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Abstract

The time dependent Schrodinger equation of an open quantum mechanical system
is solved by using the stationary bi-orthogonal eigenfunctions of the non-Hermitean
time independent Hamilton operator. We calculate the decay rates at low and high
level density in two different formalism. The rates are, generally, time dependent and
oscillate around an average value due to the non-orthogonality of the wavefunctions.
The decay law is studied disregarding the oscillations. In the one-channel case, it is
proportional to ¢~ with b & 3/2 in all cases considered, including the critical region
of overlapping where the non-orthogonality of the wavefunctions is large. Starting
from the shell model, we get b =~ 2 for 2 and 4 open decay channels and all coupling
strengths to the continuum. When the closed system is described by a random matrix,
b=~ 1+ K/2for K = 2 and 4 channels. This law holds in a limited time interval.
The distribution of the widths is different in the two models when more than one
channel are open. This leads to the different exponents b in the power law. Our
calculations are performed with 190 and 130 states, respectively, most of them in the
critical region. The theoretical results should be proven experimentally by measuring
the time behaviour of de-excitation of a realistic quantum system.



1 Introduction

The decay properties of quantum systems at high level density are discussed in the liter-
ature with a renewed interest. Such systems are open systems. The environment is the
energy continuum of decay channels into which the discrete states of the closed system are
embedded and which gives them a finite lifetime.

In 1, 2, 3] the decay law is studied analytically for an infinite number of states. It is ex-
ponential in the many-channel case but proportional to t=3/2 in the one-channel case. More
generally, it holds ¢~*~%/2 for a finite number K of channels. The decay rates of a quantum
system at low and high level density are studied in [4]. They are shown to saturate at high
level density. This result has been interpreted by the authors as a breakdown of the optical
model at high level density. In [5] is, however, shown that the saturation corresponds to
the trapping effect observed in many different physical systems at high level density, and
that the optical model does not break down. The trapping effect studied in many papers
(e.g. [6]) creates a separation of the time scales at a critical value of the degree of resonance
overlapping. In another investigation [7], the survival and decay probabilities of high Ryd-
berg states are studied. The decay law of states at high level density in nuclei is studied in {8].

All these investigations of the time behaviour of a decaying system are performed on
the basis of the random-matrix theory. Thus the question remains open whether similar
results will be obtained if the calculations are performed in the framework of a more realistic
formalism. Further, some of the results mentioned above show a smooth time dependence
of the decay probability while others have an oscillatory behaviour.

In the following, we investigate the decay properties of an open quantum system in
detail in order to see not only the monotonic evolution but also the oscillations. We use
the continuum shell model (CSM) as well as the statistical model (STM) and compare the
results obtained. In Sect. 2, the formalism for deriving the decay rates at high level density
is sketched. The properties of the non-Hermitean Hamilton operator are described in detail.
At high level density, the decay rates are time dependent functions. In Sect. 3 the quantal
coherence creating a redistribution in the system under critical conditions (trapping effect)
is described. Here the wavefunctions of the single resonances are no longer orthogonal to
each other due to the non-Hermiticity of the Hamilton operator. Numerical results for the
decay rates at low and high level density are given in Sect. 4. By means of a simple case
(two resonances and one open decay channel), the time dependence of the decay rates as well
as the relation between the decay rates and the widths of the resonance states at high level
density is illustrated. Further, calculations are performed for many resonances and a few
channels. The decay rates oscillate around an average value due to the non-orthogonality
of the wavefunctions. In Sect. 5, the decay law ist studied numerically. In the one-channel
case, we see a power law in both the CSM and STM for all values of the coupling strength
including the critical region. In the last section, some general conclusions on the decay
properties of open quantum systems are drawn.



2 Model

2.1 Stationary solution of the Schrodinger equation

The Hamiltonian of an open quantum system is

H = Hoq + Var G Veg , ’ (1)
where
Haq = Hpg + Vaq (2)

is the Hamiltonian of the closed system,
(Hoq — ERY) @3 =0, (3)

V is the residual interaction between two (bound or unbound) particles of the system, G is
the Green function for the motion of the particle in the energy continuum of decay channels
and Vop = Hgp, Vpg = Hpg due to the orthogonality of the wavefunctions of the discrete
and continuous states. The operators () and P project onto thie subspaces of the discrete
and continuous states, respectively,

Af
Q= |o7") (27" (4)
R=1
z}nd
A e + +
p=3 [T aE g (). (5)
=16

Heré, the £% are coupled channel wavefunctions in which the channel-channel coupling Vpp
is involved

(Hpp— E) £z =0, (6)

Hpp = H%p + Vpp. Further, IV is the number of discrete states and A the number of open
and closed decay channels.

