep the injection energy so low as to allow the use of positve ion sources
with their much better energy efficiency in comparison to that of negative ion sources [7] .

Here the input for the calculation.

The magnetic field on the axis of the configuration is shown in the fig.2 .
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The injection angle amounts to § = 40°, for both injected deuterium and tritium beams.

In the right hand part the dependence of the magnetic field in fig.2 exhibits a characteristic
threshold in front of the mirror, designed for raising the ion densities and therefore the neutron
yield in this region. This is achieved by chosing the ratio of the magnetic field B,y at the plateau
to its value By at the injection point in the centre according to:

sin(6) = 1/ %‘; (46)

In this case the turning points at least of the freshly injected ions are located in the centre of the
hump.

The energies of the beams are Wy = 80keV and W; = 94keV for deuterium and tritium respectively,
the corresponding trapped powers Py = 14MW and P, = 12MW.

The plasma radius is defined by means of a limiter with 7o = 0.085m radius, placed at z = 0.

The temperatures for ions and electrons of the thermal component of the target plasma are sup-
posed to be T; = 6keV and T, = 1.1keV respectively, its density ng = 2.3 - 101%m~3,

The above example has been treated by the codes represented in the preceding sections. The
number of iterations necessary varied from about four for low input power to about seven for
higher one. Convergence was considerably accelerated by recalculating the RESULT for deuterons
and tritons in turn instead of recalculating both of them at once.

If one tries to solve the original task one obtains erratic behaviour of the result, i.e. no convergence.
Only after considerable reduction of the input power level of the d and t neutral beams the
dependence of the 14 MeV neutron yield in figure 3 can be calculated. At 5 and 10% of the original
power level the obtained dependences still resemble what one might expect from models without
feedback. At 20% the neutron yield distribution is unsuitable for a real neutron source.

The apparent solution is to lower the angle of neutral injection (or if this should be linked with
unsurmountable technical difficulties to raise the height of the threshold in the magnetic field).
The next figure 4 shows the case of 37.5° instead of the designed value of 40°. Here the yield
distribution at 20% input power still has the desired shape with a broad peak in the region of the
threshold and much less yield outside.

The effect of a further reduction of the injection angle to 35° and 32.5° repectively demonstrate
figures 5 and 6. At 35° it is well possible to approach the final power level, although the distributions
are still peaked rather sharply. Finally at 32.59 injection even the curves for 80 and 100% power
input show broad peaks in the vicinity of the threshold and much less yield outside this region.
The true optimal angle of injection for Py = 14MW, P, = 12M W probably is still slightly less than
32.5%,

Of course there exist ample possibilities for trying to optimize the neutron output. An attempt
in this direction demonstrates fig.7, where the input energies of the neutrals have been varied. As
might be expected from the energy dependence of the d-t-cross-section no increase of the neutron
yield is observed if the input d and t energies are increased. Reducing these energies even leads to
smaller output. Thus the accepted values should be close to optimal ones. Of course, a thorough
optimization of the neutron yield with respect to injection parameters angle and energy would
need a much finer mesh.

The next figures demonstrate some properties of the d and t plasma components in the trap for
the near optimal case of 14/12 MW injection power and 32.5% injection angle.

Generally it may be stated, that for the most favourable case cited in the last figure the total
neutron yield in the region extended 2m around the peak amounts to about 3.8E17 neutrons/s or
0.9 MW, corresponding to an efficiency of energy conversion from neutral beamn power to neutron
power in the peak of about 3.8%. The shape of the yield distribution along the axis of the device too
is rather favourable, the height of the peak exceeding the value in the center of the trap by a factor
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of 5.4 and the height of the smaller peak at the left mirror still by a factor of about 3. Thus, the
idea of concentrating the neutron output by means of a hump in the magnetic field in front of one
of the mirrors has been confirmed. Finally, the observed convergence of the iterations modelling the
selfinteraction of the plasma (at least at sufficiently low angles of injection!) strengthens confidence
in the stability of the version with simultaneous injection of deuterons and tritons.

