
www.hifis.net

Solutions for the Ages - A Short Crash Course on 
Sustainable Software Development

Tobias Huste
HIFIS, Helmholtz-Zentrum Dresden – Rossendorf

2021-04-29, International Virtual COVID-data-Challenge



www.hifis.net 1

How It Should Not Look Like

Comic taken from https://abstrusegoose.com/432. 

This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 United States License.

https://abstrusegoose.com/432
http://creativecommons.org/licenses/by-nc/3.0/us/


www.hifis.net 2

6 Steps to Make Your Code Ready For Publication

Talk built upon the HIFIS course Let us make your script ready for publication. (CC-BY-4.0)

https://gitlab.com/hifis/hifis-workshops/make-your-code-ready-for-publication/workshop-materials

Make your code citable

Mark the stable version of your code

Add a license

Add essential documentation

Make sure that your code is in a sharable state

Put your code under version control

https://creativecommons.org/licenses/by/4.0/
https://gitlab.com/hifis/hifis-workshops/make-your-code-ready-for-publication/workshop-materials


www.hifis.net 3

Step 1

Put Your Code Under Version Control

• Sharing and collaborating.

• Being able to go back to a specific state at any time.

Why?

• Bare Minimum: Use a local Git repository (git init).

• Collaboration platforms like GitLab or GitHub.

Where?

• Everything that is required to create a usable version of your code and to produce 
the intended results.

• Typically avoid adding generated artifacts (Keyword: .gitignore).

What?



www.hifis.net 4

Step 2

Make Sure That Your Code Is In a Sharable State

• Otherwise, others are not able to use your code.

• You might accidentally share things you do not want to share.

Why?

• Code can be run outside your organization.

• Create a suitable directory structure and structure code in suitable 
building blocks.

• Apply to community of practice in your programming language, domain, 
etc.

• Clarify your dependencies.

• Do not share secrets!

General Requirements



www.hifis.net 5

Step 2

Make Sure That Your Code Is In a Sharable State

• Standard style guide: PEP8

• Multiple formatters and linters exist

• Black

• Flake8

• Pylint

• Integrate into your CI pipeline

• Structure your Python project

• "Hitchhiker’s Guide" to "Structuring 

Your Project“

• "Application Layout" reference

• Poetry – Useful for dependency mgmt.

Understandable Code:

• Consistent code style.

• Use meaningful and consistent 

names.

• Do not over-comment; but comment 

clever tricks or the big picture.

• Experiment with light-weight code 

reviews.

https://www.python.org/dev/peps/pep-0008/
https://github.com/psf/black
https://github.com/PyCQA/flake8
https://www.pylint.org/
https://docs.python-guide.org/writing/structure/
https://realpython.com/python-application-layouts/
https://python-poetry.org/


www.hifis.net 6

Step 3

Add Essential Documentation

• Otherwise, potential users do not want to use or do not know how to use your software.

• Otherwise, potential contributors do not know how to provide their contributions in an 
efficient manner.

Why?

• README: The front page of your code. Should be created in any case!

• Other typical documentation files:

• CONTRIBUTING,

• CODE_OF_CONDUCT,

• LICENSE file or LICENSES folder,

• CHANGELOG,

• CITATION.

Typical Documentation Files



www.hifis.net 7

Step 3

Add Essential Documentation

• Use markup languages: Markdown, Asciidoc, RestructuredText.

• Typical minimal README structure.

• Typically required documentation for Open Source.

• GitHub's community profiles

• Open Source Guides

• For 

• Use Sphinx to generate professional documentation.

• Use docstrings to document your Python objects, …

Documentation as Code

“Code and documentation, created and maintained equally.”

https://github.com/RichardLitt/standard-readme
https://help.github.com/en/github/building-a-strong-community/about-community-profiles-for-public-repositories
https://opensource.guide/
https://www.sphinx-doc.org/en/master/


www.hifis.net 8

Step 4

Add a License

• Potential users cannot (re-)use your software from the legal point
of view.

Why?

• Software is protected by Copyright.

• Copyright holder has certain exclusive rights: Usage, creation of 
copies, distribution, creation of derivative works.

• Copyright gives other persons no rights, unless the copyright 
holder explicitly grants them.

Copyright



www.hifis.net 9

Step 4

Add a License

Software licenses are a way for a copyright holder to grant rights to 

other persons or legal entities.

• A software license grants certain rights (e.g., use, copy, distribute) and 

demands certain obligations (e.g., disclosure of source code under a certain 

license, constraints concerning the distribution, attribution).

• Every software that you use has to be covered by a license.

1. Choose a license.

2. Ask your boss for permission to share your software.

3. Prepare your code.

https://choosealicense.com/
https://reuse.software/


www.hifis.net 10

Step 5

Mark the Stable Version of Your Code

• Otherwise users do not know which version is considered stable.

• Otherwise users do not exactly know which version has been used to 
produce a specific result.

Why?

• A release is a stable version of your software.

• The release number uniquely identifies the released software version.

• The release tag marks the release content in the source code repository.

• The Changelog documents all released versions.

Release Basics



www.hifis.net 11

Step 5

Mark the Stable Version of Your Code

Minimal Release Checklist

• Define which release number scheme you want to use.

• Semantic Versioning

• Calendar Versioning

• Define how release tags are named.

1. Prepare your code for release.

• Test your code on the basis of the package you provide to your users.

• Define the release number.

• Document user-visible changes in your Changelog.

2. Create a release tag.

• Use a tag to mark the version in the repository.

https://semver.org/
https://calver.org/
https://git-scm.com/book/en/v2/Git-Basics-Tagging


www.hifis.net 12

Step 6

Make Your Code Citable

• Software is a research product, just like a paper or a monograph.

• Creating and maintaining research software is academic work and 
should allow for academic credit and careers.

• Citing software is an important part of the provenance of research 
results and enables reproducibility.

Why?

• Cite all software packages (also your own) in the reference list of 
academic work.

• Follow guidelines.

How to cite software?

https://cite.research-software.org/researchers/


www.hifis.net 13

Step 6

Make Your Code Citable

• Allow others to easily cite your software, by

• Providing citation metadata,

• Obtaining a persistent identifier (PID), 

• Providing a citation hint.

• Two practical solutions

1. Deposit software in a digital repository. (See https://zenodo.org)

2. Publish software on a public code hosting platform, add citation metadata 

and use the Software Heritage PID for reference.

• In addition, consider writing a software paper. Consider the Journal of Open 

Source Software.

https://zenodo.org/
https://www.softwareheritage.org/
https://joss.theoj.org/


www.hifis.net 14

HIFIS For You

Helmholtz Cloud

https://cloud.helmholtz.de

Education & Training

https://software.hifis.net/events

Consulting

https://software.hifis.net/services/consulting

Helmholtz GitLab

https://gitlab.hzdr.de

Beta

https://cloud.helmholtz.de/
https://software.hifis.net/events
https://software.hifis.net/services/consulting
https://gitlab.hzdr.de/

