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Abstract  

The mixing of the doorway components of a giant resonance due to the interac- 
tion via the common decay channels influences significantly the distribution of the 
multipole strength and the energy spectrum of the decay products of thc giant res- 
onance. The photoemission turns out to be most sensitive to the overlapping of the 
doorway states. At high excitation energies, the interferencc bctwecn t he doorway 
states leads to a restructuring towards lower energies and apparent quenching of thc 
dipole strength. 



1 Introduction 
In [I] we investigated analytically as well as numerically the interference of the doorway 
components of a giant resonance. The main result is the follotving: In the energy domain 
of a giant resonance, the interplay of two different types of collectivity inherent in the 
underlying doorway resonance states plays an important role. According to their origin, 
they are called internal and external collectivity, respectively. The role of the external 
collectivity becomes especially important when two or more doorway components of the 
giant resonance overlap. The interference between these states gives rise to an appreciable 
redistribution of the dipole strength and shifts it towards lower energies. 

In this paper, we study the cross section pattern in order to see the consequences of the 
interplay of the ttvo types of collectivity in measurabble values. Of special interest are the 
transition strengths when the interaction via the energy continuum is strong. 

To this purpose, we describe in sects. 2 and 3 analytically the cross section pattern 
observed in different decay channels. The photoemission turns out to be especially sensitive 
to the degree of overlapping of the doorway states. In sect. 4, we discuss the interaction 
of the doorway states with the background states which leads to thc internal damping of 
the collective exitation. iVe show in sect. 5 some nurnerical results obtained in thc same 
model (without damping), but with the restrictions removed which werc introduced into 
t he analytical investigation. The numcrical calculatioris corifirm t he main Features of t he 
interference between the different typcs of doorway states as thcy follow from tlie analytical 
study. Finally, we summarize tlic rcsults in sect. 6 and draw some conclusions. Of interest 
is, above all, the apparent loss of the collective dipole strengt11 a t  high excitation encrgy. 

All symbols used in this paper are the same as in [I]. iVe cite to an equation in [l] by writ- 
ing its number in brackets with the upper index [I], e.g. (2.1)111 means cq. (2.1) in paper [I]. 

2 Transition Amplitudes and Partial Transition 
Strengths 

The matrix of the transition amplitudes is 

(see eqs. (4.1)i11 and (4.3)['1). To calculate it, one needs the Green's matrix 

(eq. (2.8)['1) describing the evolution of the intermediate unstable system excited in reac- 
tions. In the doorway basis the (k + 1) X (k + 1) block G~"'")(E) of this matrix is thc only 
one which really has to be calculated. The influence of the trapped states is included in the 
sclf-energy matrix which coritains the coupling between the doorway and trapped states. It 
manifests itself, as has already bcen mentioned in [I], in the fine structure variations of the 
transition amplitudes iri the energy region of the uriperturbed parental levels. Neglecting 
this fine structure, one reduces the problem to the calculation of the Green's matrix of the 
doorway cffcctive Harniltonian 



(eq. (5.23)L1]). We omit also the hermitian part of the coupling 

(eq. (5.26)[']) between the two types of doorway states as discussed in subsection 5.2 of [I]. 
Further transformations going in close analogy with those described below form& 

(4.13)11] lead to the following results: 

T ( ~ 0 1 1 )  E - EO + $in2@ ,(E) 
? ( E )  = D ( E )  D = D2 

11 ( E )  

where 
i E - eo - sin20 D2 

q c ( E ) )  (1: - 5 *C'( .@))  A ( E )  (2-7) 

and 

It is worthy noting that the collectivc parts of the transition amplitudes variish at the encrgy 

E~ = EO + sin20 . (2.9) 

The components of the transition vectors AC in the doorway bssis are defincd by cq. (5.10)[']. 
I The 2 X 2 collective block 

E - EO - cos20 D2  + W ( E )  sin0cosO D2 -Y sinOcosO D~ E - tlo - sin20 D~ 
(2.10) 

N E )  
with the function A ( E )  given by 

I1 

(eq. (5.40)['1) extends the formula 

1 
GCori(E) = E - E ~ - D ~ - ~ T _ I ~ ~  (2.12) 

E- II 

1 (eq. (4.14)['1) for the Green's function of the iritcrrial collcctivc vibratiori to thc considf9r!ltion 
l 1  

I 
of dccaying colIectise xnodcs. 

