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Abstract 

The time dependent Schrödinger equation of an Open quantum mechanical system 
is solved by using the stationary bi-orthogonal eigenfunctions of the non-Hermitean 
time independent Hamilton operator. We calculate the decay rates at low and high 
level density in two different formalism. The rates are, generally, time dependent and 
oscillate around an average value due to the non-orthogonality of the wavefunctions. 
The decay law is studied disregarding the oscillations. In the one-channel case, it is 
proportional to t-b with b N 312 in all cases considered, including the critical region 
of overlapping where the non-orthogonality of the wavefunctions is large. Starting 
from the shell model, we get b N 2 for 2 and 4 Open decay channels and all coupling 
strengths to  the continuum. When the closed system is described by a random matrix, 
b N 1 + K/2  for Ii = 2 and 4 channels. This law holds in a lirnited time intervd. 
The distribution of the widths is different in the two models when more than one 
channel are Open. This leads to the different exponents b in the power law. Our 
cdculations are performed with 190 and 130 states, respectively, most of them in the 
critical region. The theoretical results should be proven experimentally by measuring 
the time behaviour of de-excitation of a realistic quantum system. 



I Introduction 

The decay properties of quantum systems at high level density are discussed in the liter- 
ature with a renewed interest. Such systems are Open systems. The environment is the 
energy continuum of decay channels into which tthe discrete states of the closed system are 
embedded and which gives them a finite lifetime. 

In [I, 2, 31 the decay law is studied analytically for an infinite number of states. It is ex- 
ponential in the many-channel case but proportional to t-3/2 in the one-channel case. More 
generally, it holds t-'-w2 for a finite number K of channels. The decay rates of a quantum 
system at low and high level density are studied in [4]. They are shown to saturate at high 
level density. This result has been interpreted by the authors as a breakdown of the optical 
model at high level density. In [5] is, however, shown that the saturation corresponds to 
the trapping effect observed in many different physical systems at high level density, and 
that the optical model does not break down. The trapping effect studied in many Papers 
(eg. [6]) creates a separation of the time scales at a critical value of the degree of resonance 
overlapping. In another investigation [7], the survival and decay probabilities of high Ryd- 
berg states are studied. The decay law of states at high level density in nuclei is studied in [8]. 

All these investigations of the time behaviour of a decaying system are performed on 
the basis of the random-matrix theory. Thus the question remains Open whether similar 
results will be obtained if the calculations are performed in the framework of a more realistic 
formalism. Further, some of the results mentioned above show a smooth time dependence 
of the decay probability while others have an oscillatory behaviour. 

In the following, we investigate the decay properties of an Open quantum system in 
detail in order to See not only the monotonic evolution but also the oscillations. We use 
the continuum shell model (CSM) as well as the statistical model (STM) arid compare the 
results obtained. In Sect. 2, the formalism for deriving the decay rates at high level density 
is sketched. The properties of the non-Hermitean Hamilton operator are described in detail. 
At high level density, the decay rates are time dependent functions. In Sect. 3 the quantal 
coherence creating a redistribution in the system under critical conditions (trapping effect) 
is deacsibed. Here tke wavefunctions of the single resonances are no longer orthogonal to 
each sther due to the non-Hesmiticity of the Hamilton operator. Numerical results for the 
decay rates at  low and high level density are giwen in Sect. 4. By means of a simple case 
(two resonances m d  one Open decay channel), the time dependence of the decay rates as well 
as the relation between the decay rates and the widths of the resonance states at high level 
density is illustrated. Further, calculations are performed for many resonances and a few 
channels. The decay rates oscillate around an average value due to the non-orthogonality 
sf the wavefunctions. In Sect. 5, the decay law ist studied numerically. In the one-channel 
case, we see s power law in both the CSM and SlTM for all values of the coupling strength 
including the critical region. In the last section, some general conclusions on the decay 
prspertiet; of open quantum systems are drawn. 



2 Model 

2.1 S tat ionary solution of the Schrödinger equation 

The Hamiltonian of an Open quantum system is 

where 

is the Hamiltonian of the closed system, 

V is the residual interaction between two (bound or unbound) particles of the system, G$+) is 
the Green function for the motion of the particle in the energy continuum of decay channels 
and VQp = HQp, VpQ = HpQ due to the orthogonality of the wavefunctions of the discrete 
and continuous states. The operators Q and P project onto tlie subspaces of the discrete 
and continuous states, respectively, 

and 

Here, the are coupled channel wavefunctions in which the channel-channel coupling VPp 
is involved 

Hpp = Hgp + Vpp. Further, N is the number of discrete states an$ A the number sf Open 
and closed decay channels. 