In our investigations, P+@ = 1. The division into the two subspaces is made by including
all resonance phenomena into the () subspace with the consequence that the wavefunctions
of the P subspace depend smoothly on energy in the region considered. Therefore, spec-
troscopic investigations make sense, i.e. the eigenvalues of H have a physical meaning [9].
Diagonalizing H, eq. (1),

H én = (fn— 3Tr) &a, (™

we get the energy dependent eigenfunctions 5 and eigenvalues Ep — : 'y from which the
positions Ep and widths I'r of the resonance states R can be determined by solving the
fixpoint equations [9]. The energy dependence of the Er and I'y is smooth up 1o threshold
effects in the T [11, 12]. Therefore, far from thresholds Egr ~ En(Ep) and I'p =~ p(f)
where FEj is a certain energy in the middle of the region considered.



The right and left eigenfunctions of a non-Hermitean Hamilton operator are different
from each other. Suppose

H]@T:ght) lq,rzght> . ’ (8)
Then, by multiplying (8) to the left with (&%*] we get

( leftlHl@”ght) — ER (@leftlérzght)
= &rbpr, (9

where the orthogonality of (3’| and |®5°™) is assumed. From (9) it follows
(@%'|H = & (2R, (10)

which is the time independent Schrodinger equation for the left state. Omne gets from eq.
(10)

Hi(@ernt = & (@5t (11)

In the case of a Hermitean Hamiltonian, H T = H, it imediately follows from (11) by com-
parison with (8) that &g is real and ®%* = t @”ght In our case, eq. (1), the Hamiltonian is

non-Hermitean, H i # H. The non—dlagonal matrix elements Y=, [ dE (®M|V|£8) - G +)
(&s|ViesM of H are, however, symmetric in relation to B and R’ since the ®3¥ are real

Therefore, HI = H*. By taking the complex conjugate of (11) and comparing with (8), we
leftx __ rzgh.t
get O/ = &

Therefore, the left eigenfunctions of H are (®%] if the right-ones are denoted by |®z).
* As a consequence, we have

(DR |OF™) = (OR|@r) = brr (12)
where both é*R, and ®p are taken at the same energy E. Further, it follows from (12) that
(®r|®R) > 1, (13)

and that (®p:|®R) is generally nonzero and complex for R # R'.
For spectroscopic investigations to make sense, we need that (9% (Er)|®r(ER)) ~ 8pp.
This condition is fulfilled only if the ®p are nearly energy independent. In such a case, the

relation (12) holds to a good approximation also if every ®p is taken at the energy Ep of
the resonance state R [9].

In the CSM, both the real and imaginary parts of VQpGg’) Vpg in (1) are taken into
account,

H = Hgo + %{VQPGS:HVPQ} +1 g{VQPGS’H Vrq} (14)

where Hgg given by eq. (2) is a standard nuclear shell model Hamiltonian with spin-
orbit coupling and zero-range forces [9, 11], Gfp“') = P(E — (H%p + Vpp)) ' P is the Green
function in the P subspace, and the energy dependent matrix elements (®3M|V]£5) are
calculated for all resonance states R and decay channels ¢. They contain the param-
eter @ which is varied in order to investigate the behaviour of the system as a func-
tion of the coupling strength between the discrete states and the continuum [11]. It is

4



Vop = aV3p, Vpg = aVig, Vep = aV¥p, but Voo = V. A variation of the parameter o
leads also to energy shifts which are large especially for the broad resonances.

These energy shifts do not appear in the STM [13]. This model is used generally for
the description of a group of states lying all in a relatively narrow energy region far from
thresholds. Thus, it is justified to choose the coupling matrix elements (32 |V |¢5) energy
mdependent Further we neglect the channel-channel coupling. It is also assumed that
R{Vo PGY P VpQ} is energy independent and is effectively taken into account together with
Voo in diagonalizing the Hamiltonian Hpg of the corresponding closed system, i.e.

Hé)Q = HgQ + Voo + %{VQPGE)VPQ} . (15)

Hpg is drawn from.the Gaussian orthogonal ensemble (GOE). Then, the relation between
the Hamilton operator H’ of the open system and Hpg of the closed system reduces to

H = Hhg+i S{VorGH Veg) |
Hpg—im-V VT, (16)

The average coupling matrix element V2= LS |Vi[? contains the vectors V° with com-
ponents V¢ = (®;]\/aV|x.) [14]. In our calculations, either the elements V; are randomly
chosen or the vectors V¢ are constructed orthogonal with random length. In the first case,
. the orthogonality is fulfilled with sufficient accuracy for N > K where K is the number of
open decay channels. The coupling matrix element v? is a measure of the average coupling
strength of a discrete state ®; (eigenfunction of Hpp) to the channel x.. It can be varied
by means of the coupling parameter c.

