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] Abstract

We consider a chiral one-loop hedgehog soliton of the bosonized SU(2)¢ Nambu
\ & Jona-Lasinio model which is embedded in a hot medium of constituent quarks.
Energy and radius of the soliton are determined in self-consistent mean-field ap-
‘ proximation. Quasi-classical corrections to the soliton energy are derived by means
of the pushing and cranking approaches. The corresponding inertial parameters
'i are evaluated. It is shown that the inertial mass is equivalent to the total internal
W energy of the soliton. Corrected nucleon and A isobar masses are calculated in
dependence on temperature and density of the medium.

As a result of the internal structure of the soliton which is controlled by the
self-consistent mean field, the scaling between constituent quark mass and soliton
mass is noticeable disturbed.

PACS: 12.39.Fe, 11.10.Lm




1 Introduction

Chiral soliton models have proven to be a fruitful approach to the description of nucleon
structure. Starting from the Nambu & Jona-Lasinio (NJL) lagrangian [1] and applying
a well defined scheme of approximations one was able to obtain stationary and localized
field configurations denoted as non-topological chiral one-loop NJL solitons. They can be
used to model nucleons, A isobars and strange baryons on the basis of interacting quarks
(for review see {2, 3]).

The NJL lagrangian incorporates chiral symmetry and its spontaneous breakdown [4].
It has been used to study the restoration of chiral symmetry in a hot and dense nuclear
medium modeled by a gas of constituent quarks (for review see [5]). The decrease of the
constituent quark mass at higher temperature and/or density of the medium describes
the phase transition from the chiral condensate to the chirally symmetric phase. The
calculated effects are in satisfactory agreement with the predictions of lattice calculations
and of the chiral perturbation theory as well.

It is an attractive idea to combine both features of the NJL lagrangian and to study
the behavior of a soliton embedded in a hot gas of constituent quarks with a dynami-
cally generated mass. Such a model incorporates the restoration of chiral symmetry and
the possible dissolution of the soliton, which simulates the deconfinement transition of
hadronic matter. In contrast to many other approaches studying medium modifications
the non-topological soliton model equips the baryon with an internal structure which may
be modified by the medium.

Using this approach as a model for baryons in hot hadronic matter one should be
aware of its approximative character which is even not free of inconsistencies. Below the
critical values of temperature and density, the quark gas is not the ground state of strongly
interacting matter, neither in nature nor within the model. If the soliton is stable the
medium itself consists of solitons. This goes beyond the mean-field approach. The effect
we can study within a mean-field picture is the scale change connected with the reduction
of the constituent quark mass at increasing values of temperature and density and its
effect on the self-consistent mean-field. Such an approach rests on the assumption that
the dominating effect of the medium consists in the reduction of the constituent quark
mass while its local variation is of minor importance. The free motion of the quarks
representing the medium as a quark gas is an obvious shortcoming of the approach and
may overestimate the influence of the medium on the soliton. There are attempts [6, 7]
to replace the quark degrees of freedom in a part of the effective action by nucleonic ones
without introducing new parameters. The results are not very encouraging since chiral
symmetry is restored already at normal nuclear density in this approach [6]. For a more
detailed discussion see Ref. [8].

The soliton which we investigate is in most respects identical with the soliton described
in Refs. [2, 7, 9]. The differences concern the particular treatment of the valence quark
level and the use of the chemical potential for adjusting the baryon number of the soliton.

Due to mean-field approximation and hedgehog ansatz the soliton has further defects
already known from the soliton in vacuum: it violates translational and (iso-)rotational
invariance. Therefore it is affected by center-of-mass motion and represents a mixture
of nucleon and A isobar instead of a particle with definite spin and isospin. The vio-
lated translational and rotational symmetries can approximately be restored. The quasi-
classical pushing and cranking approaches [10] constitute a feasible way to exclude spu-
rious contributions to the energy and to equip the soliton with the correct values of spin



and isospin. The size of pushing and cranking corrections is controlled by inertial pa~
rameters. While we relate the inertial soliton mass to its total mean-field energy the
(iso-)rotational moment of inertia is calculated numerically. The relation between inertial
mass and internal energy is an extension of the corresponding relation for a soliton in
vacuum [11].

In Sect.2, we shortly outline the basic ideas defining the NJL soliton in a medium
of constituent quarks at finite temperature and density and review the main formulae.
We determine that region of density and temperature where a stable soliton exists. The
baryon number of the soliton and its spatial distribution is considered in Sect. 3. Here we
critically discuss the method to fix the baryon number to one which was applied in Ref. [7].
The numerically determined soliton energies and radii are given in Sect.4. In Sect. 5, we
determine quasi-classical corrections to the soliton energy. We consider the soliton in
a boosted and rotating frame and calculate the corresponding inertial parameters and
energies. The corrected nucleon energies are given and discussed in Sect.6. Conclusion
are drawn in Sect.7. An appendix completes the calculations in Sects. 2,3 and 5.

2 NJL soliton in a heat bath

We consider an ensemble of up and down quarks with N;=3 colors and an average mass
my = (Mmy + m4)/2 at temperature T and chemical potential p = p, = pg. The latter
will be related to temperature 7" and density py of the medium embedding the soliton.
The quarks interact via a four-quark contact interaction, which consists of a chirally
symmetric combination of a scalar-isoscalar and a pseudoscalar-isovector term, with the
coupling strength G/2 introduced by Nambu & Jona-Lasinio {1]. The derivation of the
effective soliton action from the SU(2)¢ NJL Lagrangian incorporates the following steps
(for a review see Refs. [2, 3]):

1. Introduction of auxiliary meson fields o and « by means of a Hubbard-Stratonovich
transformation {12, 13] in the generating functional using the imaginary-time for-
malism.

N

. Derivation of an effective meson action Aeg[o, @] by applying the stationary phase
approximation on the meson fields (no meson loops, ¢ and # as classical mean
fields). The effective action obtained in this way consists of a purely mesonic part
A™ and of a fermionic part A9, which describes the contributions of the various
quark levels to the effective action (quark determinant).

3. Restriction of the meson fields to static and spherically symmetric hedgehog configu-
rations (o(r,7) = o(r), w(r,7) = «(r) #). In our numerical calculations, the meson
fields will additionally be restricted to the chiral circle (6%(r) +7%(r) = o2 = const).
Otherwise, a stable soliton does not exist {14, 15].

4. Splitting the quark part into a contribution A% (sea contribution) which re-
sults from a completely occupied Dirac sea and a residual contribution A%™4(T, 1)
(medium contribution) which describes the occupation of the quark levels according
to temperature and chemical potential (quarks in levels with positive energy and
holes at negative energy). The sea contribution diverges and is regulated by means
of Schwinger's proper-time regularization scheme [16]. The corresponding cut-off A



is not considered as a free parameter but is related to the experimental values of
the pion mass and of the weak pion-decay constant in vacuum [2, 17, 18].

w

. In vacuum at T =0, the part which appears additionally to the Dirac sea in the
effective action consists solely of the contribution of 3 valence quarks, which occupy
the lowest level with positive energy. It is usually called wvalence contribution. The
valence quarks are bound and do not contribute to the quark density at larger
separations from the center of the soliton. To get a finite quark density outside
the soliton one has to allow the quarks to occupy unbound levels by introducing a
temperature and/or chemical potential larger than zero.