In our investigations, P+Q = 1. The division into the ttwo suhspaces is made by inciuding 
all resonance phenomena into the Q subspace with the csnsequence that the tvavefunctions 
of the P subspace depend smoothly sn  energy in tlie region considered. Therefore, sgee- 
troscopic investigations make sense, i.e. the eigenvalues of 3-1 have a physical rneanlng [9]. 
Diagonalizing H, eq. ( 1 ), 

we get the energy dependent eigenfunctions &n and cigeavalues ER - from whicti the 
positions ER and widths TR of thc resonance states R can be determined by snlving the 
fixpoint equations I$]. The energg dependence of the and f R is smooth up to threshold 
cffects in thr: f [I 1, 121. Therefore, far from thresholds Ei% * R R ( ~ o )  ttnd SR zs ? R ( ~ Q f  

tvhere .Eo is a certain energy in the middle of the region cons'adered. 



The ripht and left eigenfunctions of a non-Hermitean Harnilton operator are different 
from each other. Suppose 

" l e f t  Then, by multiplying (8) to the left with (QRI I we get 

" [ e f t  " right  where the orthogonality of (aR, ] and I @ R  ) is assumed. From (9) it follows 

which is the time independent Schrödinger equation for the left state. One gets from ecl. 

(10) 

In the case of a Hermitean Hamiltonian, H+ = H ,  it imediately follows from (11) by com- 
" l e f t  " right  

parison with (8) that & is real and - QR . In OUT case, eq. (1 ), the Harniltonian is 

non-Bermitean, H+ # H .  The non-diagonal matrix elements C,  J d E  (@"lVl&) . GP) . 
(&IvI@gJ/') of 'H are, however, symmetric in relation to R and R' since the @EM are real. 

Therefore, 7-ti = W .  By taking the complex conjugate of (11) and comparing with (8), we 
" le f t* - - r igh t  get@R -GR . 

Therefore, the left eigenfunctions of 3-1 are (&;I if thc righbones are denoted by 
As a consequence, we have 

where both &W, and &R are taken at the Same energy E .  Further, it follows from ( 12 ) that 

and that (6R~l&R) is generally nonzero and complex for R # B'. 

For spectroscopic investigations to make sense, we need that ( & & ( E ~ I ) ~ & ~ ( E ~ ) )  N h t .  
This condition is fulfilled only if the are nearly energy independent. In such a case, thc 
relation ( 12) holds to a good approximation also if every &R is taken at the energy ER of 
the resonance state R [9]. 

In the CSM, both the real und imaginary parts of VQ~G$+)V~Q in (1) are taken into 
account , 

where Ibo given by eq. ( 2 )  is a standard nuclear shell model Hamiltonian iuith spin- 
orbit coupling and zero-range forces 19, 111, GP) = P(E - ( H g p  + vPp))-lp is the Green 
f~inctisn in the P aubspace, and the energy dependent matrix elements (Q>RklIVI&) arc 
calculated for all resonance states fZ arid decay channells C. They contain the param- 
eter CI which is varieci in order to investigate the behaviour of the systern as a furic- 
t im  of the coupling strcngth between the cliscretc states arid the continuum [Il]. It is 



VQP = aVzpi VpQ = CYV$'~, Vpp = aVgp, but VqQ = ViQ. A Variation of the a 
leads also to energy shifts which are large especially for the broad resonances. 

These energy shifts do not appear in the STM [13]. Shis model is used generally for 
the description of a group of states lying all in a relatively narrow energy region far from 
thresholds. Thus, it is justified to choose the coupling matrix elements (@gwIVI&) energy 
independent. Further, we neglect the channel-channel coupling. It is also assumed that 
P { V ~ ~ G ~ ) V ~ Q }  is energy independent and is effectively taken into account together with 
VQQ in diagonalizing the Hamiltonian H& of the corresponding closed system, i.e. 

HQQ is drawn from the Gaussian orthogonal ensemble (GOE). Then, the relation between 
the Hamilton operator 3-1' of the Open system and HQQ of the closed system reduces to 

The average coupling matrix element V: = $ zEi Iyl2 contains the vectors VI with com- 

ponents = ( Q ' ; ~ ~ ~ / ~ , )  [14]. In our calculations, either the elements are randomly 
chosen or the vectors V" are constructed orthogonal with random length. In the first case, 
the orthogonality is fulfilled with sufficient accuracy for N » Ii' where li' is the number of 
Open decay channels. The coupling matrix element is a measure of the average coupling 
strength of a discrete state Q>; (eigenfunction of NbQ) to the channel X,. It can be varied 
by means of the coupling parameter a .  

2.2 Time dependent equat ions 

Considering the case of overlapping resonances, we represent the time dependent wavefunc- 
tion of an ensemble of states by 

where the 6R are eigenfunctions of H, eq. ( 1 ). Then the time dependent Cchrödinger 
equation reads 

and 

Lhe equation for ($(t)l is 



The justification of (17) and (18) consists in the followinp: 

(i) It is acsumed that BR, FR and 6~ are almost independent of energy in the re,' cion con- 
sidered. 