2.2 Time dependent equations

Considering the case of overlapping resonances, we represent the time dependent wavefunc-
tion of an ensemble of states by

[6() = S an(t) o) | oan

where the @ are eigenfunctions of H, eq. (1). Then the time dependent Schrédinger
equation reads

L d
ifi—6(t)) = H |4(1)) (18)
and
68) = ETHG0)
> ar(0)e #ER=EIR (G ) (19)

The equation for (¢(t)| is

1

(@ = (B ™
3 an(0)er RN By (20)



The justification of (17) and (18) consists in the following:

(1) It is assumed that Eg, T'r and &5 are almost independent of energy in the region con-
sidered.

(ii) As shown in [9], the wavefunction of a resonance state 1s

fr = 3+ / dE'ES, (EW) — BN (€5, |V |8R)

= (1+G5V) ég (21)
but iot ®r. The wavefunctions x5 of the cha.nnels ¢ and the coupled channel wavefunctlons
¢, defined by eq. (6), are related by

(1+6F V) x5 - (22)

It follows therefore for the coupling matrix element of the resonance state R (with the
wavefunction Qg) to the channel ¢ (with the wavefunction x%) the relation [10]

(QrlVIxg) = (@rlVIEE) - (23)

In our formulation (with the Hamiltonian # of the CSM), the channel coupling is contained
in the basic wavefunctions £§ of the P subspace, eq. (5), in the same manner as configu-
rational mixing is involved in the basic wavefunctions ®2 of the Q subspace, eq. (4). In
the representatlon (17) the eigenfunctions ) g of H should be used therefore, and not the
wavefunctions Qg of the resonance states.

Using (19) and (20), the population probability is as follows. Since (Bri|® R) # brp,
generally, we have

($DISD) = 3 an(0)am(0) e F w3 ERTRDE (G5 bp) (24)

RR/

which can be rewritten as

(8(8)16(2)) Z |ar(0)[* e "= (@p|$r)

+2Z e (FR+FR/)tX

R<R
m{aﬁ(o)aw(0)*6—%(ER-ER,) t @R,@R)} , (25)
A decay rate k°// can be defined by
d
B (1) = — 3 Ing16(2) (26)

which is in general a complicated time dependent function. It has a monotonic behaviour
according to the first sum (single sum over R) in (25) and a oscillating one arising from the
second sum (double sum over R, R').

To study the gross time behaviour of k// we define k// taking into account only the
single sum over R,

& = _i n a 2 ,~TRURG 1§
K10 =~ in{ Sler(O)F M Brlbn) |

1 Zrlar(0)f? Tr e *(®p|®p)
ko Srler(0) e T2 /M(0r|®r)
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Only under the condition (®z/|®r) ~ 0 for B’ # R (see Fig. 1 in Sect. 3) we get k7 ~ kef7,

In the case of an isolated resonance R, (26) reduces to the standard relation k¢ff =
k{7 = TR between decay rate and width. In this case, £/ is time independent and the
decay la,W is exponential.

The shape of isolated resonances is of Breit-Wigner type. Therefore, we calculate the
coefficients |ar(0)[*> in (25) and (27) from the overlap integrals between Breit-Wigner
distributed resonances R and an incoming wave, chosen Gaussian distributed with energy
Ey and width T's:

12 2
OF=F" [dE ik -((B-Bre)
[aR( )I (E _ ER)2 + _‘]i]"\?2 € (28)

where the normalization factor is F' = [ dE e~(F=Es)/To) — /7. T, The ap(0) used in the
double sum in (27) are calculated as the positive root of {/|ar(0)|? i.e. any initial phase
from the excitation is ignored. A very small Ty simplifies the expression (28):

1I‘2
(B E)" +4T%

|ar(0)? ~ (29)

For a very large I';, |ag(0)|* = .

It should be noted here that the nucleus is not necessarily excited via one of the channels
¢ which define the P subspace of decay channels. It may be excited via another mechanism
such as, e.g., the deexcitation of a heavier nucleus.

3 Quantal coherence

3.1 Trapping of resonance states at high level density

The trapping effect observed in many investigations (for references see [6]), appears if the
second part of the Hamiltonian ( 1) becomes important relative to the first one. This implies
that the non-diagonal matrix elements are large with the result that the diagonal matrix
elements differ essentially from the eigenvalues. Since the trace is constant at a fixed energy
E of the system and coupling strength a between discrete states and continuum, we have

N K N
~2 S{ir(H(E,a))} = 2;1 ;”ﬂzc(E,a) = }; Tr(E,0) = v(E, ) (30)

where ¢ denote the K open decay channels and
e = (2m) (R VIEE) (31)

is the coupling matrix element between the discrete state R and the channel e. It should be
mentioned here that 'yk”? may be very different from the amplitude of the partial width

oy 2 {®rlVIER) '
Pie = (2) {®r|®r) (32)



of the resonance state R, even if (®z|®r) = 1 [9, 11].

