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Inertial Mass of the Chiral Quark—Loop Soliton
in the Nambu & Jona-Lasinio Model
at Finite Temperature and Density
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Postfach 510119, D-01314 Dresden, Germany

Abstract

We consider the mass of the one-loop hedgehog soliton of the bosonized SU(2)
Nambu & Jona-Lasinio model embedded in hot nuclear matter mimiced by a gas of
constituent quarks. We prove that the proper-time regularized and self-consistently
determined soliton in a heat bath obeys Poincare’s invariance up order V2. At
finite temperature and chemical potential, we show that the inertial mass obtained
in the perturbative pushing approach coincides with the total internal energy of the
soliton.

PACS numbers: 12.39.Fe, 11.10.Lm



1 Introduction

Chiral soliton models have proved to be a fruitful approach to the description of nucleon
structure. Starting from isolated nucleons one has investigated the influence of a strongly
interacting medium on the structure of the nucleon. Parameters of the nucleon charac-
terizing its static properties and behavior in nuclear reactions have been calculated in
dependence on temperature (") and density (p) of the medium.

We consider a non-topological soliton which is defined by the Euclidean effective action
of the bosonized Nambu & Jona-Lasinio (NJL) model restricted to the two lightest quarks
with time-independent meson fields treated in mean-field approximation (MFA). The
polarization of the quarks (fermion loop) is fully taken into account. The mesonic fields are
restricted to hedgehog configurations and to the chiral circle. They are self-consistently
determined by minimizing the corresponding effective action (Hartree approximation).
For a detailed review of the model at 7=0 and ¢=0 cf. refs. [1, 2].

Within an approach where the quarks are the fundamental degrees of freedom the sim-
plest realization of a strongly interacting medium is a non-interacting gas of constituent
quarks. On the first view such an approach seems to be reasonable only in the deconfined
phase above the critical values of temperature and density. Nevertheless there are argu-
ments in favor of such an approach for a soliton embedded in hadronic matter below the
" critical point. This becomes obvious if one considers the way how the medium influences
the quarks in a soliton in detail.

The one-loop NJL-soliton is made out of valence quarks and an infinite number of
sea quarks. The soliton is bound by meson fields which are generated by the quarks
themselves. Meson and quark fields have to be consistent with each other. This is
realized by the mesonic equation of motion which contains a source term produced by
the quarks. The attractive part of the mean field in the center of the soliton stems from
the valence quarks while the asymptotic value, which determines the constituent quark
mass, is a result of the sea quarks as a whole. On the other hand the self-consistent meson
field is solely able to bind N, valence quarks. The sea quarks move almost freely. They
are mainly influenced by the asymptotic value of the meson fields, which determines the
constituent quark mass. Considering the medium as consisting of solitons the valence
quarks in the various solitons are quite isolated from each other while the sea quarks
can be found at any place approximately with the same probability. So it seems to be
reasonable to assume that the thermodynamic equilibrium is established by sea quarks
with constituent quark mass.

The rest mass is one of the most important parameters of the nucleon. Its variation
in dependence on temperature and density of a surrounding medium is of fundamental
interest. As well known the mean—field hedgehog configuration breaks translational as well
as iso-rotational symmetry of the Lagrangian. These symmetries can approximately be
restored e. g. within the semi-classical pushing and cranking approaches [3, 4]. Spurious
motions of the soliton contribute to the soliton rest mass. They have to be removed.
The size of the spurious contributions to the soliton mass is controlled by the inertial
parameters. For an elementary particle the rest mass My, which is defined as the total
energy in the rest frame, is identical with the inertial mass M* which describes its kinetic
energy. Relativistic invariance states that the total energy F (V') of a particle depends on
its velocity V according to

E(V) = My/\1-V? = My +
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For a composite, extended particle this relation is by no means a matter of course, in
particular if it is in a heat bath. In addition, the non-local nature of the quark determinant
and its inevitable regularization intricate this problem.

The equivalence of rest mass and inertial mass for the one-loop NJL hedgehog soliton
at T'=0 and p =0 has been shown in refs. [5, 6]. To examine eq.(1.1) for finite values
of temperature and density we expand the contribution of a single moving soliton to the
internal energy with respect to its velocity V' up to second order. The energy at V=0
is the internal energy of the soliton at rest and coincides with the rest mass (E(0)= Mp).
The second-order term will determine the inertial mass M* of the soliton and will be
compared with the rest mass M.