6. Interaction strength G and cut-off parameter A are determined in the vacuum and
assumed to be independent of T' and p.

7. The soliton itself is defined as a localized deviation of the fields from their asymptotic
values oy and 7p=0 which describe the homogeneous medium. Solitonic expectation
values are defined by the difference between the values obtained for solitonic and
homogeneous field configurations.

The relative effective action of the soliton is obtained by subtracting the effective action
Aeg]oo, 0] of the homogeneous configuration from the effective action of the solitonic field

Ae [0, T; 00) = Aegtlo, 7] — Acrloo, 0] = A™[0, 7; 0] + AYo, 7; 0¢] - (1)

It consists of a purely mesonic part

Aoy w00 = s [dr [P0 + w2 w) = o] + 22 [Erlo—o)] ()

and of the quark determinant which can be written

Ao, m; 00)(T, 1) = —N.Trln ——= Dly) _ = Ao, T; 00] + AY o, m;00) (T, 1) (3)

Dy(1)

with ) D(O)
,sea . - i 4
A%, 1; o] TNC Jim T'Tr In Do(0) (4)

and
D(p) D(0)

Admed T, — A% = _N.Trln + = N Lim T'TrIn 5
[U T3 UU]( :u) c DO( ) 1 r DQ(O) ( )

with the trace Tr defined in appendix A. While the medium contribution {5) is finite and
vanishes in the limit (T, u) — 0 the sea contribution (4) diverges and does not explicitly
depend on the thermodynamical variables. The latter is regularized by replacing the
operator trace Tr (A.2) by a regularized trace Try (A.3). The single-particle operators

D(p) = O-+h—pu, (6)
Do(p) = Or+ho—p (7)

consist of the derivative 8, with respect to the euclidean time coordinate 7, the quark
hamiltonians

b= hom) = ap+Blolr) +intra()], ®)
hog = h{00,0) = a-p+ Foy, )]
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and the chemical potential u. The Dirac matrices are denoted by =1, v=(7',7%7%),

vs = i7%7'9%7%, @ = B, and T is the vector of Pauli matrices. Spatial coordinates are
denoted by T and have the components 7, the absolute value 7 = |r| and unit vector

T =r/r.
The crucial quantity for the description of a grand canonical ensemble of quarks is the

thermodynamical (grand canonical) potential given by
QT, p) =T Aeg = Q" + QYT 1) (10)

with
Qa8 = T A™9 (11)

In analogy of the effective action we split the quark part of the canonical potential into a
sea and a medium contribution

D
QYT, p) = —NTTrpln W _ Q% 4 QIed(T 1) (12)
Dy(u)
where Tr, means regularization of only the sea contribution. For time-independent meson
fields the determinants of the inverse propagators (6, 7) are real and the regularized sea
contribution can be written

sa N, 1(0)D
Q7 = —=—= lim TTraIn DT(O—)ﬂ (13)
2 120 D4(0) Do(0)
In the proper-time scheme, we get by means of Eq. (A.3)
ds 2 24 (02
gsea 1Y «-s(w +€2) _ —s(w?+(e2)?)
2y - //A2 ./oo 2w Z ¢ ] . (14)

= —_E Z Rp(€a, A) |€al — RE(ag, A) IeS,I
2

where £, (€2) are the eigenvalues of the quark hamiltonians h (ko) defined in Egs. (8, 9),
and Rg is the regularization function

Ru(e,A) = ———1 (-1 & (15)
B 3 [47_‘_' 2 ? 1&2
with the incomplete Gammafunction I'(z, a). Notice that the degeneration with respect to
the color degree of freedom is explicitly taken into account by the factor N, and included
neither in the trace Tr nor in the sum over a.

The medium contribution to the quark part of the canonical potential (12) is finite
and will not be regularized. One gets by means of Egs. (A.1-A.5)

D(u) D(0)
Qemed(T ) = —N.TTrin + N, h TT1 In ——=
(1) T Do a) Do(0)
o . 1 - e—ign(ea) (cas)/T
- kB NT Z In 1 + e—sign(=d) (3-1)/T °

[+]

(16)

The medium contribution depends on the thermal occupation probability of the various
quark levels which are controlled by temperature and chemical potential. The quantity

BS&!& — Z Sigt;(&’,ﬂ (17)
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describes the baryon number of the Dirac sea for the solitonic field. Usually the number of
quark levels with positive and negative energy are equal and B> vanishes. It differs from
zero only if the meson field is strong enough to pull down (up) one or more quark levels
which are in the positive (negative) continuum without the soliton field. This happens
at rather large interaction strength G corresponding to vacuum constituent quark masses
M 2 700 MeV, and we shall not consider this case here.

Customarily one treats the contribution of the valence level (a=val) to the medium
part (16) separately, ascribes occupation number one to this level (7., =1) and leaves it
empty in the homogeneous medium (f,0 =0) [9]. This is the simplest way to realize a
soliton with baryon number one in a cold medium. However, the hole in the homogeneous
configuration has serious consequences for the size of the iso-rotational moment of inertia
which will be studied in Sect.5.2.

The rule to regularize only the sea contribution to the quark determinant should be
considered as an ingredient of the model. It does not reproduce the correct limit T'— co
but dealing with a low-energy model we need not consider this case. In our case, the
regularization procedure would have a negligible effect on the medium contribution since
the cut-off is larger than chemical potential and temperature (A > u + T). Moreover
it simplifies the model considerably since it decouples the regularization procedure from
temperature and density dependence.

The classical meson fields o and 7 minimize the grand canonical potential (10)

ST, _ 0 and

oQ(T, )
So(r) on(r)

=0 (18)
leading to the equations of motion
o(r) = mo—G{{a(r)q(r))), (19)
w(r) = —G{(a(r)ins#-7q(r))) . (20)

In general, the equations of motion can only numerically be solved since the thermal
expectation values ({...)) on the right sides depend functionally on the fields on the left
sides. Expectation values of currents such as in Eqs. (19, 20) will be evaluated in Sect. 3.
A particular solution of the equations of motion is given by homogeneous fields o(r) =0,
and 7(r) = 0 where ¢y has to fulfill the gap equation which follows from Eq.(19) for
homogeneous fields. A constant sigma field acts as a mass on the quarks and oo(T, p)
is identified with the constituent quark mass M*. Its value M at T'=pu =0 is the only
free parameter of the model, which can vary within reasonable limits (see e.g.[2]). It
determines the strength G of the quark-quark interaction in the initial NJL lagrangian.
Keeping G fixed the constituent mass M* for finite values of temperature and density
is uniquely determined by the gap equation. We chose M =420MeV in the numerical
calculations. This value reproduces the experimental A-nucleon splitting.