With increasing coupling strength « the widths I'r of all states increase until the diagonal
matrix elements of the Hamiltonian (1) and its eigenvalues start to differ essentially from
one another. Here, the imaginary parts Trof K eigenvalues start to increase much stronger
than the coupling matrix elements yg.. This is possible only at the cost of the T r of the
N — K remaining states (trapping effect) which can be seen from eq. (30 ) rewritten in the
following manner

Eg:l f‘R(E7 Cl) =1 — Zg=1\';+1 f‘R(E7a) .
v(E, ) v(E, )

Eq. (33) holds for all a. We define the critical region as that region where the reorganiza-
tion takes place and characterize it by a value a.; in its middle.

(33)

Due to the trapping effect, different time scales are formed above the critical region (at
high level density)

K _ N _ :
S>> Tr » > Ir. (34)
R=1 R=K+1
It also holds
1 & 1 }f‘f .
=2, I'rn > Ir. (35)
K RZ___:I N-K %

The relations (34 ) and (35) are a consequence of the fact that the rank of Hgg in (1) is NV
while that of the imaginary part of the second term Vg pGg) Vpq is K < N (if separability
holds). Thus, a redistribution must take place in the transition from low level density where
the first term of the Hamiltonian { 1) is important, to high level density where the second
part becomes important.

In the random matrix model (STM) with the Hamiltonian H’, a critical point can be
defined by « = 2T'/(KD) = 1 (for K <« N) where T is the average value of the widths
of the N resonance states and D is their average distance [15, 17]. At this critical point,
YR ok +1 'R starts to decrease with increasing « [16].

In the CSM (continuum shell model), a critical point cannot be defined by x = 1. The
trapping of resonances occurs locally between individual resonances for which a critical point
in the complex plane is well defined. But fluctuations in the level density can, as a rule, not
be described by a simple law. This leads to uncertainties in the definition of a global critical
point [6]. Thus we restrict ourselves, in the framework of this model, to the definition of a
critical region (instead of a critical point) in which the separation of the time scales takes
place.

In the CSM with the Hamiltonian # the separation of the time scales takes place at
& =~ 1 only in the one-channel case. In the many-channel case, the time scales are well sepa-
rated already at £ < 1 [18]. A reason for this behaviour is surely the term R{Vg PGg:+)VPQ}
which appears explicitely in H of the CSM, eq. (14). The symmetry properties of this term
are determined by the channels and their coupling to one another. Its matrix elements are
not small. The critical region in which the second term of H becomes the dominant part is
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reached therefore at coupling parameters o (and the corresponding overlapping parameters
x) which are smaller than in the case of H' without such a term. The differences between
the values of ari; (Or Keriz) belonging to the two Hamiltonians are larger for a larger num-
ber of (coupled) decay channels: x.;; decreases with K in the CSM. In the STM, however,
kerit = 1 for K < N while for K not small in comparison with IV, we even have &..;; > 1.

The term R{Vpp Gg;‘")VpQ} creates, moreover, energy shifts of all the states. Therefore,
K41 T'n does not decrease [11] as in the STM. The energy shifts due to R{VopGH Vreo'}
may also lead to level repulsions in the complex plane between trapped states. Thus, a
second generation of short-lived states [11] can be created.

3.2 Wavefunctions in the critical region

The redistribution in the system (frapping effect) takes place in a critical region of the level
density (in relation to the average width of the states) {9, 11} in which the wavefunctions of
the short-lived states align with the channel wavefunctions [6]. In this critical region, the left
and right eigenfunctions of H differ substantially from each other. Thus, the redistribution
taking place in the system reflects itself in the non-orthogonality of the ®r [11].

Beyond the critical region, the wavefunctions of the K short-lived states point into the
direction of the decay channels [6]. They are orthogonal to one another as the channel
wavefunctions and are orthogonal also to the wavefunctions of the trapped states. The
wavefunctions of the N — K trapped long-lived states calculated with the full Hamiltonian
H (14 ), retain partly the non-orthogonality. These mvestwa,tlons have been performed for
the diagonal matrix elements (®|®r) [11].

The behaviour of [{($r|®r)| is illustrated in Fig. 1. The calculations are performed
in the framework of the CSM (Fig. l.a to l.c) as well as in the STM (Fig. 1.d). In all
calculations we have N = 70 states and K = 1 open decay channel. The figure shows
|(®r|®BR)| — Srm, i-e. the deviations of (Bp|®R) from (®%,|®R) = Srpy, for all combina-
tions R, R’ of the 70 states.