In sect. 2, we shortly review the formula defining the regularized NJL soliton at finite
temperature and density and calculate its rest mass. In sect. 3, we consider a boosted
soliton moving adiabatically through a medium of constituent quarks and expand its
energy with respect to the boost velocity. The second order term defines the inertial soliton
mass. Using the mesonic equation of motion and performing algebraic manipulations we
show that the inertial mass coincides with the internal energy of the static, self-consistent
hedgehog soliton. Conclusions are drawn in sect. 4.

2 NJL model at finite temperature

Starting point is the two-flavor NJL Lagrangian [7] with a chirally invariant non-linear
quark-antiquark interaction part

. G, .
Lo =37 0 —mo) g+ 5 [(‘JQ)2 + (42’7579)2] (2.1)

where ¢ represents a Dirac quark field with two flavors (u,d) and N.=3 colors. Here, the
isospin operator ¥ is given by the 2 x 2 Pauli matrices, and my is the average current
" quark mass of the light quarks mg=(m, + my)/2.

To study the effects of a surrounding medium we consider a grand canonical ensemble
of u- and d-quarks with the chemical potential p, =pqs=p and the temperature T=1/0.
The grand canonical partition function in imaginary-time path integral formulation is
given by [8, 9]

8
Z(T,p, V) = / DgDq' exp |-Alg, ¢')(T,V) + 1 / dr / d*z q'q (2:2)
g(z,7=0)=—g(z,7=H) o v

where the quark fields are anti-commutating complex Grassmann variables and satisfy
anti-periodic boundary conditions at the imaginary times 7=0 and 7=/. The quantum
statistical Euclidean action A of the interacting quarks is determined by the Wick rotated
(t - —ir) Lagrangian (2.1) according to

B
Alg,d'[(T,V) =~ [ar [& Ly, 7), (7). (2.3)

The grand canonical potential can be determined from the partition function

QT, 1, V) = ~ThZ(T, 1, V), (2.4)
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and the particle number N and the entropy S are given by

. 0 0

TV /A4

The internal energy E is obtained from the relation

8 9 8
E(S,N,V) = Q+ TS+ uN = [1*Tﬁ—y5;}Q_T[Tﬁ+u$] nZ, (2.6)

where the independent variables have been changed from 7" and y to S and N by means
of egs. (2.5).

Because of the non-linear interaction terms in the NJL Lagrangian (2.1) the integration
over the quark fields in eq.(2.2) can not be carried out. By means of scalar-isoscalar
(0) and pseudoscalar-isovector (7) mesonic auxiliary fields one can eliminate the quartic
terms. Restricting the auxiliary fields onto their classical values (mean-field or stationary-
phase approximation) the system of interacting quarks can be described by an effective
action, which differs from the grand canonical potential only by a factor 7'. The resulting
grand canonical potential is a functional of the classical meson fields and consists of a
quark part Q94, where the mesons fields contribute only via the quark fields, and a purely
mesonic part Q™

Cvira [Ucl; 7rc1] = Qcl[‘jc:l; ﬂ'cI] + Qm[acla 7rcl]- (27)

The classical fields o and 7y have to fulfill the equations of motion

0Qmra _ 0 vra
oo o

O=0g) T=N¢} 0’=Ud,7r=7rcl'

=0. (2.8)

From now on, we shall drop the indices ¢l and MFA and assume 2, 0 and 7 as to be deter-
mined by egs. (2.7) and (2.8). The solitonic configuration we are interested in constitutes
a localized deviation from the homogeneous background field o =0y = const, w=0. To
get the canonical potential characterizing the soliton we have to subtract the potential of
the background field

Qo, 7] — Qfo, w] — Qoy,0] = Qfo, 7] — {h—> ho}. (2.9)
Since the meson fields enters the canonical potential via the quark Hamiltonian
h=h(o,n) = a-p+° [o(x) + ips7 ()] (2.10)

we have introduced the short notation —{A—hg} for the subtraction of the corresponding
background value calculated with

ho = h{00,0) = a-p + 1°0y. {2.11)