(ii) As shown in [9], the wavefunction of a resonance state is 

but not 6 ~ .  The wavefunctions XE of the channels c and the coupled channel wavefunctions 
(g, defined by eq. ( 6 ) ,  are related by 

It follows therefore for the coupling matrix element of the resonance state R (with the 
wavefunction hR)  to the channel c (with the wavefunction XE) the relation [10] 

(fiRlvlxk) = &lvl&) . (23) 

In our formulation (with the Hamiltonian 7-l of the CSM), the channel coupling is contained 
in the basic wavefunctions of the P subspace, eq. ( 5 ) ,  in the sanie rrianner as configu- 
rational mixing is involved in the basic wavefunctions of the Q subspace, cq. ( 4 ) .  In 
the representation ( 17), the eigenfunctions &R of 7d should be used, therefore, and not the 
wavefunctions fiR of the resonance states. 

Using ( 19 ) and (20 ), the population probability is as follows. Since (mR' 
,gene~ally, we have 

which can be rewritten as 

A decay rate k e i f  can be defined by 

d 
k e f f  (t) = -- ln(d(t)ld(t)) 

d t  

which is in general a complicated time dependent function. It has a monotonic behaviour 
accsrding to the first sum (single sum over R) in (25) and a oscilIating one arising from the 
second sum (double sum over R, R'). 

Ts ctudy the goss time behaviour of ke i f  we define k;If taking into account only the 
single surn over R, 



Only under the condition (6~1 I ~ R )  X 0 for R' # R (See Fig. 1 in Sect. 3) we get k e f f  F;: 

In the case of an isolated resonance R, (26)  reduces to the standard relation k e f f  = 
k g i  = 'FR between decay rate and width. In this case, k e f f  is time independent and the 

A 
decay la~v is exponential. 

The shape of isolated resonances is of Breit-Wigner type. Therefore, we calculate the 
coefficients laR(0) 1' in ( 25 ) and ( 27 ) from the overlap integrals between Breit-VVigner 
distributed resonances R and an incoming wave, chosen Gaussian distributed with energy 
Eb and width Tb: 

where the normalization factor is F = J dE e - ( ( E - E b ) / r b ) 2  = fi - Tb. The an(()) used in the 
double surn in (27) are calculated as the positive root of Jion(0)l2 i.e. any initial phase 
from the excitation is ignored. A very small Tb simplifies the expression (28): 

For a very iarge ib,  ]aR(O) l 2  F;: rn .  

It should be noted here that the nucleus is not necessarily excited via one of the channels 
c which define the P subspace of decay channels. It may be excited via ariother mechanism 
such as, e.g., the deexcitation of a heavier nucleus. 

3 Quanta1 coherence 

3.1 Trapping of resonance states at high level density 

The trapping effect observed in many investigations (for references see [6]), appear.9 if tke 
second part of the Hamiltonian ( 1 ) becomes important relative to the first one. This implies 
that the non-diagonal matrix elements are large with the result that the diagonal matrix 
elements differ essentially from the eigenvalues. Since the trace is constant at a fixe$ energy 
E of the System and coupling strength cr between discrete states and continuum, we have 

N h' N -  

-2 ~ { ~ T ( H ( E ,  a))} = E C yRc(E, u) = E ~ R ( E ,  a) T 
R=l c=l R=l 

where c denote the K Open decay channels and 

= (2#j2 (rn"jv]& 'YRC 

is the coupling matrix e1ernen.t between the discrete s tak  R and the channel C, It should be 
mentioned here that may be very different from the vmplitude of thc partial width 



of the resonance state R, even if (6R~&R) = 1 [9, 111. 

With increasing coupling strength CY the w+dths I?R of all states increase until the diagonal 
matrix elements of the Hamiltonian (1 ) and its eigenvalues start to differ essentiall? from 
one another. Here, the imaginary parts FR of K eigenvalues start to increase much strenger 
than the coupling matrix elements Y&. This is possible only at the cost of the FR of the 
N - I< remaining states (trapping efect) which can be Seen from eq. ( 30 ) rewritten in the 
following manner 

F R  (E, Q) = I -  ~R=n+i ~ R ( E ,  (Y) 

-/(E> 4 +(E, 4 
Eq. ( 33 ) holds for all (Y. We define the critical region as that region where the reorganiza- 
tion takes place and characterize it by a value ~ . , i t  in its middle. 

Due to the trapping effect, different time scales are formed above the critical region (at 
high level density) 

It also holds 

The relations (34)  and (35) are a consequence of the fact that the rank of HQQ in ( 1 ) is N 
while that of the imaginary part of the second term VQPG$!)VPQ is Ii < N (if separability 
holds). Thus, a redistribution must take place in the transition from low level density where 
the first term of the Hamiltonian ( 1 ) is important, to high level density where the second 
part becomes important. 