In Fig. l.a, it is & < @, whereas in Figs. 1. b and l.c @ = @i and a > oy, respec-
tively. Well below cueri the deviations of (®p/|®r) from Sprs are small, but in and above the
critical region, the deviations are large.

Fig. 1.d is made in the STM at the critical point £ = 1. The figure shows large devi-
ations from drp:. Other calculations have shown that below as well as above the critical
point, the deviations are small in this model.

The plots of Fig. 1 show, that in the critical region the value |(®r/|® )| — Spp is always
large. Well below the critical region |{®a/|®r)| ~ 6rp in all cases considered. In the STM,
](@R'I‘I’R)[ is small also far beyond the critical region. In the CSM, however, this value
remains large for the trapped states. This difference is caused by the term R{VopGL Vpo}
in H, eq. (14) (see Section 3.1).



4 Decay rates at low and high level density

4.1 Two resonances and one open decay channel

In order to investigate the relation (25) in detail at high level density, we performed some
calculations.

First, we consider the case with two resonances and one open decay channel. This simple
example allows to illustrate the time dependence of k°7.

The Hamiltonian is taken according to (16) . It reads [6]

, (1 0 X cos’y  cospsing
= ( 0 -1 ) —2201( cospsing  sin’e ’ (36)
Without loss of generality we have chosen the eigenvalues of Hgg to be 1. The V in

(16) are chosen as V = /2%(cos ¢, sinp) with ¢ = 7/8. Thus, the coupling of one of the
resonance states to the decay channel is stronger than that of the other one.

The influence of the parameter « in the Hamiltonian (36 ) onto the eigenvalue picture
is illustrated by means of Fig. 2.a. The "motion” of the eigenvalues is drawn here as a
function of the coupling strength . One observes the trapping effect, i.e. an attraction of
the real parts of the eigenvalues and a repulsion in the imaginary parts for a = agi.

In the case of two resonances, (¢(t)|#(¢)), eq. (25), consists of three terms,

(BBISE) = las(0) €% ot (B4 [Br) + |aes (0)]7 €% Tt (B, | Dy
+ 2e778 CortTe) RLa (0)asr(0)"e -~<Ebr—F=r>t<®br|q>”>}. (37)

Here, the index br stands for the broader of the two states and the index ¢r for the narrower
one.

In Fig. 2.b, [ar(0)|?, eq. (28), is shown as a function of « for two cases: (i) the beam
energy is equal to the energy of the narrow state, Ey = E,, and (ii) it is equal to the energy
of the broad state, Ey = Fj.. In both cases the beam is delta-shaped, and the maximum
value |a;(0)]* =1 (marked with a star) is obtained for the chosen state in both cases. The
up triangles stand for the broad state of case (i) and the down triangles for the narrow state
of case (ii). For small @, almost only the chosen state is excited. As & = @eriz, |a2(0)] for
the other state grows in both cases. As o grows further beyond acis, |a2(0)]> — 1in (i),
but [a3(0)]*> — 0 in (ii). This is a direct reflection of the trapping effect.

In Fig. 2, the three points marked correspond to o < @erit, & R Qerit and o > o
For these three values of o, k®// and kZ// are calculated. It is /D = 0.1, 1.1 and 4.1
respectively, in these three cases. The results are shown in Fig. 3 for Ey = F; and in Fig.
“ 4 for Ey = Ej,. It is @ € agi in Figs. 3.a and 4.2, o = 0¢ in Figs. 3.b and 4.b and
& > @i in Figs. 3.c and 4.c. The thick lines represent lc;’ff and the thin ones k*/f. In
all cases, k°// oscillates around kZff or it is &%/ f =~ kZff. Note the different ordinate and
abscissa scales in the different plots.

In Fig. 3.a, k2!/ is constant: k2ff = T,,. This arises from the small value of the first
term in { 37) caused by the small value |a;, (0)[?. £°// however shows a periodical behaviour
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caused by the interference term. It follows from (37) that the period is T = 2rh/AFE where
AE = |E; — Ey|. In our case, AE = 2MeV, giving T = 17h/MeV. This period can be
seen in Fig. 3.a. The amplitude of the oscillations decreases in.the region showed because
the interference term decreases as exp(—2(Ls, + I'y,) t/A) while the second term in (37)
decreases as exp(—T%- t/h).

At a = aqi (Fig. 3.b), k;‘ff decreases from a value of about I'y, to Iy, in a time of
about 1A/MeV. During this time, the broad state almost disappears and k;{f = I'y; for
larger times. There are no long-time oscillations, because the interference term disappears

as exp{—tr t}.

Both kgf/ and ke/f decrease faster from the large value at ¢ = 0 to Ty, if o is larger (Fig.