Furthermore we restrict ourselves to time-independent spherical hedgehog meson fields
with
o(@,7)=0(r) w(x,7)=x(r)z/|=| (2.12)

and to the chiral circle
0% + 7% = 0} = const. {2.13)
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The quark contribution to the grand canonical potential (2.7) of the soliton can be written

Qo, 7] = =T InDetD(p) — {h—=ho} = =T TrInD(p) — {h— ho} (2.14)

with
D(p)=0,+h—p. (2.15)
The mesonic part of the potential (2.7) is given by
m ™y
O™o] = —G—v/dsa:(ao - a(:z:)). (2.16)

While the mesonic part (2.16) is local and has the familiar appearance of an action the
quark part (2.14) is non-local. (The trace Tr includes both functional and matrix (Dirac,
flavor, color) trace.) For time-independent meson fields the determinant in eq. (2.14) is
real and one gets

T T
09 = ——-2—Tr InA(u) — {h—ho} = —-—2-lnDet [—33 +(h— u)z] —{h—ho}, (2.17)
where we have introduced the operator
A(p) = D(p)! D(p) = =82 + (h — p)?. (2.18)

The fermion determinant can be expressed by odd Matsubara frequencies w, = (2n + 1)7T
[10] and by the eigenvalues €, and €2, of the Hamiltonian 5 (2.10) and hg (2.11), respec-
tively
T o0
Q1= -SN.In I I [wfl + (€a — u)z] — {ea—€2}). (2.19)
n=—oo &
Lagrangian (2.1) and Hamiltonian (2.10) are independent of the color degree of freedom
giving rise to a general factor N,. We shall treat this factor explicitly and products ([],)
or sums (3°,) will not included the color degree of freedom.
The product in eq. (2.19) can be evaluated and written as the sum of two components

Q9 = Q% 4 Qe (2.20)

The first term is independent of the actual occupation numbers of the various quark
levels. It is the only quark contribution which survives in the limit T — 0, — 0. It
describes the contribution of the Dirac sea and consists of the difference between the sum
of single-particle quark energies with and without the soliton (Casimir energy)

T N,
035 = Tim 0 = — 2 Tro lnA(0) — {h—ho} = =5 3 [leal - Ie2] - (2.21)
B0 o

The trace Try denotes the trace at 7=0 where a sum over the Matsubara frequencies w,,
can be replaced by an integral (w, = w, TYL o — [0, £). It is ultraviolet divergent
and has to be regularized introducing a cut-off parameter A. We use Schwinger’s proper-
time scheme [11] and get [12]

o
QU s P = Ty [ dssTe O — (Ao} (2:22)
1/A2

_ _% 3 [Bleas Mleal = (el IR
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where R(e, A) is the regularization function

R(g;A) = - 7dtt‘3/2e‘52t————11“ L 2.23
T varlel 7, S Var |\ 27A (223)

with the incomplete Gamma-function on the right-hand side. It cuts off contributions
with |e] > A. The term Q3** does not explicitly depend on temperature and chemical
potential. An implicit dependence on 7" and u is caused by the restriction of the meson
fields to their classical values via the equation of motion (2.8), which evidently depends
on T and p.

The second, explicitly 7" and u dependent term in eq. (2.20)

T
Qq,med = )4 . Qusea - —-Q—[TI].IIA(#) - ’I‘rO lnA(O)] - {h—éhO}

= —TN, z lnl + exp{—,B Hsal — 4 Sign(sa)]} MIVchea (2.24)

1+ exp{—B{|e2| — usign(e?)]}

is finite and depends on the occupation probability of the various levels a. It describes
the polarization of the medium due to the solitonic meson fields. Levels which are not
shifted by the solitonic field (e, = €2), i. e.levels highly and deeply in the continuum
do not contribute to the sum (2.24). The largest contributions result from the valence
level which is bound for the soliton and unbound for the pure medium. Quark levels in
the neighborhood of the gap in the spectrum do also remarkably contribute. The term -
—uN B differs from zero only in the particular case that the Dirac sea has a finite
baryon number

(2.25)