The arnplitudcs (2.8) src Sums of indepcridcnt Brcit-?Vigiler tcrlns arid coiitain tlicrii- 
selvcs no interfercnce cffects. I~idecd, all Ab, are real nnd, as one can easily check with tlie 



All interference effects are included in the collective part (2.7). In particular, the interference 
of the doorway resonances belonging to the two different types is described by the functions 

(eq. (5.39)[l]), and 

In the collective part (2.7) the dependence on the channel indices c ,  c' has the desirable 
factorized form but the factors are generally complex and energy dependent. Therefore, 
contrary to the case of isolated resonances, the locations of the rnaxima in the cross sections 
are not connected with the positions and the residues of the poles of the K-  or T-  matrices 
in any simple way. If however the collective resonances do not overlap too strongly all the 
functions q(E)  vary slowly within thc cnergy region of the maxirnum arising frorn the giant 
resonance state and can approxiniately be considered as somc cornplex constants. 

The rcsidues of the elastic reaction amplitudes are expressed in terms of thc co~nplex 
energies of the doorway resonanccs as 

In contrast to the simple real residues 

and 
2 

r = ( )  > (T = 1>2> ..., k) 

(eqs. (4.34)1'1, (4.35)f11) of the K-matrix, they are complex. They carry information, hidden 
in the quantities qC, on the transition vectors Ac of all the overlapping doorway states. 

The above formulae simplify appreciably if one neglects the coupling between the two 
types of doorway states. In such an approximatiori the energy dependence of the collectivc 
part 

of the strength 
1 

aC(E)  = -- ImTcc(E) = C T ~ ~ ~ ~ ( E )  + aC(E)  (2.20) 
7r 

of thc transition into a particular dccay channcl C turns out to havc thc same universal form 
as in the single-channel modcl of rcf. 121. This part rcvcals two cqually high ~naxima 



at the poles of the K-matrix 

(eq. (4.32)L1]). Between them, the transition strength (2.19) drops to Zero at the point 
E = E„ eq. (2.9). Therefore, the relative values of all KPW of the internal collective state 
with the energy E „ I ~  can be easily found as 

For any value of the mixing parameter X, these widths satisfy the sum rule 

The remaining part sin20 (Y) belongs to the collective statc at  thc criergy where the 
noncohcrent contribution aC(co) is also large. 

Thcrefore, the parameters of the K-matrix arc dircctly cxtracted fro~n the collcctivc 
part of the Cross sections ac in thc adopted two-lcvel approxirnation. Nevcrthcless, orily in 
the limit X « 2, when the collective states become isolated arid thc cquatioris 

(see (5.51)111) are valid, the quantity 

(see eqs. (4.34)['1, (3.7)111) coincides wi th  the branching ratio obtained from 

(see eq. (2.5)[']). For finite values of X the branching ratio differs also from the ratio 

where 

is the width 011 the half height OE thc right collective pezlic. Tlic aiiaiogoris widtli of tlic lcfl 
peak is equai to 



of both of them is however independent of the values of the parameters X and O and equal 
to the total width of both collective doorway resonances. 

In the Same two-level approximation, the residues (2.16) at the &dw=O,l can be 
presented in a very simple form 

( A Y ) ~  &r„ - Eiw' ResTCC(Edw) = - dw 
(7) Edw - Edw' ' 

Correspondingly, the TPW of the collective states look as 

Here the scattering phase of tlie resoriance $W takeri at the criergy of tlie rcsoriaricc dzu' is 
defined by the standard relatiori 

1 r d w  tan = - - 
2 - EdW 

These phases vanish when the resonances arc isolated. 'i'he last factor ori the r.1i.s. of cq. 
(2.33) is just thc niatrix elemcnt Ud, of tlic Bcll-Steiribergcr rioriorthogo~iality rnatrix 