In the random matrix model (STM) with the Hamiltonian X', a critical point can be 
defined by K zz ~ F / ( K D )  = 1 (for I( « N) where is the average value of the widths 
of the N resonance states and D is their average distance 115, 171. At this critical point, 

starts to decrease with increasing CY [16]. 

In the CSM (continuum shell model), a critical point cannot be defined by K = 1. The 
trapping of resonances occura locally between individual resonances Tor which a critical point 
in the complex plane is well defined. But ffuctuations in the level density can, as a rule, not 
be described by a simple law. This leads to uncertainties in the definition of a global critical 
point [6]. Thus we restrict ourselves, in the framework of this rnodel, to the definition of a 
critical regior~ (instead of a critical in which the se~aration of the time scales täkes 
place. 

In the CSM with the Hamiltonian 3-1 the separation of the time scales takes place at, 
K z 1 only in the one-channel case. In the many-channel case, the time scales are well sepa- 
rated already at  K < 1 [18]. A reason for this behaviour is surely the term L { V Q ~ G $ ! ) V ~ ~ }  
&ich appears explicitely in 3-1 of the CSM, eq. ( 14). The symmetry properties of this term 
are determiried by the channels and their coupling to one another. Its rnatrix elements are 
not small. The critical region in which the second term of 'FI becornes the dominant part is 



reached therefore at coupling parameters a (and the corresponding overlapping parameters 
6) v&ich are smaller than in the case of E' without such a term. The differences between 
the values of a,it (or K,;~) belonging to the two Hamiltonians are larger for a larger num- 
her of (coupled) decay channels: tcCTit decreases with K in the CSM. In the STM, however, 
ncTit = 1 for K « N while for K not small in comparison with iV, we even have r;,it > 1. 

The term L { V Q ~ G ~ ) V ~ ~ }  creates, moreover, energy shifts of all the states. Therefore, 
x2=K+i F R  does not decrease [ll] as in the STM. The energy shifts due to L{vQp~~+)vpO} 
may also lead to level repulsions in the complex plane between trapped states. Thus, a 
second generation of short-lived states [ll] can be created. 

3.2 Wavefunct ions in t he crit ical region 

The redistribution in the system (trapping eflect) takes place in a critical region of the level 
density (in relation to the average width of the states) [9, 111 in which the wavefunctions of 
the short-lived states align with the channel wavefunctions [6]. In this critical region, the left 
and right eigenfunctions of 'H differ substantially from each other. Thus, the redistribution 
taking place in the system reflects itself in the non-orthogonality of the 6~ [ll]. 

Beyond the critical region, the wavefunctions of the K short-lived states point into the 
direction of the decay channels [ G ] .  They are orthogonal to one another as the channel 
wavefunctions and are orthogonal also to the wavefunctions of the trapped states. The 
wavefunctions of the iV - K trapped long-lived states calculated with the full Hamiltonian 
3-1 ( 14 ), retain partly the non-orthogonality. These investipations have been performed for 
the diagonal matrix elements ( 6 ~ 1 6 ~ )  [ll]. 

The behaviour of I ( ~ ~ J I ~ R ) I  is illustrated in Fig. 1. The calculations are performed 
in the framework of the CSM (Fig. 1.a to 1.c) as well as in the STM (Fig. 1.d). In all 
calculations we have N = 70 states and K = 1 Open decay channel. The figure shotvs 
( 6 R 6 R )  1 - 6 e .  the deviations of (BR. 1 6 ~ )  frorn (6116~) = for ali combina- 
tions R, R' of the 70 states. 

In Fig. l.a, it is a < a„it, whereas in Figs. 1.b and 1.c cr = ocT;t and cr > o„;t, respec- 
tively. Well below aCTit the deviations of ( 6 ~ 1 1 6 ~ )  from SRRl are small, but in and above the 
critical region, the deviations are large. 

Fig. 1.d is made in the STM at the critical point K = 1. The figure shows large devi- 
ations from SRR/. Other calculations have shown that below as well as  above the critieal 
point, the deviations are small in this model. 

The plots of Fig. 1 show, that in the critical region thc value I (n>nl16R) I - 
large. WeIl below the critical region 1 ( 6 ~ . l 6 ~ ) 1  N h n t  in all cases consideped. In the $TM, 
1 (Q'RI l6n) 1 is small also far beyond the critical region. In th? CSM, howewr, this valuc 
rernains large for the trapped states. This differente is caused by the term % { I / ~ ~ C ~ ) V ~ ~ }  
in E, eq. ( 14) (see Section 3.1). 



