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Abstract

The energy-intensive dewatering of algae biomass, the first step of most downstream
processes, remains one of the big challenges for economically relevant photoautotrophic
bioprocesses. Due to its scalability and easy construction, foam flotation using the interactions
between cells and bubbles shows considerable potential for this type of cost-efficient initial
dewatering step. Comprehensive knowledge on both the physico-chemical conditions and the
cellular surface properties are an important precondition to harvest cells by flotation. This study
investigates the impact of changing the medium composition, specifically varying the pH and
adding (bio-) collectors on the zeta potential of Chlorella vulgaris SAG 211-1B. Decreasing the
pH value from physiological to acidic conditions (pH 1-1.5) resulted in a strongly reduced
cellular zeta potential. As validated by dispersed-air flotation experiments, this yields a
significantly enhanced cell recovery R > 95%. The impact of the synthetic collector
cetyltrimethylammonium bromide and the biopolymer chitosan on the cellular zeta potential
and flotation performance was studied, resulting in a 3.3-fold decrease in the surfactant dose
when chitosan was used during dissolved-air flotation. The basic mechanisms of cell-chitosan
interaction were analysed in terms of particle size distribution and surface tension
measurements, revealing interactions between flocculation and adsorption during the

dispersed-air flotation of Chlorella vulgaris.
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12; ¢ Flotation studies reveal an optimum chitosan concentration range of 12-18 mg L™ to

Ei yield a recovery > 95 % (concentration factor of 5.3).

135 e Particle size distribution and surface tension measurements reveal the influence of
136

137 flocculation and adsorption on flotation efficiency.
138

139

140 Abbreviations

141
142
143
144
145 C Zeta potential mV
146
147
148
149
150 BM Bristol's Modified Medium -
151
152
153
154
155 Cx Cell concentration Cells mL™!
156

157 . . .

158 CTAB Cetyltrimethylammonium bromide -

159

12(1) DIiAF Dispersed-air Flotation -

162

163 IEP Isoelectric point mV

164

122 PALS Phase Analysis Light Scattering -
167

168 PBR Photobioreactor -
169
170
171
172
173
174
175
176 3
177

Highlights

e The zeta potential of C. vulgaris depends on the medium composition and pH.

The recovery of cells is > 95% at pHs lower than 1.5 (< =7 mV).
e Alower dose of chitosan (15 mg L™") is needed to adjust the isoelectric point compared

to cetyltrimethylammonium bromide (50 mg L™).

Abbreviation Definition Unit

o Surface tension mN m™*

Cxo Initial cell concentration Cells mL™!

PFD Photon flux density pmol m=2 s~



178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

Q3 Cumulative function of the %

volume weighted size distribution

R Recovery %
X Particle (cell) size pm
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1. Introduction

Algal biotechnology has drawn increased industrial interest over the last decade, especially
the production of biofuels [1—4], high-quality cell metabolites such as dyes [5], polyunsaturated

fatty acids [6—8] and antioxidants [9].

The supply of photosynthetic active radiation as the sole source of energy in photobioreactors
remains one of the major challenges for photo-biotechnological processes [10—12], resulting
in low biomass concentrations of 0.5-5.0 g/L dry weight in large-scale bioprocesses
[11].Taking into account the low cell concentration and high cellular water content [12], the first
step of downstream processing, i.e. the energy-intensive separation of the solid and liquid
phases (dewatering), becomes the most significant economic aspect of algae-based

processes and plant operation [11, 13, 14].

Current techniques for pre-harvesting microalgae cells can be classified into five main
technologies: sedimentation [15], flocculation [16, 17], centrifugation [18], filtration [19, 20] and
flotation [21]. However, pre-harvesting is often associated with long processing times
(sedimentation, flocculation), high energy and investment costs (centrifugation) or membrane
clogging and fouling effects (filtration) [22, 23]. To make processes economically efficient and
have a broad spectrum of applications, even in the field of low-value products, the development
of energy-efficient, low-cost, robust dewatering technologies is indispensable. In this context,

the potential of flotation technologies has been unexploited so far.