(see eq. (2.30)[']). Using eqs. (5.43)['1- (5.45)i11, one can present the latter factor explicitly 
in terms of the mixing parameters O and X, 

In both lirniting cases, X < 2 and X » 2, this factor goes to  uriity. The factor is maximal 
in the intermediate regiori of X FS 2. In particular, for X = 2 

The quantity (2.37) becomes infinite for O = 2 as mentioned iri [I]. 
PIS has been shown in rcf. [3], thc eriergy spcctrum of thc dccay products of an arbitrary 

two-levei unstable system cari gcricrally bc cxpresscd in terms of thc cnergics and partial 
widths of the rcsonanccs and one additional real mixing pararnetcr which satisfies a surn 
rule following frorri tlie Bcll-Stcinbcrgcr rclatiori 



(eq. (2.29)[']). The situation is even simpler in our quasi single-channel case (see the remark 
below eq. (2.19)) where the latter parameter is easily found explicitly [3] as a function of 
only the complex resonance energies Eoti. The resulting expression is remarkably simple, 

This yields the relation 

between the values of the cross section at the resonance energies Ed, and its maximal 
value. One can easily convince oneself with the help of cqs. (5.44)111, (5.45)111 that both 
phases Sdwt(Edw) drop to Zero when X < 2 and the resonances are isolated. However, in 
the opposite case of X » 2 only the phase So(E1) of the narrow resonance is small. The 
other phase, &(Eo), belonging to the level with the large width (7) is close to r/2. The 
cross section (2.19) has a narrow dip at  the energy E = Etl of the state dzo = 0. In the 
limit of very large X the narrow state decouples and gets invisible in the particlc decw cross 
scctions. At the Same time, the interference of the sfate dw = 1 with the other doorway 
states becomes i~nportant. Then the decay cross scction pattern cari gencrally exhibit a 
more rich picture caused by the intcrference of the I; sirnilar doorway states. 

3 Photoemission 

The process of by the collective states turns out to be most sensitive to their 
interference. 'i'o take the electromagnetic radiation into account, one has only to add to the 
antihermitian part - i A A ~  -! CV of the effecttive IIamiltonian 31 (eq. (3.2)11]) the new 
term 

i 
Wer = -- Q,, DD* 

2 ( 3 4  
describing the radiation of the Same multipolarity as the internal coupling vector D. There- 
fore, the corresponding external coupling amplitude 

is proportional to this vector with the constant crel characterizing the strength of tlie elec- 
tromagnetic interaction. 

The elastic matrix cleme~it of tlie I<-matrix in the photo-channel is cqual to a,! P(&)  
(see eq. (4.8)111). The radiation KPW are therefore poportional to the dipolc stre~igtlis 

One can irnmediatcly see from 



(eq. (4.27)11]) that,  in the limit of small n, the internal collective state appropriates the 
main part of the total radiation width ae1D2. When n -+ 0, only the pole at the energy E~~~~ 

survives in the radiation I<-matrix element. 
Similarly, the photoelastic scattering amplitude can easily be obtained from the function 

P ( E ) .  One has to  substitute only D 2  by (1-S ae[) D 2  when calculating the collective Green's 
matrix (2.10). In our two-level approximation, this leads to the result 

1 
O( '~~) (E)  = - a.1 D' (y) X 

2n 

. . 

[ (E  - EO)(E - E~.~[) - ! aelD2 (7) sin2F)] + ! ( Y ) ~  [(I + aei/X)(E - EO) - siii2F) D ~ ] '  ' 
(3.6) 

For small values of the parameter X, the principal maximum of the photoemissio~i strength 
lies a t  the energy E„[[. Near this point the expression (3.6) reduces to the standard Breit- 
Wigrier formula -- 

I 1 'dw 
ac(E)  = oo - 

2~ ( E  - + ;r;„ G w  

(cq. (2.4)ii]) with 
= ae[ D 2 ,  rgT = (y) cos20 + ael D' ( 3 4  

dcscribirig the radiation from thc isolatcd giant resonance. The radiation brancliing ratio 
B('"~) decreases when the pararneter X grows. For large valucs of X tlie rnniii rnaxiiriurn 
is displaced to the point E = Eu where thc particle Cross scctions have tlic riiiriirriurri duc 
to  the riarrow collective state. The energy dependence is of tlie Breit-Wigiicr sliape again 
when the radiation and total widths become equal to 