A solution of the equation of motion is called a self-consistent field configuration since
one considers not only the explicit dependence of  (10) on the meson fields via Q™ but
also the dependence via energy spectrum {g,} of the quarks which enters the parts Q"
(13) and Q™4 (16). Restricting the meson fields to the chiral circle o and = fields are not
independent of each other and equations (19, 20) can be replaced by a single one e. g. for
the chiral angle ©(r) (see e.g.[19]). We consider hedgchog fields with winding number
one characterized by the boundary conditions ©(r =0) = —# and ©{r - oc) = 0.
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The lack of confinement in the NJL model forces us to exclude the valence level from
the thermal equilibrium and to keep its occupation probability fixed to one independently
of temperature and chemical potential as proposed in Ref. [7]. The valence quarks play
a crucial role for the existence of self-consistent solitonic field configurations. Only the
valence quarks yield a spatially restricted negative contribution to the expectation value
on the right side of the equation of motion (19) leading to a well in the o field. The soliton
is stable if the well is deep enough to bind the valence quarks. If one allows the valence
level to have an occupation probability smaller than one the resulting well binds the
quarks weaker, and — starting from a critical temperature 7; — a homogeneous field with
free quarks is the only self-consistent solution of the equations of motion. This happens
already at temperatures around 100 MeV far away from the expected transition point to
the quark plasma. Keeping the occupation number of the valence level fixed the plasma
transition takes place at reasonable temperatures around 180 MeV . This transition does
not coincide with the restoration of chiral symmetry indicated by the reduction of the
constituent quark mass M* to the value of the current mass mg. The constituent mass is
only reduced to half of its vacuum value.

Fig. 1 outlines that region in the T —py plane where we have obtained stable, self-
consistent solitonic field configurations. The medium density py is related to T and p via
Eq. (45). The region with temperatures T' S 75 MeV (below the broken line in Fig. 1) has
to be considered with some caution since we performed our numerical calculations within
a discrete basis [20] by introducing a box with radius D. Below 75 MeV, the meson fields
start to oscillate during the iteration and the final results are very sensitive to the box ra-
dius. The finite box radius produces an artificial spacing and shift of the quark levels which
are proportional to 1/D. Shift and spacing become important in a transition region around

, . . Fig. 1: Region in the T — p,
200: no solitonic ] plane whe're solitonic field
solutions ] configurations have been
: found for M = 420MeV.
The density py is given in
units of the normal nuclear
density ppm=0.16 fm=3.
- ] In the region below the bro-
] ken line the self-consistent
50 ‘0\.\\390 . meson fields ezhibit pro-
;“6500"’ 1 nounced fluctuations out-
i 1 side the soliton in the course
o . x : of the iterative solution of
0 1 2 3 the equation of motion.

150} :
I solitonic

solutions

100

-

the Fermi energy where the occupation probability varies rapidly. The width of the tran-
sition region is proportional to the temperature. In the course of the iteration the levels
in the sensitive transition region around the Fermi level change rapidly their contribution
to the mean field with a significant effect on its shape. The calculation is stable if a larger
number of levels lies within the transition region, i.e.if the level spacing is sufficiently
smaller than the transition region. At low temperatures the spacing has to be rather



small and the basis for a reliable calculation must be large. In this way the capacity of
the computer determines a lower temperature limit for a reliable calculation. We used a
box with radius D =18/M* which restricts ourselves to temperatures above the broken
line in Fig.1. In contrast to finite medium density a calculation at vanishing density is
not affected by the level spacing. In this case, the Fermi energy lies in the middle of the
energy gap between =M™ and there are no quark levels in the sensitive region.

At temperatures and densities above the solid line in Fig. 1 a solitonic solution of the
equations of motion (19, 20) has not been found. Here the self-consistent meson field is
too shallow to bind quarks not even the valence quarks.

Knowing the grand canonical potential Q the free energy F' of the soliton can be ob-
tained by means of a Legendre transformations replacing the independent variable u by
the baryon number B = —0Q/(N; Ou). The internal energy is obtained by an additional
Legendre transformation from the dependence on temperature to entropy S = —9Q/8T.
Analogously to the effective action we split internal and free energy into mesonic, regular-
ized quark-sea and quark-medium contributions and subtract the corresponding energies
of the homogeneous medium

E(T,p) = E™+EY™ + E¥4(T, p), (21)
F(T,p) = F™4 FFP® 4 Fomed(T, ). (22)

Since mesonic and sea contributions to the grand canonical potential are independent of
T and p we have

Em —_ Fxn — Qm (23)
and
EX,SGEI — F/(\],SE& — Q?\,sea . (24)
The medium contributions are given by
q,med 0 0 q,med
EY(T,p) = 1=Tor — kg, Q¥T, ) (25)

= N, Z [ﬁea (T1 ,u) Eaq — ﬁ’Eg (T’ ‘u') 82‘]

«a

and
med 0 med
Fomed(T 1) = {1 — “5;] Qamed (T 1)) (26)

= N Z [T In (1 —sign(eq) e, (T, l”')) + p g, (T, /»L)]
—N. 3 [T'in (1-sign(el) fieg (T, 1)) + g (T, )]

where we have introduced the modified occupation number

- 1 sign(€a) o
fea(Ts 1) = Ty — 8(~ca) = T e o 1)
which describes the thermodynamical probability to find an occupied level at positive
energy £, and a hole at negative energy, respectively. The latter is supplied with a minus
sign. For the completely occupied Dirac sea without any additional quarks above it we
have 7, (0,0) = 0 Va.



3 Baryon number, density and chemical potential

Now let us investigate the baryon number B of the self-consistently determined solitonic
field and their spatial distribution p(r). For that aim we consider thermal expectation
values {(O)) of single-particle quark operators

Olg'd = [d°rq!(r) Oq(r) (28)

where O is a time-independent operator acting in the Dirac and/or flavor (isospin) space.
The baryon number is obtained with O=1/N,.