3.c). The t1me when T';, is reached is approximately 0.4A/MeV in Fig. 3.c compared to
approxuna’mvely 1%/MeV in Fig. 3.b. The difference between k2// and k°/f in Fig. 3.c is
small because of the large difference between I'y, and T,.

In Fig. 4.a, k&/ is nearly constant for ¢ < 20k/MeV for the same reasons as in fig.
3.a. The value of kef f is however Iy, / h corresponding to the broad state. Since the broad
state decays qu1ckly, k&7 decreases to Ty /R of the narrow state at about ¢ = 30k/MeV.
The time when the ﬁrst two terms in (37) are equal is ¢t = 29.8A/MeV. The period of
the oscillation is 1wh/MeV also in this case. The amplitude is large around ¢ = 30h/MeV
but small for other times. This follows from (37): For small times, the interference term is
small due to ap(0) > a;(0) and the decay pattern is determined by only the broad state.
At large times, the broad state has almost disappeared and the decay is determined by the
narrow state in spite of a;-(0) > a;(0). Only in the transition interval, both resonances are
of comparable importance and interfere strongly.

‘In Fig. 4.b, kef f starts from an almost constant plateau corresponding to ', and de-
creases to the value of Ty, during a time 2i/MeV. Until the time 3%/MeV, k¢ff oscillates
around k;{f , but for larger times k°/f ~ k;;ff

The plateau at kef f = Ty, for small times can clearly be seen in Fig. 4.c. In a short
time interval, Ic;f I decreases to T'y. The difference between k°/f and lcaf f is small due to
the large difference between I’y and T'y,.

4.2 N resonances and K channels

In Fig. 5 we show the results of a calculation for V = 70 states and K = 2 open channels
using the STM (Hamiltonian (16 )) with randomly chosen coupling vectors V. The degree
of overlapping of the resonances is large, £ = 10.0. We have therefore two broad states and
68 trapped ones. The beam is deltashaped and its energy £ corresponds to the energy F;,
of one of the trapped states. The thick line in Fig. 5 shows k2// while the thin one is £*//.
Also in this case, k°/f oscillates around kef 1 ,

The difference between the calculation with 70 resonances to that with 2 resonances con-
sists mainly in the fact that |ag(0)]* is nonvanishing not only for the two broad states and
the trapped one for which E; = E,, but also for other trapped states in the neighbourhood
of . As a consequence, many of the interference terms will be important. This can be seen
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in the complicated, overlaid oscillations of ke¥f_ The two broad states vanish very quickly.

Further, some trapped neighbours of the chosen state contribute to eq. (24). Around
t = 50h/MeV we can see a transition for k;{f to a value corresponding to the more longlived
states.

In the calculation above, the beam is much narrower than the width of the chosen state
which is I‘b < 0.084MeV. Due to the uncertainity principle, this gives a resolution in t1me
of At ~ £ . Thus At > 12h/MeV.

We performed another calculation with the same 70 states and 2 channels in which the
incoming beam is much broader than the energy interval in which the states are lying. This
gives |ar(0)}> =~ Tg for all the states. Fig. 6 shows k°/f (thin line) and keff (thick line)
for this case. In spite of many terms in the double sum of (25), k°// shows a complicated
oscillatory behaviour.

The point is that also in this very complicated situation, keff oscillates around k_g{ f. The
double sum consists of N(IN — 1)/2 = 2415 terms, each with a phase totally uncorrelated
with that of all the other ones. The lengths are also uncorrelated. The double sum however
does not vanish.

We also studied k¢4 in the CSM. We considered K = 1 open channel and N = 190
states with 2p — 2k nuclear structure and J™ = 1~ (for details see [11]) and I'/D = 0.006. T,
is very large. In Fig 7.a, k&{/ (thick line) and k°f4 (thin line) are shown for the same time
interval as that of Figs. 5 and 6. The oscillations are much faster in this plot than those
in Fig. 6. This is mainly due to the fact that the spectrum in Fig. 6 covers an interval of
2l /MeV but in the calculation presented in Fig. 7 the length of the spectrum is 30MeV .
This implies that the fastes oscillations in this case are 15 times faster than those of Fig. 6.

Fig 7.b presents a calculation for the same setup as in Fig,. 7.a but for much larger times.
The time unit characteristic of the system is + = A/T = 2.9 - 10*h/MeV. k// is shown
in the Figure as a function of 7 and the plot is drawn in log-log scale. The calculation of
k%ff is not made enough dense to catch all oscillations. The scattering of the points around
ket gives, however, a measure of how large the osillations are. For very large times ket!
a.pproaches the width I';/% of the narrowest state. We also see in Fig 7.b that k°/f ﬁuctuates
violently around k;{f as long as k;{ f is time dependent (not constant).