1
Bsee — _ Z _ z .
2 [€a<0 Ea)o}
This happens if the solitonic mean field is strong enough to change the sign of the energy
of one or several quark levels, i.e.Ja with sign(e,) # sign(e?). Otherwise the number
of quark levels with negative energy equals the number with positive energy and B%®

vanishes.
Using egs. (2.6-2.8,2.14,2.16) and (2.20-2.24) one gets the following internal energy of

the soliton
E=M,=E®+E™ 4+ Qm, (2.26)

which is equivalent to the soliton rest mass My. It consists of the (regularized) Casimir
energy

= 0 (2.27)
the medium-polarization energy
E™ = N, fi(ea; T, 1)lea] — {Ea—>€2} (2.28)
(24

with the typical fermionic occupation numbers
; 1 _ 1
1+exp{B[lc| — usign(e)]}  1+exp{Ble — u}}

for quarks (¢ > 0) and antiquarks (¢ < 0), and of the purely mesonic energy Q™ (2.16).

(e T, ) = —0(-s)  (229)
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3 Pushed soliton and inertial mass

Now we consider the adiabatic motion of a soliton with fixed particle number N through
a medium with a constant velocity V. For non-relativistic velocities V', the grand canon-
ical potential Q(V') of the moving soliton is given by same expressions (2.7), which was
obtained for a soliton at rest, with the Hamiltonian A (2.10) replaced by the shifted
Hamiltonian

MV)=h-V-p. (3.1)
Working in Euclidean space the shift velocity has to be anti-hermitian. Eq.(3.1) is the
pushing analog to the cranking procedure considered in ref. [12]. The term V -p acts on
the quark fields in the co-moving system like an induced external field. The velocity V
can be regarded as a Lagrange multiplier fixing the expectation value of the total soliton
momentum P, which can be represented as

Ay = 9(V)

{PY)V) = R (3.2)

Now we expand the energy of the moving soliton, which is a function of S, N,V and of
the velocity V at fixed values of S, IV and V, up to second order in the velocity V'

OE (V) Vi 1 O*E(V)

vV lvoo 20VioVF|,_,
The first term on the right-hand side is the internal energy (2.26) of the soliton and
the third term determines the inertial mass tensor. Derivatives of E(S,N,V;V) with

respect to V' at fixed S and N can be replaced be derivatives of the canonical potential
Q(T, p,V; V) of the moving soliton at fixed T and p

OE(S,N,V;V) _8Q(T,u,V; V)
Vi - Vi

E(V) = E(0) + VivE 4. (3.3)

(3.4)

and we get
.__OEWV)| _ &)
*TQVigVE|,_, T OVigVk

(3.5)

0 k
v~ BTN

The minus sign results from the anti-hermitian property of the boost velocity with V2 < 0.
The linear term in eq. (3.3) vanishes since the expectation value (3.2) equals zero at V =0,
in accordance with Ehrenfest’s theorem.

Considering rotationally symmetric solitons the tensor M}, is diagonal with identical
diagonal elements M*

V=0

M, = M*5. (3.6)
Evaluating M} according to eq.(3.5) we have to consider only those contributions to

the grand canonical potential Q(V') which depend via (V') on the velocity V. Only
sea-quark (2.22) and medium part (2.24) contribute to the mass tensor (3.5)

ik = (M:ea)ik + (M;xed)ik (3-7)
with
920 I%(V) T . T 8? AV,
M)y =— oz = -2Tn [ dss ' mmge™™® @ —{h—ho}
aViov Vo 2 1/{2 oviov o

(3.8)




and

. 62Q q,med(V)
(Mred =~ ~Zvigye s (3.9)
T & v T &2
= —fh—hl— = , AV(0)| —
T BV’BthlA (1) V=o{ —ho} 2TIOBV’3V’“ID4 (0) V=O{h—>ho} ,
where we have introduced the shifted operators
AV(p) = DV()! D¥(u) = A(w) + BV — (V-p)* (3.10)
with
DV(u)=D(u)—V-p=0,+h—pu—V-p. (3.11)
The quantity A(u) is defined in eq. (2.18) and
i 9 v i 7ot i i
B'= ——A"(w)| =p'D() - D(w)'p' =2p'8; — [h,p] (3.12)
ov V=0 »

is independent of the chemical potential p. The commutator [h, p?] is determined by the
derivative of the mean field