Flotation utilizes the interaction between gas bubbles and the cell surface, with the aim of
attaching the cells to the bubbles and thus discharging them from the liquid phase [24]. Prior
to their attachment, the hydrodynamically driven collision of the algal cell and the bubble is
necessary [25]. The bubble-algae complexes rise to the surface of the suspension, forming an
algae-laden foam which can be skimmed off [26]. Considering the low density of algal cells,
which makes them difficult to separate by sedimentation, flotation appears an effective
approach to harvest algae biomass [27]. Flotation technologies in biotechnology can be

classified into three main branches depending on the bubble generating method [24]:
5
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dissolved-air flotation (DAF) [28], dispersed-air flotation (DiAF) [29] and electro-coagulation
flotation (EFC) [30]. DiAF has the lowest energy demand compared to the other flotation
technologies. It generates bubbles by continuously passing air through a porous material or by
dispersing air via a high-speed mechanical agitator, yielding a heterogeneous bubble size
distribution between 100 um and 1500 um [31]. The recovery efficiency increases if the size
of the bubbles is of the order of the algal cell size [32]. Smaller bubble sizes can be achieved
in DAF, where part of the medium or water is supersaturated with air under pressure (around
400 kPa) and re-introduced into the flotation cell [29]. Due to the pressure drop, excess air is
released in the form of microbubbles of 10 um—100 pm [23]. Other gases such as CO, [33] or
ozone [36, 37] can also be introduced. In electroflotation; the microbubbles are produced by
water hydrolysis [8]. This technique is often used in combination with flocculation employing
coagulants [35] or electro-coagulation [36], where algal flocs are formed by charge
neutralization. The application of metal electrodes can introduce contaminating metal ions; this

is prevented by employing non-sacrificial carbon electrodes [37].

Other flotation approaches aim to attach the cells to carrier particles instead of utilizing air
bubbles. The particle-cell-aggregates which form can be separated either by buoyancy [38] or,
in the case of magnetic carrier particles, in magnetic field gradients [39-41]. Independently of
the flotation technique, the zeta potential of the algal surface is an important parameter since
it influences the interaction both between the algal cells themselves and between the algal
cells and gas bubbles during attachment. Despite several empirical studies on microalgae
flotation [42—45], there is only little information on the cellular zeta potential ¢ in different
medium conditions. Under physiological growth conditions (pH 4—8), microalgal cells exhibit a
negative zeta potential ¢, predominately caused by dissociated carboxylic groups (—~COOH) at
the cell surface [12]. A highly negative zeta potential indicates that the algal cells are stably
dispersed in the surrounding medium, counteracting attachment at the bubble surface [46].
Two strategies can be pursued to modify C: (1) adjusting the environmental conditions (pH, salt
concentration) to reach the isoelectric point (¢ = 0) or (2) adding cationic surfactants which

adsorb at the algal surface and facilitate cell-bubble interactions. Such surfactants (also called
6
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collectors in the flotation process) compensate for the negative algal surface charge and make

the algal surface more hydrophobic due to their long hydrocarbon chains [47].

Classically, polyvalent metal ions and synthetic surfactants such as cetyl trimethylammonium
bromide (CTAB) are introduced as coagulation and flotation agents [46, 48-50]. Such
contaminants are undesired in the efficient, economic production of high-value algal
metabolites, which requires non-toxic, biocompatible substances added in low amounts.
However, previous studies which added biomolecules such as tea saponin or chitosan to
promote algae flotation yielded poorer results compared to synthetic surfactants [48], or used

biological substances in addition to synthetic surfactants [49].

Hence, biocompatible approaches to adjust the cellular surface properties for the flotation
process need to be studied in more detail. For that purpose, Chlorella vulgaris is used as a
model algal system in physiological growth conditions. Zeta potential measurements and
corresponding flotation experiments in a DiAF column are performed with concentration series
of different additives. First, the feasibility is tested of obtaining floatable cells solely by pH
variation. Then, chitosan is used (being a biocompatible additive which has already proved
effective as an algae flocculant) and compared to the performance of CTAB as a reference
synthetic collector. Finally, particle sizing and surface tension measurements of suspensions
with chitosan-algae complexes reveal the important effects which the bio-collector has on the

flotation process.

