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Abstract 

The exclusive deuteron break-up reaction is analyzed within a covariant ap- 

proach based on the Bethe-Salpeter equation with realistic meson-exchange inter- 

action. Relativistic effects in the Cross section, tensor analyzing power and polar- 

ization transfer are investigated in explicit form. Results of numerical calculations 

are presented for kinematical conditions in forthcoming p + D reactions at COSY. 
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1. Introduction: Break-up reactions of deuterons by protons receive presently a renewed 

interest [I, 2, 3, 41. The investigations of break-up processes are motivated by the hope 

to extract directly the deuteron wave function from experimental data, supposed the 

mechanism described by the impulse approximation dominates at moderate values of 

intrinsic momenta. Pioneering experimental studies of elastic backward and inclusive D 

+ p reactions have been performed in Dubna and Saclay [2,3,4]. It is found, indeed, that 

the impulse approximation holds in a large interval of momenta of detected protons, except 

for a broad shoulder at momentum of the outgoing proton (measured in the deuteronls 

rest frame) of about 0.3 GeV/c. Probably small corrections to the impulse approximation 

are sufficient to account for this shoulder. In the Same experiments the polarization 

observables of the deuteron, such as the tensor analyzing power Tzo and polarization 

transfer r; are measured. These quantities are more sensitive to the reaction mechanism, 

and a combined analysis of them may provide information about S and D components 

of the deuteron wave function separately. However, as in the unpolarized case, the data 

on Tzo and K exhibit systematic deviations from theoretical predictions [5, 61 in the Same 

momentum region of the outgoing proton. A kinematical analysis of the invariant missing 

mass shows that this region corresponds to A excitations, so that additional corrections 

should Supplement the calculations based on the impulse approximation. From this it 

becomes clear that an interpretation of the inclusive data in terms of a deuteron one- 

body momentum density becomes ambiguous. Furthermore, the typical energies in these 

reactions seem already too high for a non-relativistic approach. It is necessary, therefore, 

to describe these processes in a covariant formalism. 

The measurement of ~roton-deuteron break-up reactions with polarized particles in an 

exclusive experimental setup is planned at the cooler Synchrotron COSY in Jülich [I]. 

The experiment will detect the scattered fast proton in the forward direction in the spec- 

trometer ANKE in coincidence with the slow backward-emitted proton. The kinematical 

conditions are chosen in such a way that the missing mass of the undetected particles 

is exactly equal to the neutron mass. Hence, this experiment offers a unique possibility 

of using polarized deuterium targets in combination with a polarized proton beam for 

extended studies of exclusive deuteron break-up processes. The coincidence measurement 

allows one to exclude kinematically particle production processes and, consequently, to 

constrain the reaction mechanism. Ttvo important aspects in these experiments ought to 

be stressed here: (i) The possibility of excluding A excitation processes will allow for un- 

derstanding better the role of the meson degrees of freedom and to clarify the origin of the 

above mentioned shoulder in the inclusive processes. (ii) A ~omparison with %heoretical 



predictions will provide a good test of the validity of the spectator mechanism. 

Previous relativistically invariant investigations [5, 71 of one-nucleon exchange diagrams 

for inclusive and elastic D + p scattering are based on numeric solutions of the Bethe- 

Salpeter (BS) equation with a realistic interaction. Several authors [8] studied relativistic 

effects in the deuteron by considering the D t NN vertex within approximations to the 

exact BS equation and analyzed so electromagnetic and elastic hadron scattering off the 

deuteron. Up to now, however, a consistent investigation of polarization phenomena in 

exclusive processes with explicit identification of relativistic effects is still lacking. 

In the present work we perform such a covariant analysis of the exclusive proton - 
deuteron break-up reaction. Fully covariant expressions for the cross section, tensor an- 

alyzing power T20 and transferred polarization K are obtained within the BS formalism. 

The contribution of pure relativistic corrections is separated. Results of numerical cal- 

culations, utilizing the recently obtained numerical solution of the BS equation with a 

realistic interaction kernel, are presented for kinematical conditions available at COSY. 