The thermal expectation value of the single-particle quark operator (28) in a state
characterized by the grand canonical potential (10) can be expressed by means of a gen-
erating function

o am Y — . D(u; lﬁ) q,sea ,med
QQ(T, I h,) = —ATCTTI(A) In m (A) (I'») + Qame (T M K:) (29)

given by the canonical quark potential (12) with the inverse propagators D) (1) replaced
by

Doy(4; &) = Dgy(pe) — KO = 0, + hoy — p — 6O. (30)
Restricting the meson fields to their classical values the mesonic part of the grand canon-
ical potential does not influence expectation values. We shall use both the unregularized
version

D(0; %)
Dy(0; &)
and the regularized version Q3}**(x) of the sea contribution to (29) with Tr replaced by
Tra. The medium contribution is given by

Q5@ () = — N, Jim TTrIn (31)

Qe™ed(T, - k) = —N,TTrln Il;o ((‘:,’;)) + N Jim T'Trln — = DO (((g;’;)) . (32)
Expectation values of an operator (28) can be expressed by
()= - TZES) =05 + oy (33)
with the unregularized sea contribution
oy = - im;;ﬂ = —N, Jim TTe[(D(0)™ - Do(0)™?) O] (34)
= ——% ; [sign(ea) On—sign(e2) Og]

and the medium contribution

dQamed(T, i; k)

goymt=- ——

— N [ (T1) Oa — (T O] (39)

k=0 a

with the modified occupation numbers o (T, 1) (27) and the matrix elements
0P = (a®|0]a®) = [¢*r oP1(r) 0 80(r) (36)
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of the operator O with the normalized eigenfunctions ®Y (r) of the hamiltonian A (ko).
Sea contributions such as expression (34) are defined as expectation values at zero tem-
perature and we use the single brackets instead of the double ones which stand for a
thermal expectation value. In fact, the sea contribution is not completely independent
of T and u but depends on them via the self-consistent mean fields o and 7. Using the
regularized version of the sea contribution (31) we get

(Oyes = ¢ Z [Ren(2a; A) Oa—Rum(£2, A) 0] . (37)
In the proper-time scheme, the regularization function is given by

R = Sif;‘;f) T (-;- %) = erf, (€/A) (38)

with the complementary error-function erf.(z) =\2/_$7? [dte 2", Tnserting @ =1/N; one
gets the solitonic baryon number

B(T,p) = <<Nic [&rd ) ar)) = B + 3 [fea (T, ) — g (T, u)] (39)

with the unregularized sea contribution already introduced in Eq.(17). The same ex-
pression is obtained if one starts from the grand canonical potential (10) and uses the
thermodynamical relation B=-8Q/N, du keeping in mind that the meson fields have to
minimize the potential (18).

To investigate the properties of a soliton which is embedded in a medium with given
density po we have to establish a relation between T, py and p. This will be done below
(45). Knowing T and u one can determine the solitonic field by means of the equations of
motion (19, 20). Its baryon number (39) varies with 7" and y and is different from one in
general. The usual method to get a state with definite baryon number by minimizing the
free energy can not be applied since it changes the chemical potential which has already
uniquely been determined by the medium density py. In Ref.[7], a chemical potential
s for the solitonic field configuration was introduced, which differs from the chemical
potential u of the homogeneous field, in order to fix the solitonic baryon number exactly
to one. However, such a soliton is unlimited in space since a finite fraction of the baryon
number is uniformly spread over the whole space. To elucidate this statement we consider
the baryon density which is defined as the expectation value of the current

O(r) = ¢'(r) Oq(r). (40)

with O=1/N,. The expectation value of currents (40) with a time-independent operator
O can be treated in a way similar to the expectation value of the operator (28). One
defines a generating functional Q4[x](T, ) by formally the same expression (29) but with a
space-dependent function k() instead of the parameter . The corresponding expectation
values are obtained by varying the generating functional with respect to «(r) and can be
expressed by Eqgs. (34-38) with the matrix elements O replaced by

0Q(r) = eQ1(r) 020 (r) . (41)

The expectation values in the equations of motions (19, 20) are of the same type and can
be obtained with O=+° and O = iy%ys7-#, respectively. Applied to the baryon density

9



we get

p(r)=-T 7Tdr<frl t2[D(u) ™ = Do(u) H|rr) = p*(r) + p™*(r) (42)
with 0

For) = —2 3 [sign(ea) OL(r) @alr) — sign(e2) B (M BAr)],  (43)

) = 8 [T ) Balr) - @) ) ). (a9

Integrating over the whole space we recover the total baryon number (39).

First let us consider the homogeneous medium characterized by the hamiltonian hg
with a constant o field oo =M" and vanishing 7 field. The corresponding eigenfunctions
are plane waves characterized by the momentum vector k and normalized to one particle
in the volume V. The sea contribution (43) vanishes, and the sum ¥ in the medium

[

contribution (44) has to be replaced by an integral 4V [ &% (2 )3 taking into account both

signs of the energies +e; with g, = \/k*+M*2, and spin and isospin degeneration as well.
One gets

2 i 1
PD(T7 1‘) /d]"}" nék (T l‘) + n~€k (T /"') /d [1+e(5k—1z)/T 1+e(5k+#)/T] :

(45)
Equation (45) establishes a relation between medium density and chemical potential and
is used to determine u for a given medium density py and temperature 7. It is also used

1.5} T .

T=150MeV Fig.2: Baryon densily distri-
= 1o - bution of the soliton. (full lines)
= 0.5 P,=0.32fm™ ] normalized to baryon number

0.0L M N B = 47rfd7'r2,?(r) as a func-
.5 —r—t——y ; tion of the distance r from

T=100MeV the center. The broken lines
s 1.0 ] .
= show the reproduction of the
- 0.5¢ p,=0.16fm™ ] medium density by the discrete

0.0 — basis. The contributions of the
1.5 s . Dirac sea are given by the dot-
& T=0 ted lines. The right end of the
e 1.0f 3 . e .
= curves indicales the size of the
< 0.5f o ] boz (D=18/M*), which is dif-
0.0}, Po= ferent in all three cases.
0 2 4 6 8 10 12 14
r {fm)

to test the accuracy of the numerical procedure and to determine the necessary size of
the basis. For that aim we evaluate the baryon density for a homogeneous ¢ field by
means of Eq. (44) within the discrete basis and check the agreement with the result (45)
obtained in the momentum basis. We increase the basis until sufficient agreement is
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reached. The result is shown in Fig.2. Apart from a region close to the edge of the box,
which is sufficiently far away from the soliton, the medium density is well reproduced by
the discrete basis with a finite number of states. Additionally, Fig. 2 illustrates the sizes
of the various contributions to the baryon density and their modification when changing
the medium parameters from the vacuum to values close to the border of instability. The
dominating contribution results from the valence level which give rise to the bump around
the center of the soliton. The residual terms in the medium contribution (44) describe
the polarization of the Fermi sea. Their contribution to the density is too small to be
visible in Fig. 2. However, this contribution is located at larger distances than the valence
contribution and has a remarkable influence on the soliton radius. Moreover it depends on
temperature and density and contributes to the total baryon number. It is just this part of
the total baryon number which is responsible for the deviation from one. The contribution
resulting from the polarization of the Dirac sea modifies the density distribution slightly.
It does not contribute to the baryon number. Fig.2 illustrates nicely the swelling of the
soliton when increasing temperature and density. The mean-square radius of the soliton
will systematically be studied in Sect. 4.