This peak contains only the part sin20 of the total transition strength and is naturally 
ascribed to the collective state with the energy E. = + sin20 D 2  = Eu (see eq. (5.53)f11) 
which acquires the dipole strength f 0  = sin20, (eq. (5.54)111), due to the external intcraction. 
The  nucleon width of this state diminishes and the radiation branching ratio increases 
together with X. Thcrcfore, the radiation appears again as a narrow lirie near the centroid 
of the broad resonance visible only in the particle decay channels. The radiation from 
the broader collective resonance is suppressed and manifests itself only as a long low tail 
which stretchs towards higher energies. If X is very large the narrow line becomes the only 
manifestation of the giant rcsonance in the pho toemission. 

In the most interesting intermediate dornain of parameters a,[ < X < l/aer the photo- 
ernission strength is 

a e l  
dTad)(E) N -- Im P ( E )  . (3.10) 

2sr 
The intcrfcrencc of tlie radiation from the two rcsonariccs bccornes strorigcst when X N 2. 
The  frcquency spectrum of thc radiation is broad in this casc, its charactcristic width is - D2 and thc radiatiori ixitensity iri thc rnaxinlu~n is small. Gcnerally, thc shape of tfie 
spcctrurn is not Lorcrissian whcn X N 2. 



4 Spreading Width 

We now briefly discuss the role of the spreading width. As in [2], we suggest that the doorway 
states couple effectiveIy to Nbg Ndw compound states which lie in the energy domain of 
the GR and have no direct access to the continuum. We also assume that the coupling 
matrix elements Vhbg are random Gaussian variables mith Zero mean value. Then, in the 
limit Nb -t m the doorway Green's function changes as G(dw)(E) + c ( ~ ~ ) ( E  - A + $1) 
[2] where A and I'l are the energy shift and spreading width respectively. Neglecting their 
possible slow energy dependence in the whole domain of the GR, we can fully incorporate the 
hermitian shift A (which is in fact small due to statistical reasons) into the mean position 
EO. The only effect of the interaction mith the background states is then the additional 
shift of the poles of the transition amplitudes along the imaginary direction in the complex 
energy plane. Note that the integral sum rule 

(eq. (2. 36)f1]) survi ves the transformstions made. 
We will not preserit here tlie rather cumbcrsomc general expressions. Co~ifinirig oursclvcs 

for the sake of simplicity to the two-level approximatiori, tlic sliift considcrcd does not 
influence the relations (1>.45)['1- (5.49)['1 togethcr witli (5.44)L117 (5.45)f1]. We suggest furtlicr 
that the displacemcnt D 2  is smaller than both thc cscapc a ~ i d  spreading widths. Thcri, tlie 
transition strength corresponding to the particlc cniission iri a chanriel c acquires the 13rcit- 
Wigner shape with the centroid EgT = cos2 O D2 and the total width rgT = (y) + 17i. 

Thc cvolution of the y-strength a(Tad)(E), when the escape width (y) changcs froni vdiics 
smaller than I'l to  Iarger ones, is a~preciably richer. The strength transforms smoothly frorri 

for (y) « I'l to 

in the opposite limit (y) » rl. 111 the interrriediatc region, tlic rnaxirnum monotonously 
decreases and movcs towards lowcr energies. The shape of thc radiatiori spectruin is riot 
Lorentzian wheri both widths are of coinparable values, Eq. (4.3) i~nplies in particular thc 
loss of a n  appriciable part (= cos2 0 )  of tlie transition strcxigtli, sincc the coiitribiitiotl of 
the broader collective statc whicli is dcscribcd by a rigfit lorig tail in Fig. 3(d) (sec: riest 
section) is invisible in eq. (4.3). It is tvorthy notirig that the tvidth of tlie 7-spectrurn in our 
schcmatic model is aiways detcrrnincd rriairily by thc sprcadirig aidt'ti. The escape tvicltlt 
(7) drops out not only frorri cq. (4.2) biit also froni cq. (4.3). Tliis is dtic to tlic f ~ t  thnt 
the radiating statc bccoriics alniost trappcd, 