5 Decay law

Isolated resonances are usually assumed to decay according to an exponential law. It is
ke/f = T'r/h for the state R where Tp is time independent (see section 2.2). At high level
density, k5// has to be replaced by k%, eq. (26) with (25), which generally is a compli-
cated time dependent function (compa.re Figs. 3 to 7). Even k;{f ,eq. (27), in which the
oscillations are neglected, is time dependent. Deviations from the exponential decay law

appear therefore at high level density, as a rule.

In the following, we neglect the oscillations of {§(t)|#(t)}, i.e. the double sum in eq. (25).



Suppose we have a power law, .
(6(1)](1)) o ¢, | (38)

instead of the exponential one ($(¢)|4(t)) «x exp{—Tt/k} in a certain time interval. Then
the relation between the decay rate and b is

1 1 ‘ (39)
EHONES |
According to this equation, the deviations from the exponential decay law can be repre-
sented by the rise of 1/kf as a function of ¢ from which the exponent b can be determined.

Figs. 4 to 7 show plateaus k2{/(¢) & const arising from the different lifetimes of the dif-
ferent states. We expect k&f F(t) o b/t with b = const (power decay law) if there are many
resonance states due to which the stairs between the different plateaus are smeared out. In
the long-time scale however, k5//(t) & const (exponential decay law) where const = T'/A (I
stands for the longest-lived state).

In the following, we investigate the decay law numerically in both the.CSM and the STM
for a finite number N of states and a small number K of open decay channels. In Fig. 8
and 9, we show 1/ kef ! as a function of time for different values a of the coupling strength
to the continuum and for different K. The time scale is given in units 7 = /T where T is
the average width of all the IV resonances.

Fig. 8 shows 1/k¢// calculated in the STM for 130 states (with orthogonal constructed
coupling vectors V¢), & = 1 (critical point) and K =1 (a), 2 (b), 4 (c) and 9 (d). The beam
is very broad. The different curves in each subplot correspond to different random choices

Of 'H,QQ'

In all curves a power law is well fullfilled in a certain time interval. In the one-channel
case, b= 3/2. The different curves deviate from each other, especially at times larger than
50T.

For two channels, the power law with b &~ 2 holds quite well until ¢+ = 307, for four
channels with b &~ 2.7 until £ ~ 87 and for nine channels with b~ 4 until ¢ = 57.

In Fig. 8, we have shown the results at the critical value £ = 1. The results of other
calculations well below and well above k = 1 are similar to those shown in Fig. 8. In a
certain time interval, the power law is well fullfilled. We have b~ 1+ K/2for K = 1 up to 9.

In [1, 2] the decay law has been studied analytically using thé Hamiltonian (16) with
an infinite number of states, an infinitely broad beam and x well below the critical value
while in [3] the investigations are performed for all k. The result is (¢{2)|6(¢)) x -5
ie b= % + 1 in the case with K open decay channels. Our numerical results with a ﬁmte
number of states agree quite well with the formula obtained analytically even in the critical
region (K < 4), where the redistribution of the spectroscopic properties takes place.

In the CSM we have performed calculations for N = 190 states and K = 1, 2, and 4

channels. The 190 states have 2p — 2k nuclear structure and J™ = 1~ {for details see [11]).
The average distance D between the states is defined by those of the shell model states.

13



The beam is very broad, i.e. |ar(0)> = T'r.

Fig. 9.a show 1/ kef f for 1 open neutron channel. The different curves correspond to
I/D = 0.00072, 0. 08{ 0.32, 0.67, 1.14, 1.71 and 2.38. We see that b &~ 3/2 for small times
up to about ¢ = 1007.

In Fig. 9.b, 1/kff is drawn for the same 190 states, two open neutron channels and
T/D = 0.0035, 0. 20 0.70, 1.49, 2.53, 3.80, 5.29 and 6.97. For small times (up to ¢ = 507)
b~ 2. A similar behaviour with b = 2 is obtained for 4 open channels (two neutron and two
proton channels) shown in Fig. 9.c. The 11 curves correspond to I'/D = 0.00392, 0.00394,
0.00396, 0.0044, 0.0065, 0.016, 0.082, 0.32, 1.20, 4. 18 and 57.5. We see a power law with
b=~ 2 as in the 2-channel case up to t = 507.

The main difference between the results obtained in the two models consists in the de-
pendence of b on the number K of channels. For K =1 we have b = 3/2 in both models.
For K =2 and 4, b = 2 in the CSM. In the STM however b ~ 1 + K/2 (for £ # 1).

In Fig. 10 the distribution of the widths calculated for o = 4 > o, and K = 4 channels
in the CSM is shown (histogram for the FR) The full line is the best fit to these values by a
x? distribution. This fit to the calculated T is quite good. Nevertheless, it corresponds to
the one-channel case of the STM. For comparison, we show the x? distribution correspond-
ing to four channels (dashed line).