2. Materials and Methods

2.1 Strain and culture conditions

Chlorella vulgaris 211-11b was obtained from the Algae Culture Collection at Géttingen
University (Gottingen, Germany). The microalgae cultures were initially grown at 26°C
(Mytron, Heilbad Heiligenstadt, Germany), at light/dark cycles of 16/8 hours, 180 rpm and a
photon flux density (PFD) of 20 umol m=2 s~' fluorescent white light in 300 mL shake flasks

(Schott Duran unbaffled, Wertheim, Germany) containing 100 mL of a BM medium of the
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following composition: 1.5 g L=" NaNO3, 0.5 g L™" K;HPO,4, 1.0 g L™" K,SO,, 1.0 g L™ NaCl,
0.2 g L™* MgSO,7H,0, 0.04 g L' CaCl,-2H,0 and 100 yL L' Hutner’s trace elements. All
medium components were obtained from Carl Roth. The cultures were incubated for 100
hours before studying the zeta potential of microalgal cells under varying conditions (see
Section 2.3). Lab-scale cultivation was performed in a 1.5 L bubble column which was
inoculated with a 7-day-old shake flask culture to obtain an initial optical density at 750 nm
(ODy750) of 0.1 (BM medium). The process conditions were adjusted to 25 °C + 2 °C, an initial
PFD of 200 umol m=2 s~ fluorescent white light and an aeration rate of 25 L h™" (dry air). The

cultivations were performed as two biological replicates.
2.2 Correlation of optical density and cell concentration

A culture of Chlorella vulgaris 211-11b was diluted with 0.9% NaCl solution in series to obtain
OD-5o values between 0.05 and 3.8. The samples were analysed by a Cube8 flow cytometer
(Sysmex GmbH, Minster, Germany). During hydrodynamic focusing, the cells are excited by
a 20 mW solid-state laser (488 nm). The red autofluorescence of chlorophyll (FL3 channel,
675/50 nm band pass) was used as a trigger parameter. The number of C.vulgaris 211-11b
cells in a sample volume of 200 puL was counted on a forward scatter (FSC) chlorophyll
fluorescence (FL3) dot plot using the ‘volumetric counting with electrodes’ protocol. The cell
concentration cy [cells mL™"] followed a linear correlation on OD-sq in line with Equation 1 (R?

= 0.99, three technical replicates):

Cell concentration cy [cells mL ™1 =5 % 107 * 0D59 — 8,4 * 10° (1)

2.3 Analysis of zeta potential

In flotation, the zeta potential {'is an important parameter to characterize the surface properties
of the particles (algae) since it is determined by the surface charge of the particles and by the
adsorbed matter at the particle surface. The counterions in the diffuse layer around the

particles balance the charged species at the particle surface. They are not equally distributed
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in the surrounding fluid but are subjected to electrostatic attraction to the particle surface and
Brownian motion, resulting in a distribution according to the Poisson-Boltzmann equation [51].
The charge separation in a surface layer and a diffuse layer (electric double layer) leads to an
electric potential. The zeta potential is defined as the potential in a position near the surface
where the counterions in the diffuse layer are sheared off by a relative motion of the particle to
the surrounding fluid. It is frequently used to approximate the surface potential of the particle.
The zeta potential of the microalgal cells is measured by Phase Analysis Light Scattering
(NanoBrook 90Plus PALS, Brookhaven Instruments Corp., Holtsville, NY). This technique
detects the phase shift of the light which is scattered by the particles (algae) moving in an
applied electric field. From this phase shift, the electrophoretic mobility u is obtained. Hence,

the zeta potential ¢ can be determined via the Smoluchowski equation [51]:
- (2)
=2

with the medium viscosity n and permittivity €. The Smoluchowski equation is valid for the limit
of very thin double layers ka>>1 in comparison to the particle radius a, where the Debye-
Huckel parameter k characterizes the inverse double layer thickness. Since the algal samples
introduce a considerable ionic strength (i.e. 1/k is small) and the cells are typically in the ym
range (i.e. a is large), Equation 2 is applicable. Due to the high sensitivity of Phase Analysis
Light Scattering (PALS), reliable measurements are possible even for low zeta potential values

and high salt concentrations in the surrounding medium.