Thereforc, aI1 results obtaincd are valid only if thc spreading wiilth rl is nobiceably lcss 
than thc  escape width of ihc GR, In hot riuclci iri whicti tve ari: intcrcsted, tliis conditiori 
scenis t o  be fiilfilicd: ticcorcti~ig to cxpcrirricnkd data [ . I ,  51, ehe <:scapc widtli is growing 
witli cxcitatiori c~icrgy wlicrcas thc spri:atling tvidth süLiiratr~s. 



5 Nurnerical Results and Discussion 

The behaviour of the dipole strengths, energies and tvidths of the interfering resonance states 
is reflected in the cross section pattern as shown above analytically by using the two-level 
approximation. Below, we show the results of numerical investigations performed under 
less restrictive assumptions. The calculations are performed with the Same 10 levels and 
3 channels as in [I]. Damping is not taken into account, i.e. the results are true only for 
(y) » I'l (see the discussion in Sect. 4). 

In Figs. 1 to  3 ~ v e  show the energy dependence of the transition strengths into particle 
and photo channels for the three values of the overlap parameter X = 0.1, 2 and 5. As in the 
figures in [I], the energy E is measured in units of D2. Due to the strong interfcrence, the 
pattern is noticeably different in the different final channels. One niccly Sees the shift of thc 
maximum a t  the higher energy towards lower energies which is predicted by the two-level 
approximation. Moreover, the fragmentation of the maximum at thc lower encrgy into a 
number of resonances can be seen which, of Course, disappears in the lirnit of degcnerate 
unperturbed levels e,. At last, tlie growing restructuring of the dipole strengt11 with in- 
creasing external coupling in favor of tlie lower-lying compo~icnts is secn in Figs. l(d) to 
3(d). For example the surnmcd strengt11 above B > 0 arnoiirits to 90%, 87% arid 85% in 
the case of the degericrate unperturbcd spcctrum (dashed liries). As to the niaximuni vslue 
of tlie transition strcngth into the photo channcl at the liighcr encrgy, it drops dowri by a 
factor of more than 10 when X increases from 0.1 to 2, ivliilc a riarrow high pcalc appcars in 
agreement with the analytical corisideratiori at  lower encrgy whcn X bccornes large. 

The elastic and photo-nuclear reaction cross sections arc shown in Figs. 4 arid 5. l'licy 
are calculated for the same three values X = 0.1,2 and 5 as the transition strerigths i r i  Figs. 
1 to  3. Both the shift of the dipole resonance to lower energies and thc loss of its dipolc 
strength are seen very clearly also in these values. 

Thus, we have the following picture. Provided that the coupling (2.4) is omitted, the 
two doorway states of the two-level approximation fully exhaust the total dipole strcngth 
so that only they can radiate 7-rays. The radiation pattern determined by the two doorway 
states turns out to  be very sensitive to their degree of overlapping: as long as tlie energy 
displacement of one of them is appreciably larger than the sum of the particle escape widths 
(ix. X « 1) only one of them radiates. If, however, they overlap (X 1 or X > 1) the 
interference leads to a strong redistribution of the dipole strength as well as the escape 
width between the two states. W e n  the degree of overlapping exceeds some critical value 
the escape width of one of the states starts to decrease (dynamical trapping effect). This 
effect is governed by the avoided crossing of two resonances described in detail in [G]. 