2. T h e  specta tor  mechanism: We consider the above described exclusive break-up 

reaction of the type p + D 4 pi(OO) + p2(180°) + n3(00). ~ i t h i n  the spectator mechanism 

approach this reaction is presented by the Feynman diagram shown in fig. la, where the 

upper and lower vertices factorize and, consequently, they can be computed separately. 

According to the above kinematical conditions one may consider the fast forward proton 

to be produced by elastic scattering of the beam proton off one nucleon in the deuteron. 

In fig. I b  this part of the diagram is depicted and the corresponding cross section reads 

where X(Pp, pn) = ( ~ ~ p , ) ~  -marn: and the invariant nucleon-nucleon (NN) amplitude TNN 

is expressed via the truncated vertex functions rNN and projectors A„I as follows 

spins 

where U denote nucleon Dirac spinors and a,ß are Dirac indices (with summation over 

twofold indices) and the operator (2) is related to the T matrix of nucleon-nucleon scat- 

tering. To calculate the latter one in a fully covariant manner one needs an analysis of the 

KN vertices within an appropriate relativistic formalism, e.g., the BS approach. For the 

elastic scattering the NN amplitude is thoroughly investigated in ref. [9]. In our case the 

operator O determines the differential elastic cross section daldt  at low transferred mo- 

mentum t = (pp - and the contribution of the spin part in eq. (2) may be neglected. 



Then the operator Oap;cr~ßr takes the simplest possible form O,p,~p N S„ISßßlJA,vN12, 

where ANN is the scalar part of the NN amplitude. Then, with m as nucleon mass, 

Now we are in the position to calculate the main contribution to the process described by 

the diagram in fig. la. Applying the Mandelstam method the invariant cross section for 

the break-up of a ~olarized deuteron with spin projection kl can be mitten as 

where p = (pn - p2)/2, and i stands either for a unity matrix in case when the outgoing 

proton pz is not polarized or for (1 $75&)/2 ~therwise ($2 is the contracted polarization 

four vector). Q;(p) denotes the charge conjugated BS amplitudes introduced in ref. [10]; 

numerical solutions are reported in refs. [ll, 121. 

Eq. (4) is a rather formal result and an interpretation of different contributions is 

straightened in the present form. A few subtle aspects are to be mentioned: 

(i) The detected proton is on mass-shell so that - m2 = 0, and the cross section seems 

to vanish. However, the BS arnplitude itself is singular when one nucleon is on mass-shell. 

To get a finite result the, corresponding expressions should be evaluated analytically. 

(ii) The numerical solution of the BS equation is obtained in the Euclidean space-time, 

where the time component po of the relative momentum p is purely imaginary. In processes 

under consideration po is fixed and real. Hence, one needs either a numerical procedure 

for an analytical continuation of the amplitudes to the real relative energy axis (cf. [7]) 

or another recipe [13] for using our numerical solutions for this case . 
(iii) In solving the BS equation tve expand the amplitude Q g  on the complete set of the 

Dirac matrices and obtain eight partial amplitudes for Q g  [10, 141. However, it is known 

[7, 81 that in such cases, where one nucleon is on mass-shell, only four partial amplitudes 

contribute to the deuteron observables. From eq. (4) it is not clear which amplitudes play 

the most important role in the process. 

To tackle the above problems it is convenient to transform our representation of the 

partial am~litudes to the so-called p spin classification [14, 151. In this representstion 

one usually adopts the spectroscopic notation for the partial amplitudes (2S"1)LJPZ. (%r 

the explicit form of the unitary transformation matrix between these two representations 

cf. [14].) In this notation it becomes immediately clear that in proccsses with one nucleon 

(say the second one) on mass-shell the relevant contribution to tke cross section comes 



only from four amplitudes with positive second p spin index, i.e., 3S:+, 3D:f, lP;f and 

3~;+ for which we use the short hand notation Qs, QD, Qpl and COp3, respectively. 