As can be seen from Fig. 10, the width distribution is very different in the two models.
This explains the differences for b obtained in our calculations.

6 Conclusions

In the present paper, we investigated the decay properties of an open many-particle quan-
tum system. The Hamiltonian is non-Hermitean, its eigenfunctions and eigenvalues are
complex. The eigenfunctions form a bi-orthogonal system. As a consequence, the wavefunc-
tions of the resonance states are generally non-orthogonal to one another. Near the critical
point of rearrangement, some states with short lifetimes align with the decay channels.
As a result, their lifetimes become still shorter while the lifetimes of the remaining states
become longer. Finally, we have two groups of resonance states with well separated lifetimes.

We calculated the decay rates at low as well as at high level density in the framework
of both the continuum shell model and the random-matrix formalism. The rates are pro-
portional to the widths of the resonance states at low level density where they are isolated.
At higher level density, the decay rates show an oscillatory behaviour caused by the non-
orthogonality of the wavefuntions. Disregarding the oscillations, the rates are, nevertheless,
still time dependent functions. This implies deviations from the exponential decay law.

The decay law for an ensemble of states in a certain energy region is non-exponential
(proportional to t~3/2) for the case of one open channel. This result is obtained in both
models and for all values of the coupling parameter & between bound and unbound states.
. It is in agreement with the result of analytical investigations in the random matrix theory

14



for an infinite number of states [1, 2, 3].

The decay law t~17K/2 holds still good in the two models for K = 2 open channels. For
more than two channels, the exponent remains nearly constant in the CSM. In the STM,
however, the t~1"%/2 law holds also quite good for K = 4 and even for K = 9 far from the
critical region.

The distribution of the widths is different in the two models when few channels are
open. In the CSM, the distribution for 4 channels cannot be fitted by the appropriate x?*
distribution for K = 4 of the STM. This result explains-the differences in the decay law
obtained in the two models. The origin of the width distribution in the CSM is a question
for further investigations.

Finally, we stress that a direct experimental measurement of the decay properties of
quantum systems at high level density is of high interest.
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Figure 1
The measure of the non-orthogonality of the states, |(®z/|®r)| — Srp:, for N = 70 states
and K = 1 open channel. (a), (b) and (c) are calculated in the CSM below (a = 0.1), in

(a = 2) and above (a = 10) the critical region of reorganisation, respectively. (d) is in the
STM at the critical point.

Figure 2
The cofnplex eigenvalues of H’' for two states and increasing coupling strength o to the
continuum (a) and |ar(0)|? as a function of o for the two states (b). Up triangles: broad

state when narrow state is excited, down triangles: narrow state when broad state excited,
stars: the other state in both cases.

Figure 3

The decay rates k¢// (thin lines) and k;{ f (thick lines) for @ < agit (a), @~ ags (b) and
a > aeit (c). The curves are for the two states shown in Fig. 2 and Ej = E,.

Figure 4

The same as in Fig. 3 but E, = E,.

Figure 5

The decay rates k277 (thick line) and k*// (thin line) in the STM for N = 70 states and K = 2
open channels, & = 10. The beam is narrow and with an energy of one of the trapped states.

Figure 6

The same as in Fig. 5, but the beam is much broader than the spectrum.

Figure 7

The decay rates k// {thick lines) in the CSM with NV = 190 states {2p — 2k nuclear struc-
ture, J™ = 17), K = 1 open channel and T/D = 0.012. In (a), the oscillations of &°//
(thin line) are shown while in {b), only some dots of £%// are given. The time scales are in
different units in (a) and (b).
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Figure 8
1/kgif in the STM for 130 states and x = 1. It is K =1in (a), K =21in (b), K =4 in (c)

and K = 9in (d). The diﬁ"er_ent curves in each plot correspond to different random matrices
Hp. The units are 7 = A/T (different scaling in all figures).

Figure 9

1/ k;ff in the CSM. The_ states are the same as in Fig. 7. The different curves in each plot
correspond to different I'/D (for details, see the text). Itis K =11in (a), K =2 in (b) and
K =4 in (c). The units are 7 = /T

Figure 10
Histogram for the distribution of the widths in the CSM for K = 4 and « = 4. The full line

is the best fit to a x? distribution, which corresponds to one channel in the STM while the
dashed line is the STM distribution for 4 channels.
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_ Two states. Trapped state excited.
Fig. 3 Delta shaped beam.
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Two states. Broad state excited.
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Fig. 5 Statistical model, 70 states, 2 channels.
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3@. 7 Csm, 190st, 1ch, broad beam.
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Fig. 8 .mﬂm:m:om_ model, 130 states, x =1
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Csm, 190st, four channels, a=4

Fig. 10 Histogram over gammas.
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