[4,5] = 118 o() + 5?7 (a)]. (313)
Using the commutator representation
B =[C%, A0)] = [C%, A(p) + 2uh] (3.14)

with )
. ot
C'= 5 i7'0, (3.15)

the masses (3.8) and (3.9) can be written

[o0]

(Mi)y=-TTro [ dse4® (gt +2(C, BY) — {h—he}  (3.16)
1/A2
and
(Mpeddie = ~TTe[A(s) (vt +1[01 Bk])]-—{mho}
+TTro [A(O)-l (pipk + §[ci, Bk])] — {h—ho} (3.17)
~TpTr[A()™ ((h— p)d* +is'lh, )] - {b—ho}
with

[C?, B¥] = 26%8? + 10, (0 + ivs7 7). (3.18)
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Details of the calculation can be found in the appendix. The diagonal elements (3.6) of
the tensors (3.16, 3.17) are given by

T o0} .
M, = -3 Th / dse=40) (p2 +38% + %’y-V(aJri'Ys*-W)) — {h—he}(3.19)
1/A2
* T ~1{,2 9 , b S
My = _§Tr [A(,u) (p +30; + 57-V(0 + l’YsT'ﬂ'))] — {h—ho}

+-€- Tr [A(o)-l (p2 +38% + %7-V(a + 175+-7r))] —{h—=ho}  (3.20)
_Eg_u Tr [A()™ (3(h — ) +i* [, 1)) — {h—> ho}.

Now we make use of the fact that any variation of the canonical potential Q (2.7) with
respect to the meson fields has to vanish around the stationary point

6Q = 6Q%%* + §Qamed 1 5O™ = 0. (3.21)

A variation which is in accordance with the restrictions to spherically symmetric hedgehog
fields and to the chiral circle (2.13) respecting the boundary conditions 6o =0, §7=0 for
|z| — 0,00 is given by

b0 =€x*Oo and  om =z (3.22)

with an infinitesimal variation parameter ¢. The corresponding variation of the meson
contribution (2.16) to 2 is given by

m ___TP_ 3 2-@ 3 k — @ 3 - —_ m
00" e = e v/d xdo(x)/e e v/d 2z 0o 3G1!d z (0—00) 3Q™. (3.23)

The quark contribution depends on the meson fields via Hamiltonian (2.10) and the
variation is given by

50 =~ Ty [ ds 40 512 (3.24)
1/A2
and T T
sQamed — —=Tr [A()™ (b — ] + 5T [A(0)'617] (3.29)
with

Shje = ° (b0 + ivst-07) Je = 12V (o + iys?-m) = —iz*[h,p*]  (3.26)

= a-p-—ifh,z-p|,
oh%je = {h,6h}/e=2p*+iv-V(o+iyT w)—1i [h.z, :m-p] , (3.27)
5(h — u)® = 0h% — 2ubh. : (3.28)

Introducing 6k and 6h? into egs. (3.19) and (3.20) we get with the help of eq. (A.12)

M~ = ~TTr, f ds =40 (82 + 612 /6¢) — {h— ho} (3.29)

sea —
1/A2



Mgy = —TTr [A(w)™ (82 + plh — 1) + 8(h — 1)?/6€)| — {h—ho}
+T'Tro [A(0)™" (82 + 6h2/6€)| — {h— ho}. (3.30)

Finally we exploit the equation of motion (3.21) with the variations (3.23-3.25) and get

M* = Mg, + M, =—TTr f ds e~ 4092 _ [h—s o} (3.31)
1/A2

+TTro [A(0)7'02] — {h—ho} — TTr [A(w)™" (32 + p(h — )] — {A—>ho} + Q™.
The trace with the anti-periodic boundary conditions can be expressed by an mtegral

(sum) over Matsubara frequencies w (w,) and by a sum over the eigenvalues ¢, and €% of
the Hamiltonians A and hg

e ' 2
M* = NZ/d‘” /d e +2) w2 — (e, 560} — NCZ/ or 1 el —{ea—ed}
—~00 1/1\2 @
+NT S Z 3 ~{ea—E} + Q™. (3.32)

o neeo w2 + (6a 1)

Performing integration (summation) over dw (w,) the first term gives the sea energy (2.27)
while second and third term add up to the medium-polarization energy (2.28). Altogether
we can conclude that the inertial mass M* equals to its total internal energy F (2.26)

M*=E = M,. (3.33)

4 Conclusions

We have investigated the adiabatic motion of the non-topological hedgehog soliton defined
by the NJL Lagrangian in self-consistent mean-field approximation through a medium of
constituent quarks. Defining the soliton by the difference between fields with and without
valence quarks and regularizing only that part of the grand canonical potential which
survives at T, u— 0 we could show, that the soliton behaves like an elementary particle
with respect to the identity of inertial and rest mass independently of the thermodynamic
parameters of the medium.