Now let us consider the consequences of introducing a chemical potential pus = -+ dp
for the soliton which is different from the p for the homogeneous background field. In
this case we get for the baryon density instead of Eq. (42)

YT

p(r)=-T /d'r<'r'rltx‘[D(us)“l—Do(u)"l]l'rr) . (46)

In the asymptotic region far away from the center of the soliton (r>> R) we can replace the
quark propagator D(us)~! by the propagator Dy(us)~! in the homogeneous field with the
chemical potential for the soliton. This can be proven by expanding D(us)™! in Eq. (46)
around Dy(us)~! (gradient expansion). As a result, the propagators differ only by terms
which are proportional to the deviations of ¢ and 7 from their asymptotic values and by
terms proportional to their derivatives which vanish in the asymptotic region. So we get

YT
p(r>R) = —T/dT <7"r|tr [Do(us)_l——Dg(p)'IHTT>
= Y [feg (T, ps)— g (T, )| @5} () B3 () (47)

o

with the result that the soliton density vanishes at large distances from the center only if
the chemical potentials p and pg are equal. Introducing a different chemical potential pg
one modifies the occupation probability for quarks in unbound states which contribute to
observables at large distances. As a result, a finite fraction of the baryon number (and
of other observables as well) is uniformly spread over the whole space. The root mean
square (r.m.s.) radius R defined by

72— Jd3r 7%p(r)
[&7 p(r)
is infinitely large. The appearance of unbound quark states below critical temperature and

density is a consequence of the missing confinement in the NJL model. The situation is
different for an isolated soliton at T'=0. Here one gets the soliton by adding 3 quarks onto

(48)
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the bound valence level which does not contribute to the density at large distances. As
soon as T >0 and/or gy >0 unbound quark levels are involved and the lack of confinement
becomes evident.

The difference du which is necessary to ensure B =1 amounts to a few hundreds of
keV and decreases as 1/D? with increasing box radius D. The resulting solitonic density
at large radii decreases correspondingly. It vanishes in the limit D — co and the effect
might be considered as caused by the box. Unfortunately that is not true. Independently
of the box size a finite fraction of the baryon number lies homogeneously spread outside
the soliton, i.e.we have [°drr2p(r) # 0 outside any sphere with radius R around the
soliton, and the mean-squared radius diverges [z dr r*p(r) — +o0. In Ref.[7], the (small)
deviation from the medium density outside the soliton was simply neglected, while it was
taken into account when calculating the baryon number B. Similar problems will occur
when calculating the moment of inertia in Sect.5. That is why we tolerate a baryon
number slightly different from one and do not introduce different chemical potentials with
the consequence that any local expectation value of the soliton vanishes asymptotically.

There is a promising method in the literature which might be applied to fix the baryon
number of the soliton to one without changing the chemical potential. In Ref.[21] the
regularized version of the baryon number in vacuum, which differs also from one, could
be constrained after introducing the chiral radius field as an additional dynamical degree
of freedom. In the center of the soliton, this radius field deviates noticeably from the
chiral circle. Additionally, the constraint on the baryon number prevents the soliton with
a space dependent radius field from collapsing. Since this method goes beyond the chiral
circle we shall not consider it in this paper.

4 Emergy and radius of the soliton

In this section we display and discuss energy, baryon number and r.m.s.radius of the
soliton defined in Sect. 2. Fig. 3 shows internal and free energy. While the internal energy
represents the total energy which is necessary to generate the soliton the free energy
disregards that part of the energy which is automatically delivered by the heat bath.
The first striking feature we want to mention is the independence of the valence quark
energy on temperature and medium density, and hence on the constituent quark mass
M*. The latter determines the depth of the ¢ field which binds the valence quarks. The
decreasing depth at growing T and/or pg is nearly compensated by a larger radius of
the self-consistently determined potential well with the result that the valence level is
kept at an almost unchanged energy of roughly 500/3 MeV . The solitonic solution of the
equations of motion disappears if the valence level comes close to the top of the well in
the o field. Comparing total soliton energy with the mass of 3 free constituent quarks we
notice that the soliton energy depends weaker on T and pg than the constituent quark
mass. V
Comparing the free soliton energy with the results of Ref. [7] we notice differences up
to several hundred MeV especially at larger medium density. They rest on the differences
between both approaches, in particular on the hole in the valence level of the homogeneous
configuration assumed in Ref. [7], and on their different chemical potentials. On the other
hand, our baryon number which decreases with increasing temperature superimposes the
T dependence of the soliton energy. Dividing the free energy by the baryon number it
exhibits a slight increase with increasing temperature.

12
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The r.m.s.radii R (48) displayed in Fig.4 indicate a swelling of the soliton when
temperature and density increase. At low temperature the soliton swells roughly linearly
with increasing medium density. The soliton at normal nuclear density is by roughly
20 percent larger than in vacuum. Above 125 MeV the r.m.s. radius grows continuously
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towards the deconfinement transition. There are two different reasons for the modification
of the soliton size in the medium: the increase of the radius of the self-consistent mean
field and the polarization of the medium quarks around the soliton. The first effect is
rather pronounced and nearly proportional to 1/M*. The polarization modifies the baryon
density very slightly but at rather large distances from the center of the soliton and has
therefore a remarkable influence on the mean-square radius. The effect is positive at
lower temperatures and negative at high temperatures. It amplifies the dependence of
the r.m.s. radius on the medium density and restricts its dependence on the temperature.
A comparison with the r.m.s.radii obtained in Ref. [7] is questionable because of the
homogeneously spread part of the baryon density in a calculation with different chemical
potentials for solitonic and homogeneous field. Nevertheless the values are in the same
order of magnitude. In contrast to Ref.[7] we get always a larger radius if the medium
density increases for any temperature.

5 Quasi-classical energy corrections

The soliton considered so far exhibits several undesired properties which do not allow a
direct comparison with the nucleon or other baryons. Due to the mean-field approximation
the translational symmetry is violated and the soliton energy is contaminated by spurious
center-of-mass motion. We estimate the spurious part of the soliton energy which is
connected with quantum fluctuations around the artificially fixed position of the soliton
by means of quasi-classical methods and subtract it from the total energy. The same is
done for the rotational degree of freedom where the restriction to hedgehog configurations
introduces an orientation of the soliton in space and isospace with the corresponding
spurious fluctuations. Moreover we introduce a collective rotation of the soliton as a whole
in order to equip it with definite values of spin and isospin and add the corresponding
rotational energy to the total soliton energy giving rise to a mass difference between
nucleon and A isobar. Rotations in space and isospace are not independent of each other
since the total isospin of the hedgehog soliton is directed opposite to its spin. Fluctuations
and rotational energies in both spaces are equal and have to be considered only once. We
perform our calculation in isospace which can simpler be treated.

The perturbative quasi-classical approach used for the determination of spurious trans-
lational and rotational contributions to the soliton energy has been adopted from low-
energy nuclear physics where it is denoted as pushing and cranking approach [10]. The
same correction terms can be derived if one includes boosted and rotating meson fields in
the stationary phase approximation which leads to the effective action of the model [2].