4 Decay rates at low and high level density 

4.1 Two resonances and one open decay channel 

In order to investigate the relation (25) in detail at high level density, we performed some 
calculations. 

First, we consider the case with two resonances and one Open decay channel. This simple 
example allows to illustrate the time dependence of keff. 

The Hamiltonian is taken according to ( 16 ) . It reads [6] 

1 0  X I =  ( o  -2ia( 
cos2 y cos sin y 

cos y sin y sin2 ) - 
Without loss of generality we have chosen the eigenvalues of LIQQ to be f 1. The V in 

( 16 ) are chosen as V = E ( c w  y ,  sin V) with y = r / 8 .  Thus, the coupling of one of the 
resonance states to the decay channel is stronger than that of the other one. 

The influence of the parameter a in the Hamiltonian (36)  onto thc eigenvalue picture 
is illustrated by means of Fig. 2.a. The "motion" of the eigenvalues is drawn here as a 
function of the coupling strength a. One observes the trapping effect, i.e. an attraction of 
the real parts of the eigenvalues and a repulsion in the imaginary parts for a N a„it. 

In the case of two resonances, (4(t)l4(t)), eq. ( 25 ), consists of three terms, 

Here, the index b r  Stands for the broader of the two states and the index tr  for the narrower 
one. 

In Fig. 2.b, laR(0)I2, eq. ( 28 ), is shown as a function of <r for two cases: (i) the beam 
energy is equal to the energy of the narrow state, Eb = Ef„ and (ii) it is equal to the energy 
of thc broad state, Eb = Ehr. In both cases the beam is delta-shaped, and the maximum 
value la1(0)l2 = 1 (marked with a star) is obtained for the chosen state in both cases. The 
up triangles stand for the broad state of case (i) and the down triangles for the narrow state 
of case (ii). For small a,  almost only the chosen state is excited. As (I. 4 a,n„ laz(0) l 2  for 
the other state grows in both cases. As a grows further beyond a,;t, laz(0)12 + 1 in (i), 
but ]a2(0)I2 t 0 in (ii). This is a direct reflection of the trapping effect. 

In Fig. 2, the three points marked correspond to a < a„;t, a N a,it and a > a,it. 
For tliese three values of 0, k e i f  and ,k;:g!f are calculated. It is r / D  = 0.1, 1.1 and 4.1 
respectively, in these three cases. The results are shown in Fig. 3 for Eb = EtT and in Fig. 
-1 for Eb = Eb,. It is cr < (Y„;~ in Pigs. 3.a and 4.a, a N a„;t in Figs. 3.b and 4.b and 
CY > CY„LL in Figs. 3.c and 4.c. The thick lines represent ki!f and the thin ones k e f f  . In 
all cases, keJJ oscillattx around or it is t e f j  N k$f .  Note the different ordinate and 
ctbscissa scales in the different plots. 

In Fig. 3 4  k$i k constant: k$f = P „. This arises from the small value of the Erst 
causcd by the small value l abr (~)  12. k e / f  however shows a periodical behaviour 



caused by the interference term. It follows from ( 37 ) that the period is T = 2 r h l A E  where 
A E  = IEtT - EbTI. In our case, OE = 2MeV, giving T = lrfi/MeV. This period can be 
Seen in Fig. 3.a. The amplitude of the oscillations decreases in.the region showed because 
the interference term decreases as ezp(--$'bT + rt,) t lh)  while the second term in (37)  
decreases as esp(-rtT tlfi). 

At a N a„it (Fig. 3.b), k$f decreases from a value of about Tb, to rtT in a time of 
about lfi/MeV. During this time, the broad state almost disappears and k,",ff = rtT for 
larger times. There are no long-time oscillations, because the interference term disappears 
as esp{- % t} . 

Both k$p'!f and k e f f  decrease faster from the large value at t = 0 to rtT if a is larger (Fig. 
3.c). The time when rtT is reached is approximately O.$fi/Mel/ in Fig. 3.c compared to  
approximatively IfilMeV in Fig. 3.b. The difference between k$f and k e f f  in Fig. 3.c is 
small because of the large difference between rbT and rt,. 

In Fig. 4.a, k i f f  is nearly constant for t < 20filMeV for the Same reasons as in fig. 
3.a. The value of k i { f  is however rb,/h corresponding to the broad state. Since the broad 
state decays quickly, k$f decreases to rtT/h of the narroui state at about t = 30R/MeV. 
The time when the f i~s t  two terms in (37) are equal is t = 29.8h/MeV. Thc period of 
the oscillation is lnfi/MeV also in this case. The amplitude is large around t = 30h/;MeV 
but small for other times. This follows from (37): I;br small times, the interference term is 
small due to abT(0) » atT(0) and the decay pattern is determined by only the broad atate. 
At large times, the broad state has almost disappeared and the decay is determined by thc 
narrow state in spite of abT(0) » at,(0). Only in the transition interval, both resonances are 
of comparable importance and interfere strongly. 