2.3.1 Zeta potential at varying pH values

Before conducting the PALS measurement, the cell concentration was adjusted to an OD5, of
0.05 (= 1.66 * 106 cells mL~") using BM medium. By adding 1 M HCI, the pH of the samples
was adjusted to the desired value in the range of pH 1.0 to 7.0 with three technical replicates.
Zeta potential measurements were performed in each condition as seven measurement

replicates to achieve a reliable data basis for ¢ values.
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2.3.2 Preparation of surfactant solutions

The cationic surfactant cetyltrimethylammonium bromide (CTAB, Carl Roth, Karlsruhe,
Germany) stock solution was prepared by dissolving 0.1 g CTAB in 20 ml deionized water. The
chitosan solution was prepared by dissolving 0.1 g of chitosan (ACROS Organics, New Jersey,
USA) in 10 ml of 1 vol% acetic acid [44]. Zeta potential measurements were performed as in

Section 2.3.1.

2.4 Flotation experiments

A laboratory-scale dispersed-air flotation column was made from polymethylmethacrylate
(PMMA) with a working volume of 28 mL and a sintered air-stone at the bottom to release
macroscopic gas bubbles (see Graphical Abstract). A foam collector was attached at the top
of the flotation column. Before flotation, the microalgal suspension was diluted with BM
medium to an OD.59 of 0.8 (= 3.9 * 107 cells mL™") to obtain comparable initial conditions
between different runs. Subsequently, either HCI (pH variations) or surfactant solution (CTAB
or chitosan) was added to the cell suspension. The flotation was performed for 180 seconds
at 20 L h™" aeration (dry air, DASGIP 4/4, Eppendorf, Hamburg). The depleted suspension in
the DIiAF flotation column was examined using photometric measurements at 750 nm (helios
B, Thermo Fisher Scientific GmbH, Dreieich, Germany) to calculate the recovery R [52]

expressed by Equation 3:

Cxo—Cx
R =——+100 [%] ®)

X0

Here, cxo and cx represent the cell concentration in the pulp before and after flotation,

respectively. All flotation experiments were performed in triplicate technical runs.

2.5 Laser diffraction measurements for size distribution

To characterize the flocculating effect of chitosan, changes in the particle size distribution of
the algal cells were monitored with laser diffraction measurements (Helos, Sympatec GmbH,
Clausthal-Zellerfeld, Germany). First, the particle size distribution of the native algal cells was

determined. Then, a chitosan concentration of 18 mg L™" was adjusted in the algal suspension
10



591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

by adding the appropriate amount of chitosan stock solution under continuous stirring. The
samples were diluted for the laser diffraction measurements using a BM medium with the same
chitosan concentration. Each laser diffraction measurement was repeated in two technical

replicates.

2.6 Adsorption at air-water interface

The adsorption of surface-active matter at the air-water interface was determined by profile
analysis tensiometry (PAT1M, SINTERFACE Technologies e.K., Berlin, Germany). This
measurement involves a pendant drop of the respective liquid sample being created at the tip
of a capillary. The droplet shape is recorded over time via a camera. Under quiescent
conditions, the droplet shape corresponds to a Young-Laplace profile [53]. This profile is
determined by the interaction between the surface tension tending to make the drop
spherical and deformation by gravity. With the density and the volume of the liquid, the
surface tension at every time step can be calculated by fitting the droplet shape to the
Young-Laplace profile, yielding the dynamic surface tension curve. Before each
measurement, the surface tension of deionized water was checked as a reference to verify

the absence of impurities in the capillary and dosing system of the PAT1M device.

3. Results and discussion

3.1 Zeta potential

3.1.1 Zeta potential depending on medium conditions

Figure 1A presents the effect of varying pHs on the zeta potential of C. vulgaris SAG 211-11b
either suspended in BM medium or deionized water. Under physiological pH conditions (pH 4—
7), the zeta potential of C. vulgaris SAG 211-11b reached values of —22.4 +/-0.45 mV and
-30.1 +/-0.6 mV in modified BM or deionized water, respectively. This is in accordance with
studies by Kurniawati et al. [54] and Ozkan et al. [42], who measured { = —-30.3 mV (C. vulgaris
from a Taiwan shrimp pond, probably within deionized water, pH 6.89, Malvern Zetasizer 2000)

and ¢ = -23.3 mV (C. vulgaris UTEX 2714, BG-11 medium, pH 7.42, ZetaCompact).