If the coupling (2.4) is taken into account, then the rnixirig of all the doorway states 
leads to an additional rcstructuring of the total dipole strength in favour of thc low-lying 
componerits. In any casc, the nearly trapped statc acquires an apprcciable dipole strength 
arid therefore would, in tlie abscrice of any iriternal damping, radiate a riarrow electromag- 
netic linc in thc vicinity of the ccntroid of the broad bump obscrved in tlie particle channcls. 
The othcr broad states, which also posscss noticeablc dipolc strengths, contribute mostly 
to  a Iong radiatiori tail stretclied towards larger encrgies. They manifest tliernsclves mainly 
in the particle chanriels. 'rhc internal darnping cnlarges thc ividth of tlic y-line from thc 
trappcd state t ~ y  r1 and rnasks thc tail. This fact results in a sceming loss of a part of thc 
rdiat ion transi tion strc~igth a(+ad)(J1;1). 

Both the Ioss of thc clipolc stwngtli arid the shift of a part of it towards lowcr ericrgics 
a r ~  disCtlsSCd a t  prescal i ~ i  coriricclion with cxperi~ricntal rcsiilts obtairied for collective exci- 



tations in hot nuclei (See e.g. the Proceedings of the Gull Lake Nuclear Physics Conference 
on Giant resonances, 1993, [7]). The y-ray multiplicity from the decay of giant dipole res- 
onances is shown experimentally to increase with the excitation energy, as long as it is not 
too high, in agreement with the 100% sum-rule strength. At higher energies, however, its 
saturation Signals the quenching of the multiplicity and the existence of a Iimiting excitation 
energy for observation of GDR through its y emission. The different existing theoretical 
approaches can only partly explain the experimental Situation observed [SI. 

The results obtained in the present paper point to a new mechanism which could possibly 
shed an additional light on the problem. The main feature of this interference pattern, 
described well in the two-level approximation, is caused by the avoided resonance crossing 
of two states decaying into the Same Open channels. The visible bulk of the GDR y emission 
originates from a specific state with dynamically reduced particle escape width but large 
dipole moment (thc trapped collective state) while the emission from the broader state is 
suppressed being spread over a wide encrgy range. 

6 Summary 

On thc basis of a phenome~iological schematic model wc irivestigated the intcrfcrences be- 
ttvcen the different doorway componcrits of a giant multipolc resoriancc and corisitlcred its 
influence onto the Cross section pattern. The photocmission turris out to be espccially scnsi- 
tive to the degree of ovcrlappirig of the collcctive doorway statcs. 'i'lic iritcrfere~ice bctiveeri 
them leads, a t  a certain critical value of the cxternal coupling, to a strorig rcdistri bution of 
the dipole strcngth in favour of the low-lying comporicnts. 

The internal damping due to the coupling of the doorway states to tlic backgroiind 
of complicated states masks or even smears out the effects of the iriterfercncc wlicii Ihe 
corresponding spreading width exceeds the total escape widths of tlie doorwtzy cornponcnts. 
111 very hot nuclei, however, it is possiblc that the spreading width is sniallcr thaxi thc escapt? 
width [4, 51. If so, the interference mariifests itself, in particular, in an apparerit qiicrichinp 
of the dipole strength of GR. The saturation of the y multiplicity observcd experi~lientnlly 
at  about 250 MeV excitation energy in heavy nuclei [7, 81 may bc tliereforc, at  lcaät partll, 
caused by the interference phenomena discussed in the present Paper, Further in~estigaf~ions 
of this interesting question are necessary. 
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Figure Captions 

Fig.1 
The transition strengths into particle (a,b,c) and photo (d) channels for X = 0.1 and tlie electro- 
magnetic interaction strength a,, = 0.01. The resonance states are the same as in Fig. 2 in [I]. 
Thc dashed lines correspond to the case of parental levels fully dcgcneratcd (A, = 0). 

Fig.2 
Thc Same as in Fig.1 but for X = 2. 

Fig.3 
Thc same as in Fig.1 but for X = 5. Note the different P scale in ((1). 

Fig.4 
The elastic cross scction for X = 0.1 (a), X = 2 (b), and X = 5 (C). The resonance states are the 
same as in Fig. 2 in [I]. Note the different E scalc in (a). 

Fig.5 
Thc photo-nuclcar cross scction for X = 0.1 (a), X = 2 (b), and X = 5 (C). The rcsonancc states 
are the same as in Ii'ig. 2 in [I]. Note the different P scale in (C). 









Fig. 4 



Fig. 5 
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