The paper was supported by the Bundesministerium fiir Forschung und Technologie
(contract 06 DR 666). M. S. thanks for the warm hospitality of the University of Rostock,
in particular D. Blaschke as well as E. E. Kolomeitsev, A.Pfitzner and F. Creutzburg for
helpful discussions.

A Appendix

Evaluating expressions (3.8) and (3.9) we follow partially the way indicated in ref.[6].
First we treat the sea contribution and notice that the first derivative of the exponential
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function is given by

0 _.4V, 1—
kae sAV(0) _ __ / dte t)sA (0) [B 2p’°pr’] e—tsAV(D). (Al)
At V =0 only B* survives in the inner bracket which can be replaced by the commutator
(3.14). The integral is just the commutator between C* and e~*4© (see e. g.[13])

9 o—s4Y(0

o _ /01 dte=(1=0540) [C*, g A0)] 4O = [C’“, O] (A2)

V=0
The second derivative is obtained by differentiating eq. (A.1) once more. At V' =0 we can
apply eq. (A.2) and get

a —s4V(0)
VioVk

1
_ i ,—(1—-t)}sA(0) k_ —tsA(0
- s/odt[C,e | BteteA® (A.3)

V=0

s /Oldt e—(1- t)sA(0)2 ko—tsA(0) _ /1 dt e~ (1-1)sA(0) gk [Ci, e-—tsA(O)] )
0

After taking the trace expression (A.3) can be rearranged and simplified. The integration
becomes trivial

2
Tro 0 e—sAV(O)

oViav* =Tro [s~* (29" + [C*, B])]. (A-4)

V=0

Now we consider the term §%/9V?9V* lnAV(,u)lV=0 in the medium contribution (3.9)
to the inertial mass
2

0 %

= —Tr[2A(u) 7 p'p* + A(p) " B*A(u) ™" BY]. (A.5)

V=0

The second term can be rewritten using the commutator representation (3.14) of B?

Tr [A(w) ™" BiA()™ B¥] = Tr [A(s) ™ [C*, A(w) + 2uh]) A(s) ™" B¥]
= Tt [A(p) 7 [CF, A(w)] A(u)™* B¥] + 20 Tr [A() ™' [CF, W A(w) ™ BF] . (A.6)

The first term can be treated as in ref. [6] and we get Tr [A(,u)“l[C", B"]] . To reformulate
the second one we rewrite the commutator

(%, 1] = —3{z*, A1)} +iD()'z*D() (A7)
and get
Te [AG) G, HAG)™ BY] = —iTx [4()7 B4 ™ (5 {=', AW} - D'z D@ )]
— —iTx [A(,L)-l %{Bk,xi}] FiTr [l(D(u)T)—lB’“D(,u)"Ixi] . (A.8)
Using egs. (2.18, 3.12) one obtains
2(a%, B} = (2xp* — 16%) 0, — o'[h, ] (A.9)

10



and
Tr [(D(u)f)"lBkD(y)—lxi] = T[4 (P*2'D() - DW)'a'p*)] (A.10)
= Tr[A(p)™ (22'5°0, — 6% D(u) + [z°", H)] .

The last term does not contribute to the trace since & commutes with A(u)~!. Altogether

we have
vi

oVigvk

TrinAY(m)| = —Tr [A(w) ™ (26" + [C', BY] + 20 [(h — p)o™ + iz’ [, p*]])]

V=0
(A.11)
Considerations (A.1-A.11) are independent of k,T" and p. So egs. (A.4, A.11) are valid
for h—hy, T—0 (Tr—Trp) and p—0.
A useful rule, which we have applied several times, is

Tr[A[B,C]| =0 if [A,B]=0 or [4,C]=0. (A.12)
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