11
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At pH 4-7, |C| was lower under BM conditions compared to deionized water, as is generally
the case at higher ionic strengths of an indifferent electrolyte due to the increasing adsorption
of counter-ions caused by electrostatic attraction and compression of the diffuse layer. When
the pH was lowered from 3.5 to 1, both curves coincided while approaching the isoelectric point
(IEP). This indicates that protonation of the carboxylate groups exceeded the impact of
medium components and became the predominant factor influencing the zeta potential of

suspended C. vulgaris SAG 211-11b cells.

At pH 1.0, the cellular zeta potential amounted to —4.29 mV in both media, which is close to
the IEP. Nevertheless, IEP (¢ = 0) was not fully reached by adjusting the pH in the range of

1.0—7.0 for both deionized water and BM.

51 5 1 r 7Te+7
A B
______________________________________ ]
0 0 I Be+7
5 i O Modified BM medium 5 O Zeta potential (mV] &3
= 7 ® Deionized water = - ®  Cell concentration [mL "] i | 5e+7 =
E a E E
5 -10 1 0 =
@ eXe] w ] Fde+7 =
€ -15 S E 15 £
% & ° ] F3e+7 &
a i Q
S 20 i 53 S 20 4 i o & 5 =
ko ?%a o s T g Q L 2647 =
N .25 - (] N 25 3
]
-30 4 = - ° -30 = Tors
-35 ™ T ™ ™ T T J -35 T T T T T T T 0
0 1 2 3 4 5 6 7 8 0 1 pod 3 4 5 6 7
pH value [-] Time [d]

Figure 1: (A) Zeta potential measurements of C. vulgaris SAG 211-11b subjected to pH variation
ranging from 1.0 to 7.0 in deionized water and BM medium. Error bars represent standard variations in
seven independent measurements; (B) Zeta potential measurements of C. vulgaris SAG 211-11b during
batch-mode growth in a 1.5 L bubble column. Error bars represent standard deviations of two biological
replicas (cell concentration) and seven independent technical measurements thereof (zeta potential).

To the best of our knowledge, this is the first comprehensive study presenting data on the
microalga zeta potential of C. vulgaris in growth medium conditions in a wide physiological pH
range. In the literature, either model media were employed or only selective zeta potential
measurements for a fixed pH value were performed in growth media (see Table 1). Hadjoudja
et al. [55] analysed the zeta potential ¢ of C. vulgaris CCAP1110/4 at pH 2.0-8.0. Prior to the
measurement, the cells were washed and resolved in a 0.1 M sodium nitrate solution by the

authors. Under these model conditions, Hadjoudja et al. detected an isoelectric point ({ = 0) at

12
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pH 2.9. A Czech group tested the zeta potential of C. vulgaris Beijerinck strain P12 in model
environments (10 mM KCI, pH 2-12) and found that C. vulgaris maintains a negative zeta
potential subjected to pH values ranging from 4.0-12.0; yielding an isoelectric point at pH 2.0.
Indeed, defined parameter variations in model media provide a fundamental understanding for
the mechanisms influencing the algal surface properties. The technological flotation process
however aims to harvest the algal biomass directly by adjusting conditions in the growth
medium. Whereas, the qualitative trend (increasing ¢ with decreasing pH) agrees between
different studies, concrete values significantly differ depending on additional medium
components. Since the recovery is sensitive to such moderate variations (see later in Sec.

3.3), measurements under technological conditions are indispensable.

3.1.2 Zeta potential dependent on cultivation time during bubble column

cultivation

Various parameters such as the cell wall composition or the secretion of extracellular polymeric
substances change during the different growth phases of algal cells, which affects the
operational efficiency in flocculation and flotation. The zeta potential measurements in this
section aim to provide defined conditions regarding the physiological state of the cells (i.e. the
age of the culture) rather than to identify the underlying biological mechanisms which affect
the algal surface properties during the cultivation time. Therefore, C. vulgaris 211-11b were
grown in photoautotrophic batch mode (1.5 L bubble column) in a BM medium and analysed
at specific cultivation times. As shown in Figure 1B, an increasing cell concentration during
photoautotrophic cultivation (0—7 days) did not show any significant effect on the zeta potential
yielding stable ¢ values of —21.3 + 1.2 mV. Based on these results, all DIAF studies were
performed with 5-day-old cultures at a cell concentration of approx. 3.9 * 107 cells mL™". As
reported in other studies, the physiological state of the cells can actually have a significant
impact on the surface properties [50, 56], in turn influencing flotation or flocculation efficiency.
The dependence on the growth state may differ with the type of microorganism [50, 57],

therefore two specific examples are given in the following. Matter et al. [45] analysed the