First we consider fluctuations of the total soliton momentum P = [dr ¢f(v) pq(r)
which are described by the dispersion

((AP)*) = (P?) - (P)*. (49)

To evaluate expectation values of P and P? we use the regularized version of the extended
canonical quark potential (29-38) with a source term —wv-p. It describes the grand canon-
ical potential in a frame boosted with velocity v relative to the rest frame of the soliton.
We get

(py = - ZalLni)

= —NTTi [ (D(s) ™' ~Do()™") ] = 0 (50)

v=0
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which vanishes for any time-independent hamiltonian h with 8h/81=0. Squares like P? of
a single-particle operator (28) can be decomposed into a single-particle operator [PQ](I) =
Jd3r ¢'(r) p? ¢(r) and a normal ordered two-particle operator [P? ](2) The expectation
values of the latter can be expressed by the second derivative of the extended canonical
potential (29) and the product of two single-particle expectation values. We get

O2Q3 (T,
(P = (P0) + (PY -1 ) g
Introducing the inertial mass tensor
QY (T, p; v) _ ‘
M (T, p) = W e M(T, ) b (52)

which is diagonal for spherically symmetric solitons and has identical matrix elements,
we get for the dispersion (49)

((aPy) = ([Ply)) +3TM. (53)

The minus sign in the mass definition (52) results from the anti-hermitian character of
the euclidean velocity v. Equation (52) defines the inertial soliton mass by the response
of the grand canonical potential to a boost at fixed values of T and p. Since the variation
of (2 at fixed T and u is equivalent to the variation of the free energy (22) at fixed T and
B (39), and also equivalent to the variation of the internal energy (21) if B and entropy
S = —0Q/0T are fixed, we can rewrite Eq. (52) accordingly. However, the determination
via {2 is the most appropriate one in our case since we have an explicit representation of
the grand canonical potential on its variables T and p. That is not the case for internal
(21) and free energy (22).

In the non-relativistic limit, the dispersion (53) corresponds to the following energy of
the translational fluctuations of the soliton

g _LePr)  (Phy) 3. (54)

trans ~ 9 M - 9 M 9

&

While the second term describes thermal fluctuations of the soliton mass center in a
medium with 7> 0 the first term represents the energy of the unphysical quantum fluctu-
ations of the mass center which has to be eliminated from the total soliton energy. Fig.5
displays this energy as a function of medium temperature and density. The main con-
tribution to the center-of-mass energy stems from the valence quarks which are confined
by the well in the mean field. The calculated reduction of E.ny, with increasing tem-
perature can be explained by the swelling of the soliton in accordance with Heisenberg’s
uncertainty principle. But there is only a loose relation between center-of-mass energy
and r.m.s. radius (Fig. 4) since the soliton radius incorporates not only the modified mean
field but also the medium polarization.

After an equivalent consideration for the dispersion of the isospin operator T' =
Jd3r ¢f(r) tq(r), where t = 7/2 denotes the single-particle isospin operator, we get by
means of a generating function (29) with the source term —w-#

(((ATV» (i m»

Z'Of.

wlw

-
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for the energy of the rotational fluctuations with the iso-rotational moment of inertia

24 (T, p; w)
dwidw*

The moment of inertia is diagonal for symmetry reasons and has identical diagonal ele-

ments. The energy of a soliton rotating semi-classically in isospace with isospin quantum
number 7 and moment of inertia 7 is given by

T(T+1)
L S
Ecrank - 2.7 : (57)

The corrected energy of a soliton with isospin 7" and spin J =T is obtained by subtracting
the energy of the spurious quantum fluctuations (first term in Egs. (54, 55)) and adding
the cranking energy (57) to the soliton energy (21)

Er.=E- «[1;3/‘1”» _ «[1;;1)» + T(;f;l) .

The difference between the masses of A isobar (7 =3/2) and nucleon (7 =1/2) is then
given by

= J(T, 1) b - (56)

w=0

._7il¢(T; /‘L) = -

(58)

_ _ 3
AEpy = EI=32 _ ET=1/2 = 27 (59)

The expectation value of the single-particle operator [PQ](I) has to be calculated numer-
ically using Eqs. (33-38) with O = p? and the regularized sea contribution (37). The
expectation value of the corresponding isospin operator can analytically be determined
since the single-particle expectation values of t? are the same for all quark levels inde-
pendently of the meson ficlds ({a]t?|a) = (®|t?]a®) =1/2(1/2+1)). Hence most of the
contributions to the expectation value cancel out each other and we get

() ) = NcB% (% + 1) = %B- (60)

The inertial parameters (52, 56) will be determined in the subsequent subsections.
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5.1 Inertial soliton mass

In this subsection, we show that the inertial mass (52) of the soliton is identical with its
internal energy (21) and need not be calculated separately

M — Em + Eg,sea + Eq,med =F. (61)

Assuming spherical symmetry we get by means of Eq. (B.12, B.24) for the inertial soliton
mass (52)

1 1 82QYT, w; v)
= - W= —= R S s sea + Mmed
M 3 ;M 3 Ovov |, (62)
where we have introduced the contributions
sea 1 azﬂq,sea( )
AT T3 fvdv =0 (63)

_ —sA(0) 2 . e—s40(0) 52
= N [ do Jim TTe[e+2 (£ e Ly V(g ) — e 4e02]

and

1 §2Qa.med (T) 1 ’U)

med -
M 3 Ov-0dv

[l

(64)

v=0

2 .
= ~NTTe[AG) ™ (5 + 82+ gv-wa it # ) — Ao() 0]

+N. hm TTr[A(O) ( + 3%+ 'y-V(a + i'y51"'~'i'7r)) - AQ(O)“laf]
—NTTe[A(w) " (k- 1) + %r-[h, pl) — Ao(p) " p(ho — 1)

with A(g)(x) defined in Eq. (B.1). Now we exploit the invariance of the potential {2 with
respect to an arbitrary variation of the meson fields o and 7 around the stationary point in
accordance with the equation of motion (18). A variation which is in accordance with both
the spherical hedgehog symmetry and the chiral circle respecting the boundary conditions
00=0 and d7=0 at small and large separations from the center of the soliton is given by

b0 =er*O0  and 0w = erFOym = ek O (P ) (65)

with an infinitesimal variation parameter €. Such a variation of the meson fields gives rise
to the following changes 6™, 6Q%** and 6Q%™¢ in the mesonic and quark contributions
to the grand canonical potential (10)

sOm _ myp /d3r 50’(7‘") (’66)

€

= mo /d3r * 00 = 3—-- /d3r (o0 — gp) = =307,

69?\,5(33 — —-{Y— ds 1”11 TTre™ sA(0) 5]1. (67)

2 1/1\2 T-0

gQamed  — -i".’zfrr v [A() 7 8(h - u)]+ Ne hmTT;[.z(e)-lah} (68)
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with

5‘{& - 5 (55 +i75%.5‘§) = Br-V (o + iy (69)

= —ir-[h,p] = a-p—i[h,p],
5_/? _ {h éﬁ} =202 +ivy-V(o + iy -7n)—i [hz,'r'p} , (70)
§(h—u)? = 6h*—2uéh. (71)

Now we introduce first 6k, §h? and §(h—p)? and then §QF™* and §Q%™ into Eqs. (62-64)
and get by means of the equation of motion (18) and the variation (66) of O™

M = Q" - N, * ds lim TTr[( —sA0) _ e-SAO(O))ag] (72)

1/A2 T-0
—NTTe[A(w)™" (82 + plh—p)) = Ao(1)™ (02 + p(ho—p)) |
+N, Jim TTe[(A(0)™ ~ A0(0)7)82] .