3. Relativistic corrections: The trace in eq. (4) is evaluated by an algebraic formula 

manipulation code which delivers the contribution to the unpolarized cross section 

where another Zero due to 2E2+2po-MD = 0 appears explicitly in the cross section (MD is 

the deuteron mass). To handle these two zeros and the singularities in the amplitudes Q g  

it is convenient to introduce instead of 9% the corresponding partial vertices G(po, IpI) 

that have no poles when one particle is on mass shell. h r  an explicit relation between 

partial amplitudes and partial vertices we refer the intirested reader to ref. [14], where 

the dependence of S and D wave vertices upon the relative energy is shown to be smooth, 

contrary to the amplitudes which display a strong dependence on po. Therefore, in our 
1 

calculations, we can replace, at moderate values of po, the S and D vertices by their 

values at po = 0 with good accuracy. The P vertices can be expand into Taylor series 

about po = 0 up to a desired order in po/m. Then the corresponding derivatives can 

be computed numerically along the imaginary axis since they are analytical functions of 

po [13]. After replacing the amplitudes by vertices, the zeros and singularities cancel at  

p2o 3 E2, and the result is finite. Finally, to cast our formulae more familiar form, known 

from non-relativistic calculations, we introduce the notion of BS wave functions [7, 8, 141 

where 3 = 1/4nu/%. With these definitions one gets 

(i) the unpolarized differential cross section: 



(ii) the tensor analyzing power Tzo: 

(iii) the polarization transfer K: 

For short hand notation we introduce the deuteron structure factor Dibf(lpl) with a defi- 

nition which follows from eqs. (7, 8). 

A numerical analysis of solutions of the BS equation in terms of amplitudes within the 

p spin basis shows [14] that the BS wave functions U(lp1) and W(lp1) are the dominant 

ones and coincide to a large extent with the corresponding non-relativistic wave functions 

found as solutions of the Schrödinger equation with one-boson-exchange potential. The 

remaining two functions Vp,,3(Jpl) are a few orders of magnitude smaller, and for the 

considered processes with momentum of the backward proton lpzl = Ipl 5 0.51 GeV/c 

the diagonal terms in Vpl,,(lpl) are negligible. Therefore, eqs. (7, 9, 11) are identified as 

the main contributions to the corresponding observables and they might be compared with 

their non-relativistic analogues. The interference terms (8, 10, 12) posses cont ributions 

from negative states and are proportional to Ipllrn. Due to their pure relativistic origin 

we refer to them as relativistic corrections in the deuteron break-up reactions. Note that, 

when disregarding the relativistic corrections and equating the wave functions U(lp1) 

and W(lp1) to their non-relativistic analogues, our formulae (7 - 12) exactly recover the 

non-relativistic expressions for a, Tzo, K computed within the spectator mechanism [6]. 

4. Results and  discussions: In figs. 2 - 4 we present the results of our calculations 

by exploiting the numerical solutions 111, 12, 141 of the EIS equation with a realistic 

interaction kerne1 with T ,  W, p, U, 7, S exchange (parameters as in table 1 in ref. [ll]). The 

unpolarized cross section computed by eqs. (7, 8) is displayed in fig. 2, where the flux 

factor has been put to unity. This flux factor reflects only the dependence of the cross 

section on the beam energy within the spectator mechanism approach. By disregarding 

it  one obtains the energy inde~endent part of the cross section. Within the spectator 

mechanism, both Tzo and K do not depend on the initial energy. For ehe elastic neutron 

- proton scattering we use a fit of data [16]. The dashed curvcs in figs. 2 - 4 depict ehe 



contribution of only positive waves according to eqs. (7, 9, l l ) ,  while the short-dashed 

curves are the relativistic corrections according to eqs. (8, 10, 12) (in fig. 2 we display the 

modulus of the corrections, because of a sign change), and the full lines are their Sums. 

For completeness we also present the results of non-relativistic calculations with the Bonn 

potential wave functions shown as dotted curves. 

It is Seen in figs. 2 - 4 that the relativistic corrections are negligible small in a wide 

range of momenta lpzl and become significant only at Ip2 1 > 0.6 GeV/c. From this we 

conclude that at kinematical conditions as envisaged in COSY experiments [l] the rela- 

tivistic corrections may be safely neglected since they are much smaller than the expected 

experimental errors. At E, N 3 GeV one has Ipz lmaz  N 0.51 GeV/c. (Note that within 

the spectator mechanism the maximum value of lp21 is restricted to lpzlmaz 0.8 GeV/c.) 