13
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influence of the pH (6-10), cell concentration and chitosan dose on the bioflocculation
efficiency of Scenedesmus obliquus at different growth states. They concluded that stationary
growing cells (> 15-day-old cultures) under moderate pH conditions showed facilitated
flocculation behaviour compared to late-exponentially growing cells (< 10-day-old cultures).
The cultivation time not only influences the physiological state of the cells, but also the cell
concentration. In the study by Matter et al., higher cell concentrations could be correlated to
higher flocculation efficiency. Similar observations were presented by Maiji et al. [57] who
tested the flocculation behaviour of C. vulgaris, S. obliquus and Chlorococcum sp. at varying
pHs (pH 3.5-12) and biomass concentrations. This is in line with the fact that increasing cell
concentration leads to lower mean distance between the cells and higher collision probability
which are factors promoting flocculation. As indicated by the constant cellular zeta potential in
Figure 1B C. vulgaris 211-11b, the cells used in this study (5-day-old cultures) are still under
optimum physiological conditions and not suffering from any medium component limitations.

This allows neglecting the effect of different growth phases in the following results.

3.1.3 Zeta potential dependent on CTAB and chitosan dose

This section compares the usage of the cationic surfactant CTAB as a classical synthetic
collector and the cationic biopolymer chitosan to change the zeta potential of C. vulgaris SAG
211-11b. Figure 2A shows the zeta potential in presence of varying CTAB concentrations
ranging from 7.5 mg L' to 100 mg L='. A noticeable impact of CTAB on ¢ was detected at
30 mg L' yielding ¢ = —9.86 mV. By further increasing the CTAB concentration up to 100 mg
L', a neutralization of the zeta potential was obtained with an optimum lower dosage of 50 mg
L-'. These results are comparable with flotation studies by Kurniawati et al. [54], Wen et al.
[46] and Alkarawi et al. [58], who reported recoveries of >90 % using CTAB concentrations of

60 mg L', 50 mg L-" and 35 mg L™, respectively.
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Figure 2: Zeta potential of C. vulgaris SAG 211-1b at the presence of the collectors (A) CTAB at 7.5—
100 mg L' and (B) chitosan at 4-25 mg L~'. Error bars represent standard deviation of seven
measurement replicates.

Figure 2B shows the zeta potential which was obtained at 4-25 mg L' chitosan. Compared to
the surfactant CTAB (50 mg L"), using the biopolymer chitosan (15 mg L™") reduced the dose
needed to approach the isoelectric point of microalgal cells by a factor of 3.3. The polycation
chitosan is able to interact very efficiently with the negatively charged functional groups (amide
and carboxylic groups) on the cell surface [59, 60]. Rashid et al. [15] examined different acidic
solutions of chitosan as flocculants and found the maximum separation efficiency using HCI-
dissolved chitosan to occur at 30 mg L=". The authors reported an IEP of C. vulgaris UTEX
0000265 at comparably high chitosan concentrations of > 100 mg L. This effect might be due
to the experimental conditions (dead cells in the stationary phase at pH 8.7) which differed
significantly from this work. In a further study by Low & Lau [61], an optimum dose of 30—40 mg
chitosan per g biomass was applied at pH 7.6-7.8 to flocculate 8—10-week-old C. vulgaris
cultures. Even if the exact chitosan dose is not directly comparable to the results of the present
work due to the difference in experimental conditions, these studies underline the potential of
chitosan to adjust the algal surface properties. A further important finding of the measurements
in Figure 2B concerns the evolution at the highest chitosan concentrations. Above 20 mg L,
the zeta potential becomes positive and increases in magnitude again after crossing IEP. The

next section shows that this strongly affects the performance of the flotation process.