In Fig. 4.b, ,kzp'!f Starts from an almost constant plateau corresponding to rbr and de- 
creases to the value of rt, during a time 2fi/MeV. Until the time 3fi/MeV, k e f f  oscillates 
around k$f , but for larger times keif E;: k i f f  . 

The plateau a t  k$f = rbr for small times can clearly be Seen in Fig. 4.c. In a sksrt 
time interval, k$f decreases to F$,. The difference between ke i f  and k$f is small due to 
the large difference between rbT and rt,. 

~ 4.2 N resonances and K channels 

In Fig. 5 we show the results of a calculation for N = 70 states an$ Ii" = 2 open chaririels 
using the STM (Hamiltonian ( 16)) with randomly chosen coupling vectors VG. The degree 
of overlapping of the resonances is large, K = 10.0. We have therefore two brsad states arid 
68 trapped ones. The beam is deltashaped and its energy Eb corresponds to the energy Et, 
of one of the trapped states. The thick line in Fig. 5 shows while the thin one ic k e j f .  

Also in this case, ACff oscillates around k i ! f .  

The difference between the calculation with 70 resonances to that 14th 2 resonancec con- 
sists mainly in the fact that ] u ~ ( O ) ~ ~  is rionvanishing not only fos the twa krraad staks arid 
the trapped one for which .Eb = Et, but also for sther trapped states in the neighbousliiood 
of Eb. Rs a consequence, many of tfie interference terms will be Ernpostant, This can be seen 



in the complicated, overlaid oscillations of k e f f .  The two broad states vanish very qui&ly. 

~u r the r ,  some trapped neighbours of the chosen state contribute to eq. (24).  Around 
t = 5OfLIMeV lve can See a transition for k;ff to a value corresponding to the more longlived 
states. 

'In the calculation above, the beam is much narrower than the width of the chosen state 
which is rb « 0.084MeV. Due to the uncertainity principle, this gives a resolution in time 
of At R 5. Thus At » 12h/iMeV. 

\Ve performed another calculation with the Same 70 states and 2 channels in which the 
incoming bea~n is much broader than the energy interval in which the states are lying. Shis 
gives lan(0) j 2  R rn for all the states. Fig. 6 shoivs k e f f  (thin line) and k$f (thick line) 
for this case. In spite of many terms in the double sum of (25), k e f f  shows a complicated 
oscillatory behaviour. 

The point is that also in this very complicated situation, k e f f  oscillates around k i f f .  The 
double surn consists of N ( N  - 1)/2 = 2415 terms, each with a phase totally uncorrelated 
with that of all the other ones. The lengths are also uncorrelated. The double sum however 
does not vanish. 

wfe also studied k e f f  in the CSM. We considered K = 1 Open channel arid rl' = 190 
states with 2 p  - 2h nuclear structure and J" = 1- (for details See [ll]) arid ?/D = 0.006. r b  
is very large. In Fig 7.a, k$f (thick line) and kef (thin line) are shown for the Same time 
interval as that of Figs. 5 and 6. The oscillations are much faster in this plot than those 
in Fig. 6. This is mainly due to the fact that the spectrum in Fig. 6 Covers an interval of 
2fi/&!eV but in the calculation presented in Fig. 7 the leirigth of the spectruni is 30iWeV. 
This implies that the fastes oscillations in this case are 15 tirnes faster than those of Fig. 6. 

Fig 7.b presents a calculation for the Same setup as in Fig. 7.a but for much larger times. 
The time unit characteristic of the system is T = fi/T = 2.9 - 104fi/iV!eV. k e f f  is shown 
in the Figure as a function of T and the plot is drawn in log-log scale. The calculation of 
k e f f  is not made enough dense to catch all oscillations. Th~e scattering of the points around 
k;!J gives, however, a measure of how large the osillations are. For very large times k$f 
approaches the width I'[ / h  of the narrowest state. We also See in Fig 7.b that kef  f fluctuates 
violently around s!f as long as k$f is time dependent (not constant). 

5 Decay law 
Isslated resonances are usually assumed to decay accordnng to an exponential law. It is 
k-Rf = FR/fL for the state R where F R  is time independent (see section 2.2). At high level 
density, kkfi  has to be replaced by k e f f ,  eq. ( 2 6 )  with ( S 5 ) ,  which generally is a cornpli- 
ca.ted time dependcnt function [cornpare Figs. 3 to 7). Even k i , f f ,  eq. (27),  in which the 
oscillations are neglected, is time dependent. Deviations from the exponential decay law 
appear therefore at  high level density, as a rule. 

In the f~llowing, we neglect the oscillations of (b(t)[d(t)), i.e. the double sum in eq. ( 25 ). 