Hence, in the proposed experiments one may investigate in great detail different aspects 

of the reaction mechanism, or the contribution of non-nucleonic degrees of freedom like 

meson-exchange currents and the role of A isobars, without bothering about relativistic 

effects. Note that our expressions for the observables in exclusive break-up processes are 

similar to those for the inclusive ones [5,  61. There exist an essential advantage in the 

proposed exclusive experiments: in inclusive processes the detected shoulder [2] in the 

Cross section at  Ip2I N 0.3 GeV/c cannot be explained within the spectator mechanism. 

The origin of the discrepancy is believed [6] to root in the contribution of meson produc- 

tion in the NN vertex. In the exclusive processes these contribution may be separated 

kinernatically and conclusions about this problem can be settled. 

The relativistic corrections eqs. (8, 10, 12) are governed by negative P states in the 

deuteron. This can be considered as a hint that admixtures of P waves within the BS 

approach are related to relativistic corrections by taking into account meson-exchange 

currents and NN pair production diagrams [17] in the non-relativistic picture. To establish 

a correspondence between our results and the mentioned non-relativistic calculations we 

estimate the contribution of the relativistic corrections by computing the P wave vertices 

in the so-called "one-iteration approximation". The gist of this approximation is as follows 

[ls]: in solving the BS equation by an iteration procedure one puts as zeroth iteration 

the exact solution of the Schrödinger equation for S and D vertices and Zero for other 

waves; then the P vertices are found by one iteration of the BS equation. Our experience 

in solving numerically the BS equation s h o ~  that it converges rapidly for relatively small 

momenta < 1 GeV / C. That mcans whcn utilizing the exact non-relativistic solutions, 

aftcr one iteration the resulting P waves are not too far from the reality. 

Skipping cumbersome algcbraic manipulations the result for the function V in eq. (6) 



with a BS kernel with pseudo-scalar one-boson exchange reads as follows 

where U(r) and W(r) are the non-relativistic deuteron wave functions in the coordinate 

representation, and g: N 14.5 is the pion-nucleon coupling constant; !Vu = 1 (&) and 

fV, = fi (-1) for PI (P3) waves. Introducing this result into the expression for the cross 

section eq. (7) the relativistic corrections is 

which is similar to expressions obtained in non-relativistic evaluations of the so-called 

"cata~trophic'~ and pair production diagrams in electro-disintegration of the deuteron 

[19]. In eq. (14) v l c  is the velocity of the detected slow proton, and the quantity in the 

large parenthesis may be interpreted as effective number of NN pairs in the deuteron 

contributing to break-up reactions (details will be presented elsewhere [20]). From this 

it becomes clear that generic relativistic calculations, even in impulse approximation, 

contain already some specific meson-exchange diagrams, i.e., pair production currents, and 

one should pay attention on the problem of double counting when computing relativistic 

corrections beyond the spectator mechanism. 

5. Summary: In Summary, we present for the first time an explicit analysis of relativistic 

effects in exclusive deuteron break-up reactions within the Bethe-Salpeter formalism with 

realistic interaction kernel. Numerical estimates of relativistic efFects in the cross section, 

tensor analyzing power and polarization transfer at kinematical conditions of forthcoming 

COSY experiments are performed. Relativistic corrections under these conditions are 

identified and found negligible. It is shown that the planned experiments can discover 

mainly effects related to processes beyond the impulse approximation. 
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Fig. 1: Feynman graphs for the exclusive reaction p + D = pi(OO) + p,(180°) + n3(00) 

(a) and for the elementary NN vertex (b). 





Fig. 3: The deuteron tensor analyzing power Tza for the exclusive proton - deuteron break- 

up reaction. Notation as in fig. 2. 



Fig. 4: The polarization transfer K for the exclusive proton - deuteron brcak-up rcactioii. 

Sotation as in fig. 2. 
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