3.2 Flotation experiments
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3.2.1 Flotation experiments at varying pH

In order to validate the results of varying pHs on the zeta potential of C. vulgaris 211-11b,
flotation experiments were performed under corresponding medium conditions using a model
DiAF bubble column (Fig. 3). After 5 days of photoautotrophic growth, the cell suspension was
transferred to the DIAF column (see Graphical Abstract). Except for the adjustment of the pH
to the desired value, no further collector was added to the algal suspension. Due to the strongly
negative zeta potential of { <—20 mV at pH 6.8—4.0, less than 1 % of cells were recovered from
the original cell suspension. The recovery R of cells increased with stronger acidity at pH 3,
pH 2.5 and pH 2.0t0 21.0 £ 1.4 %, 35.0 £ 1.3 % and 60.4 + 0.9 %, respectively. This agrees
with the stepwise reduction of the cellular surface charge resulting in an increase in bubble-
cell-interactions. Although IEP was not fully reached at pH 1.0 and pH 1.5, yielding zeta
potentials |{| of lower than 7 mV, a recovery R of > 95% was obtained in this study. Similar
results on this critical lower boundary of ||, which has to be passed to achieve efficient
harvesting, were obtained by Henderson et al. [43], who reported an optimum flotation
performance for C. vulgaris 211/11B at ¢ values between -8 mV and +2 mV. Indeed, the
efficiency of flotation is affected by multiple factors, e.g. the particle and bubble size,
hydrodynamic conditions and surface properties of particles and bubbles. Changing a process
parameter such as the pH can influence several of those factors. For example, in addition to
the algal surface properties, the surface properties of the bubbles are also expected to vary.
This section indicates that in principle, it is possible to obtain a floatable algal suspension
purely by pH variation without any additional collector. However, the adjustment of extreme pH
values lower than 1.5 may not be suitable as a first dewatering step in industrial processes.
Thus, we further focus on the more practicable case of flotation with chitosan as a bio-
compatible collector and complement the flotation experiments with further measurements to

understand the mechanisms responsible for the recovery trends for this system.
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Figure 3: Recovery of microalgal cells (grey bars) in a 28 mL dispersed-air flotation column and
corresponding zeta potential values (non-filled circles) from Figure 1A and Figure 2B, respectively,
varying the pH conditions for (A) and varying the chitosan dose for (B). Error bars represent standard
deviation of three independent flotation experiments.

3.2.2 Flotation experiments at varying chitosan concentrations

Flotation experiments were performed at selected chitosan concentrations (4—20 mg L),
resulting in negative ¢ (4 mg L"), neutral ¢ (10-18 mg L") and positive ¢ (20 mg L™"). Figure
3B shows the zeta potential and corresponding recovery rates of cells from the suspension. A
constant, high recovery of R > 94 % was obtained at -3.5 mV > { < 0.66 mV. If the cellular
zeta potential was above or below this range, the recovery rate dropped significantly.
Kurniawati and co-workers [54] analysed the combined use of the bio-collectors chitosan and
saponin (to initiate flocculation and flotation) and achieved separation efficiencies of > 93 % at
20 mg L' saponin and 5 mg L™ chitosan, respectively. Another study [49] employs 10 mg L™’
chitosan and 20 mg L' SDS, yielding R > 90%. The experiments in the present study show
that the sole addition of chitosan is sufficient to obtain comparable recovery rates in algae
flotation. Since the recovery remains high in the range from 10-18 mg L™, the process can be
expected to run stably for moderate variations in the collector concentration. The same aspect
applies to variations in the cell concentration, which determines the consumption of collector

molecules.
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3.3 Underlying mechanisms for dispersed-air flotation of C. vulgaris using

chitosan as bio-collector

The upper limit of the chitosan concentration range with a high recovery R (18 mg L") was
chosen to provide the most robust conditions for the surface tension and particle size
measurement. Prior to this, the native algal suspension with no added chitosan was
characterized. According to the dynamic surface tension measurements, shown in Figure 4A,
the algal suspension shows negligible surface activity. If 18 mg L' chitosan is added to the
medium without algae, the surface tension decreases with time as more and more chitosan
molecules are adsorbed at the interface. After around 4000 s, the surface tension reaches a
value of 58 mN m~'. The chitosan-algae complexes first show no noticeable deviation from the
native algal suspension. After this induction period of approx. 1500 s, the surface tension
decreases to 53 mN m~" at around 4000 s, which is even lower than in the case of a medium
supplemented with chitosan. This indicates that the chitosan-algae complexes have a high
tendency to adsorb at the gas-liquid interface in comparison to native algae or the pure
chitosan solution, since their neutralized charge makes them more hydrophobic. The existence
of an induction period is a known phenomenon for the adsorption of large-size surface-active
matter [62]. In addition to the extremely slow diffusion, multi-step adsorption processes and
the existence of adsorption barriers, e.g. due to electrostatic interaction, can lead to such
adsorption dynamics. However, profile analysis tensiometry employs a quiescent system,
whereas convective mixing leads to considerably faster adsorption [63]. Through the flow field
around the rising bubbles in our flotation column, adsorption occurs within the residence time

of the bubbles.