Suppose we h4ave a power law, 

instead of the exponential one (#(t)l$(t)) X exp{-rt/h} in a certain time interval. Then 
the relation between the decay rate and b is 

-- 
W 

- 
k; f f  (t) b ' 

According to this equation, the deviations from the exponential decay law can be repre- 
sented by the rise of l / k $ f  as a function of t from which the exponent b can be determined. 

Figs. 4 to 7 show plateaus ki!f (t) ~y const arising from the different lifetimes of the dif- 
ferent states. We expect k e f f  (t) cc b/t with b x const (power decay law) if there are many 

4' 
resonance states due to which the stairs between the different plateaus are smeared out. In 
the long-time scale however, k$f (t) N const (exponential decay law) where const = r i / h  ( I  
stands for the longest-lived state). 

In the following, we investigate the decay law numerically in both the,CSM and the STM 
for a finite nurnber N of states and a small number I{ of Open decay channels. In Fig. 8 
and 9, we show l / k i ! f  as a function of time for different values a! of the coupling strength 
to the continuum and for different I{.  The time scale is given in units T = h / r  where is 
the average width of all the N resonances. 

Fig. 8 shows l / k $ f  calculated in the STM for 130 states (with orthogonal constructed 
coupling vectors V"), K = 1 (critical point) and I< = 1  (a), 2  (b), 4 (C) and 9 (d). The beam 
is very broad. The different curves in each subplot correspond to different random choices 
of HhQ. 

In all curves a power law is well fullfilled in a certain time interval. In the sne-channel 
case, b x 312. The different curves deviate from each other, ecpecially at times larger than 
50r .  

For two channels, the power law with b N 2 holds quite well until t x 367, for four 
channels with b N 2.7 until t N Sr and for nine channels with b N 4 until t N 57. 

In Fig. 8, we have shown the results at the critical value F = 1. The results of &her 
calculations well belotv and well above K = 1  are similar to thssc ahswn in Fig. 8. In a 
certain time interval, the power law is well fullfilled. We have b E 1 9  I</2 for K = 1  up ts 9. 

In [ I ,  21 the decay law has been studied analytically using the Hamiltonian 
an infinite number of states, an infinitely broad beann and K well befow the cri 

K 
while in [3] the investigations are performed for all K .  The result is (4 t)p(t)3 .c t - ( l + ~ ) ,  
i.e. b = !$ + 1  in the c a e  with K Open decay channels. Our numericd scsults with a finite 
number of states agree quite well with the formula obtained analytically wen in the csitical 
region (I- 5 4), &ere the redistribution of the spectrsscopic properties takes place. 

In the CSlM tve have performed calculations Tor N = 196 states m d  Ii" = 1, 2, arid 4 
channels. The 190 states have 211 - 2h nudear structure m d  J" = 1- (fos details see [l l 1 
The average dista~ice B bet~veela the states is defined by those of tht; shel4 modcl states. 



1 The beam is very broad, i.e. la~(O)l" NR. 

Fig. 9.a show l/k$f for 1 Open neutron channel. The different curves correspond to 
f'/D = 0.00072, 0.08'7, 0.32, 0.6'7, 1.14, 1.71 and 2.38. FVe see that b N 312 for small times 
up to about t = 1007. 

In Fig. 9.b, 1/k$f is drawn for the Same 190 states, two Open neutron channels and 
F/D = 0.0035, 0.20, 0.70, 1.49, 2.53, 3.80, 5.29 and 6.97. For skall times (up to t N 507) 
b N 2. A similar behaviour with b N 2 is obtained for 4 Open channels (two neutron and two 
Proton channels) shown in Fig. 9.c. The I1 curves correspond to f ' / ~  = 0.00392, 0,00394, 
0.00396, 0.0044, 0.0065, 0.016, 0.082, 0.32, 1.20, 4-18 and 57.5. We See a power law with 
b x 2 as in the 2-channel case up to t % 5Or. 

The main difference between the results obtained in the two models consists in the de- 
pendence of b on the number Ii" of channels. For K = 1 we have b N 312 in both models. 
For Ii" = 2 and 4, b N 2 in the CSM. In the STM however b N 1 + Ii"/2 (for ~c, # 1). 

In Fig. 10 the distribution of the widths calculated for cw = 4 > a„it and Ii" = 4 channels 
in the CSM is shown (histogram for the FR). The full line is the best fit to these values by a 

distribution. This fit to the calculated FR is quite good. Nevertheless, it corresponds to 
the one-channel case of the STM. For comparison, we show the distribution correspond- 
ing to four channels (dashed line). 

As can be Seen from Fig. 10, the width distribution is very different in the two models. 
This explains the differences for b obtained in our calculations. 