We gratefully acknowledge numerous useful discussions with A. Ivanov and Yu. Tsidulko from the
Budker Institute Novosibirsk during their stays at the FZR, sponsored by the Federal Ministry for
Science and Education of the FRG.
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Figure 3: Distribution of the neutron source strength [ns~!m™!] along the axis of the trap. The
angle of injection for d as well as t neutrals is 40.0°. The three graphs from lower to upper
correspond to 5, 10 and 20% of the final input power.
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Figure 4: Distribution of the neutron source strength [ns~'m™!] along the axis of the trap. The
angle of injection for d as well as t neutrals is 37.5%. The three graphs correspond to 5, 10 and 20%
of the final input power.
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The three graphs correspond to different injection energies (51.0/60.0, 80.0/94.0, 102.0/120.0 keV
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14/12 MW, 32.5 deg injection

deuterdps -o—
M:‘%s —-—
7e+20 /9' \
6e+20 f \
5e+20 k / Py

d and t densities [m**(-3)]

mis |
oIS N/ A
MENESC/MEL

distance z along axis [m]

Figure 8: Distribution of the densities for deuterons and tritons for the case shown in fig.6 , upper
curve (14/12 MW injection power for d/t, 32.5% injection angle).
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Figure 9: Distribution of mean square radius for deuterons and tritons. Same conditions as pre-
ceding fig.7
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Figure 10: Distribution of mean energies for deuterons and tritons in the above case.
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Figure 11: Distribution of ambipolar electric potential on the axis in the above case.
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Figure 12: Distribution of total plasma pressure on the axis.
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Index

of notations

A auxiliary quantity, defined equ(25)

B magnetic field vector

B intensity of magnetic field B

B,z intensity of external magnetic field,
created by coils

By intensity B at origin p=2=0

B, intensity B at the threshold shown in fig.2
at z=4m,r=0

b direction unit vector of magnetic field

b;, b, components of b in cylinder coordinates

B, B_ derived magnetic field quantities de-
fined equ(13)

¢ speed of light

e charge of particle

& total energy of particle

E_ derived electric field quantity defined
equ(13)

E, energy of relative motion in the binary
reaction concerned

fo, fe, fa normalized distribution functions
of the indicated quantity

1 particle index, (i = d,t)

m mass of particle

mg, reduced mass of d + ¢t system, defined
equ(44)

M generalized magnetic momentum of parti-
cle defined in equ(4) and equ(11)

Tel, Rion, Nd, Ny Particle densuties of electrons,
thermal ions, fast deuterons and fast
tritons respectively

Pi, Pd, pt pressure of particle ¢,d,¢, (i = d,1)

P4, P, power of neuiral d resp. t beam
trapped in the plasma

§ space vector of particle

Te, T; Temperatures of electrons and thermal
ion component

U auxiliary quantpity defined equ(20)

7 velocity vector of particle

1g velocity vector of impinging atom d or t

vg absolute value of above 9y

v, value of velocity component perpendicular
to field line 0 < v, < o

v, velocity component parallel to field line,
-0 S vy S o0

Y vector of guiding centre space coordinates

Y,, Yy, Y, components of the above vector in
cylinder coordinates

z see p
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v azimuthal angle of deflection, 0 <y < 27

¢ $mall parameterintroduced equ. (2), after
expansion to first order in € to be
set e=1

6(z) Dirac deltafunction

A relative variation of M, defined equ(23)

4, C: cosine of pitch angle for d and t, defined
equ(41)

A mean of above quantity A, defined equ(29)

7 polar angle of deflection, 0 < ¥ < oo for-
mally

(9?) mean square angle of deflection < 1

6 angle of injection of neutral beams

2t magnetic momentum of particle def. equ.(1)

£ = cosvy, equ(24)

p,%, z cylinder coordinates of particle space
vector ¢

o2 mean square od A, defined equ(30)

Ges, Oion cross-sections for charge exchange
and ionization of the impinging neu-
tral D or T atom in the plasma

o4 teaction cross-section of the D(t,n)-
reaction, see equ(45)

Yo macroscopic total ionization cross-section
for the impinging D or T atom

75 relaxation time for energy loss

74 relaxation time for deflection

o phase angle of particle (angle between com-
ponent of the velocity perpendicular
to the magnetic field and the binor-
mal of the fieldline)

® guiding centre phase, defined equ(5) and
equ(12)

¢ electric potential

1 see p

Q particle Larmor frequency defined in equ(2)
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