The agreement with the internal energy (21) can now be established by means of Egs. (A.9-
A.12) by comparing the various terms in Eq.(72) with the components (23-25) of the
internal energy.

The equivalence of inertial soliton mass and total mean-field energy is by far not
trivial despite the Lorentz-invariance of the initial NJL Lagrangian. The approximations,
the particular regularization scheme applied only on the Dirac-sea contribution and the
presence of the medium might disturb the equivalence of inertial mass and total internal
energy.

5.2 Iso-rotational moment of inertia and A-nucleon mass split-
ting
The iso-rotational moment

1 0°Q{(T, s w)

1 Se. me:
=325 =3 T 50 du =g (73)

w=0

consists of the components

sea 62Qq,sea N, R Eay € ;A
JIx 3 dw- &E,) :'ZCZ{"—“‘—_‘JE _6!; )(almlﬂ)(ﬁlmla) (74)
w=0 aﬂ [+3
Ry(ey,eq; A)
_:Z;(O——sg—_( OlTsl,BI))(.BOITaIaU)]
B8
with "
A e /N gt/ g
Rz(ga,€p;\) = 'ﬁ eyt e -2—(exf (eaf/A) — erf, (gﬂ/A)) (75)
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and

1 QYT s w)

med .
7 3 Ow -Ow

(76)

w=0
= —NCTTr[D(u)“lth(u)'ltg - Do(/l)—ltzDO(.u)_ltB]
+N lim T'Te[D(0) 45 D(0) 45 — Do(O)_ltsDo(O)—ltSJ

- ——Z[”” Mo (alma 1 B) (Bl 7 a) — <a°|r3|ﬂ°><ﬁ°|rsla°>}
g 9

While the sea component (74) has been derived in Ref. [23] the medium contribution (76) is
obtained by means of Egs. (6, 7, A.1, A.2, A.7, A.8). Since the single-particle hamiltonian
hg of the homogeneous medium commutes with 73 only diagonal elements with a® = 3°
contribute to the corresponding terms in the inertial momenta (74, 76). Because of
J}SL Ry(e,€';A)/(e —€') = 0 these terms vanish in Eq. (74) and the homogeneous medium

does not contribute to sea component of the inertial moment. That is not true for a
calculation in the discrete basis [20] with boundary conditions depending on the superspin
quantum number. Here we have numerically to determine the inertial moment of the
homogeneous medium and to subtract from the moment of the solitonic configuration.

Fig. 6 illustrates the moment of inertia as a function of medium temperature and den-
sity. At vanishing density, the moment is nearly constant and increases remarkably only
in the neighborhood of the critical temperature at 185 MeV. At finite medium density, the
increase starts earlier. The main contribution to the moment of inertia comes from tran-
sition matrix elements between the valence level and an unoccupied level in its vicinity.
At finite density, the levels around the valence level are well occupied by quarks repre-
senting the medium and the moment of inertia is remarkably reduced in comparison to
the vacuum (Pauli blocking). Only a higher temperature increases the probability to find
a hole close to the valence level and increases J. The resulting moment of inertia is very
small and the AN mass splitting (Fig. 6, lower part) is huge at low temperature and finite
density. This is an obvious shortcoming of the model describing the medium as gas of
constituent quarks. In a more realistic picture, the medium quarks are bound in solitons
and the corresponding transition matrix elements are not blocked to that degree. On the
other hand, if one keeps the valence level of the homogeneous medium free (7,0 =0) as
in Refs. 7, 9] one gets big transition matrix elements to that level, and the moment of
inertia is huge. The resulting AN splitting is negligibly small already at half of normal
nuclear density (lowest line in Fig.6) and further decreases if the density grows. That is
why we discarded this method of tailoring a B=1 soliton.

The quasi-classical energy corrections in Eq. (58) represent approximations to the first
terms in an 1/N, expansion. While the quantum fluctuations behave like (1/N;)? the
cranking term is proportional to 1/N.. So it is not surprising that the mass shift at pp =0
obtained in our approach exhibits a similar dependence on T as the shift evaluated in
heavy baryon chiral perturbation theory (HBxPT) using a 1/N, expansion [24]. The shift
is negative for nucleons and positive for A isobars and has the same absolute value in our
approach apart from a term which is proportional to the deviation of the baryon number
from one. The identity of the absolute values of the mass shifts for nucleon and A isobar
is the result of the restriction to 2 quark flavors in contrast to the HBxPT calculation
which includes strange quarks. At 7 = 130 MeV the AN splitting is reduced by only
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5% in comparison to 20% in Ref.[24]. Again a partial blocking of quark levels in the
neighborhood of the valence level prevents a larger moment of inertia and reduces the
decrease of the AN splitting at finite temperature.

2.0 | ]
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= 450} obtained with the assumption that
:J% 200 the valence level is empty in the
= homogeneous medium.
150
0
50

6 Emnergy of the nucleon

In Fig. 7, we display the corrected internal energy (58) and the corresponding free energy
in dependence on temperature and density of the medium for isospin 7 = % with the
expectation value (60) of the isospin operator. In the considered region, the baryon
number of the soliton varies between 1.2 and 0.8 as shown in the lower right corner of
Fig.3. To estimate the effect of the varying baryon number we display the energy per
baryon number on the right panel of the figure. We see that the variation in the baryon
number has only a moderate influence on the corrected soliton energy. The behavior of
the soliton energy in dependence on temperature and density differs remarkably from the
corresponding behavior of free constituent quarks. While constituent quarks get lighter
with increasing temperature the soliton gets heavier. The dependence on the medium
density is weaker for solitons than for constituent quarks.

The increase of the nucleon is mainly due to the reduction of the center-of-mass energy
(Fig. 5) which shrinks from 350 MeV at T'=0 to 100 MeV close to the critical temperature.
This has to be taken into account if one compares with calculations which do not consider
this spurious energy. A slight decrease of the nucleon mass at higher temperature as
e. g. observed in Ref. [22] is changed into an increase by means of the center-of-mass energy.
Center-of-mass corrections do also reduce the density dependence of the nucleon mass at
low temperatures.