The results of the particle size measurements are plotted in Figure 4B as the cumulative
function of the volume weighted size distribution Q3(x). This quantity describes the particle
mass fraction, which is smaller than the respective particle size x. Similarly, 1-Q3(x)
corresponds to the particle mass fraction which is larger than x. Without chitosan, the algal

cells are typically a few micrometres in size, which corresponds to microscopic observations.
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Between 6 and 10 um, Q3(x) reaches a small plateau, i.e. the fraction of algal cells in this size
range is low. Roughly 20% of the algal mass is larger than 10 ym, which can probably be
ascribed to a minor degree of self-agglomeration. With 18 mg L™ chitosan, 85 % of the algal
mass is larger than 10 um and 50 % is still larger than 60 um. This flocculating effect of
chitosan shifts the particle size towards the floatable particle size range between 20 and
150 um [64]. Finer particles follow the streamlines around the rising bubbles without bubble-
particle collision, because of their low inertia [65]. For the algal flocs, the collision probability

increases, while their detachment rate in a shear flow is still low, leading to an improved

recovery.
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Figure 4: (A) Dynamic surface tension of microalgal cell suspension in BM medium, in BM medium
with 18 mg L' chitosan, and chitosan solution in BM medium without algae, (B) Cumulative function of
the volume weighted size distribution for microalgal cells in BM medium and in BM medium with 18 mg
L~ chitosan. Data are shown as single measurements, representing a representative course.

4. Conclusion

Due to their flexibility, easy construction [31], and scalability for high-throughput applications,
harvesting approaches using flotation are of particular interest to dewater microalgal biomass
in an energy- and cost-efficient first step [54]. To gain reliable data on the zeta potential of
microalgal cells at changing process conditions, both physico-chemical parameters of the cell
environment (pH and ionic strength of the medium) and biological parameters (cell state of the
culture) must be considered. Our results confirmed that a characterization of algal surface
properties is advisable for new process routes due to the dependence on the medium
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composition and pH, which may change for different cultivation procedures. In strongly acidic
conditions, floatable algal cells were obtained even without using additional collector
substances. For physiological pH conditions, which are more practicable in technological
processes, the biopolymer chitosan proved to be an effective collector, which adsorbs at the
oppositely charged algal surface. Only a 3.3-fold lower application dose (15 mg L") was
necessary for chitosan, compared to the classical synthetic collector CTAB (50 mg L™"). This
study showed a striking correlation between the recovery R and the isoelectric point IEP (C =
0 mV) of the algal suspension. Under this condition, cell-bubble interactions during flotation
are enhanced. Our tensiometry and particle size measurements reveal the main operating
principles of chitosan during this process: increasing surface activity along with flocculation of
algal cells. The collision probability rises with larger particle sizes, according to the flocculation
tendency at the isoelectric point. Furthermore, the attachment of the algal cells to the air
bubbles is facilitated due to the increasing hydrophobicity with a reduced surface charge.
Chitosan’s properties, i.e. biodegradability, non-toxicity, and its high cationic charge, make it
highly suitable for adjusting the cellular zeta potential of microalgae even for medical,
nutritional, and functional food applications. Moreover, it can be produced sustainably by
isolating it from fungi or by processing chitin. For the employed experimental conditions, a
recovery R = 95% corresponds to a concentration factor of 5.3. Increasing this target value
requires the foam properties (stability, wetness) and flotation cell design to be optimised:
important steps for future work to make the process efficient at a technological scale. Our
results already carry an immediate practical implication for the operation of such flotation cells.
To a certain extent, the process is robust against variations in the chitosan dose. However, the
principle “a lot helps a lot” should be treated with caution. Exceeding the optimum
concentration range is not only connected to higher operational costs due to the chitosan

consumption, but also leads to a less effective flotation process.
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