In the present paper, we investigated the decay properties of an Open many-particle quan- 
turn spstem. The Hamiltonian is non-Hermitean, its eigenfunctions and eigenvalues are 
cornplex. The eigenfunctions form a bi-orthogonal system. As a consequence, the wavefunc- 
tions of the resonance states are generally non-orthogonal to one another. Near the critical 
point of rearrangement, some states with short lifetimes align with the decay channels. 
As a result, their lifetimes become still shorter while the lifetimes of the remaining states 
become longer. Finally, we have two groups of resonance states with well separated lifetimes. 

1;Ve calculated the decay rates at low as w7ell as at high level density in the framework 
of both the continuum shell model arid the random-matrix formalism. The rates are pro- 
portional to the widths of the resonance states at low level density where they are isolated. 
At higher level density, the decay ratcs show an oscillatory behaviour caused by the non- 
orthogonality of the wavefuntions. Disregarding the oscillations, the rates are, nevertheless, 
still time dependent functions. This implies deviations frorn the exponential decay law. 

The decay law for an ensemble of states in a certain energy region is non-exponential 
proportional to for the case of one Open channel. This result is obtained in both 

moclels arid for all values of the coupling parameter cr between bound and unbound states. 
It is in agreement with the rcsult sf  analytical investigations in the random matrix theory 



for an infinite number of states [I, 2, 31. 

The decay law t-1-K/2 holds still good in the two models for K = 2 Open channels. For 
more than two channels, the exponent remains nearly constant in the CSM. In the STM, 
however, the t-1-K/2 1aw holds also quite good for K = 4 and even for K = 9 far from the 
critical region. 

The distribution of the widths is different in the two models when few channels are 
Open. In the CSM, the distribution for 4 channels cannot be fitted by the appropriate X 2  

distribution for K = 4 of the STM. This result explains the differences in the decay law 
obtained in the two models. The origin of the width distribution in the CSM is a question 
for further investigations. 

Finally, we stress that a direct experimental measurement of the decay properties of 
quantum systems at high level density is of high interest. 
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Figure  1 

The measure of the non-orthogonality of the states, 1 ( 6 ~ , 1 6 ~ ) /  - SRR,, for = 70 states 
and K = 1 Open channel. (a), (b) and (C) are calculated in the CSN below (a = 0.1), in 
(a = 2) and above (a = 10) the critical region of reorganisation, respectively. (d) is in the 
STM at the critical point. 

F igure  2 

The complex eigenvalues of X' for two states and increasing coupling strength a to the 
continuum (a) and laR(0)I2 as a function of a for the two states (b). Up triangles: broad 
state when narrow state is excited, down triangles: narrow state when broad state excited, 
stars: the other state in both cases. 

Figure 3 

The decay rates Ref f  (thin lines) and k$f (thick lines) for a « CY„;~ (a), a N a„it (b) and 
a > amit (C). The curves are for the two states shown in Fig. 2 and Eb = Et,. 

Figure 4 

The Same as in Fig. 3 but Eb = Ehr. 

Figure 5 

The decay rates k$f (thick line) and k e f f  (thin line) in the STM for N = 70 states and K = 2 
Open channels, K = 10. The beam is narrow and with an energy of one of tke trapped states. 

Figure 6 

The Same as in Fig. 5, but the beam is much broader than the spectrurn. 

Figure 7 

The decay rates kic,"ff (thick lines) in the CSM with N = 19Q states 2 p  - 2h niucleas struc- 
ture, J" = 1-), K = 1 open annei and PID = 8.012. Iii he inscillaitPrans of kGJd 
(thin line) are shown while in , only some dots of k"4i are g . The time s c a h  are in 
different units in (a) and [b). 



Figure 8 

l / k ~ : f  in the STM for 130 states and r; = 1. It is Ir' = 1 in (a), K = 2 in (b), Ir' = 4 in (C) 
and li' = 9 in (d). The different curves in each plot correspond to different random matrices 
H&,. The units are T = h / r  (different scaling in all figures). 

Figure 9 

l / k i ! f  in the CSM. The states are the same as in Fig. 7. The different curves in each plot 
correspond to different T / D  (for details, See the text). It is K = 1 in (a), I( = 2 in (b) and 
K = 4 in ( C ) .  The units are T = h/I ' .  

Figure 10 

Histogram for the distribution of the widths in the CSM for Ir' = 4 and cr = 4. The full line 
is the best fit to a x2 distribution, which corresponds to one channel in the STM while the 
dashed line is the STM distribution for 4 channels. 











Two nonsymmetrical states I 

Fig. 2 Points for k, are marked I 
I 



Two states. Trapped state excited. 
Fig. 3 Delta shaped beam. 



Two states. Broad state excited. 
Fig. 4 Delta shaped beam. 



Fig. 5 Statistical model, 70 states, 2 channels. 
Narrow beam, K=I 0. 
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