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different perturbation amplitudes is carried out. The

corresponding density response reveals resonances at the higher -
harmonics of the perturbation wave vector. Analyzing the induced
density response as a function of the perturbation amplitude

shows the importance of the cubic response at the first harmonic
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PIMC simulations of the perturbed electron gas
We use Path-Integral Monte-Carlo simulations of the uniform electron gas with ) y(Leubic) 35 free parameters. The cubic form fits the PIMC data very
with a harmonic perturbation term well and thus allows for the extraction of y(1-cubic) The simulations were
H = Hypa + ZAZcos # - q) performed with the following parameters
=1 3 3
with N being the number of particles inside the simulation box and _ _ N4mne _ kgT _ _2m T
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q = —(nx, n,,n, )'. We are interested in the density response. In order to
achleve this, we compute the induced density 0
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The linear density response in PIMC can also be accessed using the Q
imaginary-time version of the fluctuation-dissipation theorem.
In order to extract the nonlinear density response functions of various -0.02

harmonics, we fit the induced density response to the expression
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Nonlinear responses in the density profile 123 _ ' P'Ln'gg —— ' _ 1? i
The right panels show the density profile in direction of the | 1 15k n=1in=7 - =
perturbation of the PIMC simulations with the same parameters as 101 b { 2t
above. The red graphs depict the density profile in LRT £ 1 L
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The non-linear contributions in the density profile is given by the 0.97 0.7
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The deviations between LRT and PIMC are especially visible at the e oo | LINAK ‘*-fcu Wr L
maxima of the perturbation. With increasing A the higher harmonics S o1} [ O
start playing a more important role. oy 7 Z‘
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1=10%r,q= f(Z’O’O) R 1=08¢r,a= 71000 wave number resolved response for a static harmonic excitation for two
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0.005 |- H - 2 oos | ¢ » quadratic response is the first order correction to linear response
0k .......;._.._H ’ . P = quadratic opposite sign (dampening of the excitation)
10.005 | L SRR """" TR w third harmonic excitation well visible, even effects at fourth harmonic for large A
o001 | q 29 3q§ i 0005 F ' = drop of signal at first harmonic with increasing A due to influence of cubic
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-0.025 F 6 i 00> L 005 —E—t Nonlinear effects play an important role when the basic assumption of a weak
-0.03 F : A:Sbgi :—g—: - ; : : A;Erolg :_f:_: perturbation is not fulfilled anymore. This is especially the case for effects like
0.035 F i A=0.2 = % =1 - -0.025 F A=0.7 +—o—i nonlinear screening (effective potentials), stopping power, or coupled collective
0.04 L i  A=0 e 003 & i Ams e modes. Since nonlinear response is very sensitive to XC-effects, it can serve as a
0 1 2 3 4 5 0 1 2 3 4 5 new diagnostic tool. The required conditions can be experimentally realized at
K/ke k/ke XFEL facilities like the European X-FEL or LCLS.
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