We should mention that the calculated nucleon mass in vacuum is by roughly 200 MeV
smaller than the experimental value. This is an obvious shortcoming of the simple effective
model and the approximation made in the course of the evaluation. For that reason
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the model is preferably used for the evaluation of the splitting between the masses of
different baryons. In that sense we do not consider the absolute masses but their variation
in dependence on temperature and density. Furthermore we used the experimental A-
nucleon mass-splitting in vacuum in order to fix the only free parameter of the model -
the constituent quark mass in vacuum - to a value of 420 MeV .
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7 Conclusions

We investigated the properties of a two-flavor NJL soliton which is embedded in a medium
of constituent quarks with self-consistently determined constituent mass. Energy and
mass distribution of the investigated soliton are determined in mean-field approximation
with the restriction to hedgehog configurations and to the chiral circle. To get a solitonic
solution of the corresponding equations of motion we have to fix the occupation probability
of the valence level independently of the thermodynamical parameters of the medium.
Otherwise the soliton dissolves already below 100MeV . The expected critical values of
medium temperature and density are obtained with the assumption that the occupation
probability of the valence level equals one, the same value as assumed for the soliton in
vacuum.

Through lack of confinement the model does not allow the construction of a localized
soliton with fixed baryon number as soon as medium temperature or density differ from
zero. Keeping the baryonic charge confined within a finite radius around the soliton the
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baryon number of the self-consistent field configuration varies between 0.8 and 1.2 in
dependence on temperature and density. Fixing the baryon number to a definite value by
means of a chemical potential which differs from the chemical potential of the medium a
part of solitonic baryon charge is uniformly distributed over the whole space. This is an
obvious contradiction to the definition of a soliton.

To remove spurious contributions to the mean-field energy and to equip the soliton
with the quantum numbers of nucleon or A isobar we adopted the quasi-classical pushing
and cranking approaches. The resulting energy corrections are determined by inertial
parameters describing the response of the soliton as a whole with respect to a translation
or rotation. We found the nontrivial result that the inertial mass in the medium is identical
with the internal energy of the soliton. The rotational moment of inertia was determined
numerically.

It has turned out that the description of the medium as a non-interacting gas of con-
stituent quarks moving in the solitonic mean field overestimates the effect of the medium
on the soliton. In particular, the expected decrease of the AN splitting at increasing
temperature and density is remarkably reduced by the quarks of the medium. At lower
temperatures, the Pauli blocking of low lying quark level by medium quarks dominates
the behavior of such quantities which are described by transition matrix elements between
different quark levels. It overcompensates, for instance, the influence of the swelling effect
on the moment of inertia. Instead of increasing the moment of inertia decreases with
increasing medium density.

As aresult of its internal structure, which is generated by a self-consistently determined
mean field, the behavior of the soliton energy in dependence on temperature and density
deviates remarkably from the corresponding behavior of the constituent quark mass. The
scaling property between both quantities is noticeably disturbed since the influence of the
changed constituent mass (depth of the well in the mean field) on the soliton energy is
accompanied by an variation of the size extension of the well in the self-consistent mean
field.

After subtracting translational and rotational corrections the discrepancy gets even
more pronounced since translational and rotational corrections decrease with increasing
temperature and density. As a result the soliton mass increases with increasing tempera-
ture while the constituent mass decreases.

The swelling effect of the soliton in dependence on medium temperature and density
is well pronounced. It does not only correspond to the increase of the radius of the
self-consistent mean field but is also related to the polarization of the medium in the
neighborhood of the soliton. The latter intensifies the swelling with increasing medium
density but reduces the dependence on temperature.
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Appendix

A Operator traces

Evaluating the trace Tr of an operator O(9,, h), which contains the differential operator
O, and the time-independent operator A, and which includes functional trace with anti-
periodic boundary conditions for the euclidean time-interval [0,1/7] and traces tr over
Dirac and Pauli matrices, we use the representation
yr +o0
TrO(0;, h) = /d'r/d3r tr(rr|O)rr) =) > Ofiw,,&4) (A1)
0

a nN=-—c0

with the eigenvalues £, of h and the Matsubara frequencies w, = (2n+1)7T. At T —0,
the sum over n has to be replaced by an integral

-+o0
. dw .
%l_lf(l)TTl‘O(a,—, h) = Za: /57—; O(iw,€q) - (A.2)

Within Schwinger’s proper-time regularization scheme the regularized trace of the loga-
rithm of a positively definite single-particle operator O at T — 0 is given by

ds d * dw
im 7T =_— [ =2y - 0—80(8:,h) _ s / W sO(iwea)
%m}) ra In O(0;, h) / . :}Jn})‘l Tre = / . Ea 5 . (A.3)
1/A2 1/A? —o0

When calculating traces such as in Eq. (A.1, A.2) we use the relations

TS [in (w2 +a?) —In (w2 +7)] (A.4)

n=-—oo

=a—b+2TIn(1+eT) —2TIn (1+e7*7)

+00
T—0 _d_’f’_ 2 2 2 2 _ -
il /2W[ln(w +0%) —In (w® + %) ] = a| - b (A.5)
—00
and
- +o0 1 _1 g 703210— 1 sign{a) (A.6)
oy t+a 2 1+ed/T 27 iw+a 2

-

Evaluating products of two thermal propagators we use

= 1 1 T =7 1 1 -
T 3 3 { (A7)

Wiyt a iw, +b b—a, f liw,+a dwn+b

1 { 1 1 ]
Ta—bll4+edT 14ebT)
1

RS ER0 = SN
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The following identities for traces of the operators (B.1) can be proven by means of the
representations (A.1-A.3)

0
T 1
/dsk%Tﬁk 40 62 = = Tim TTes In A(0), (A.9)
1/A2
Tr[A(p)8?] L9 g, A(p) (A.10)
T Or ] = Ty R ‘
Tr[A(,u)‘lu(h—,u)] = —ﬁ-—q-Trln A(u) (A.11)
y 20u ’
1
i | A 1521 — 2 |; 9
}‘ILI}’TTI[A(/,L) o] 5 Jim T'Trln A(y) . (A.12)

In some of the equations above we have neglected an infinitely large constant which
vanishes if one considers the difference between two traces.

B Evaluation of the mass tensor

Evaluating the mass tensor (52) we introduce the hermitian operators

A1) = Doy (1) Doy (1) = =07 + (heo) — 1)’ (B.1)

and
Alpiv) = D(wv)' D(i;v) = A(w) + Bv' - (v-p)?, (B.2)
Ao(iv) = Do(us 0)f Do(ps 0) = Ao(s) + Biv' — (v-p)? (B.3)

with D) (1) from Egs. (6, 7), Dyg)(i; v) defined in Eq. (30) with a source term kO =wv-p,
and with the operators

i 9 ; i
B' = F=A(wv)| =p'D)-DW'p (B.4)
=0
= 2pi67 - [hfpi] = QPiBT - Iﬂ Bi [0’(7‘) + i75%'7r(7')] ’
; d . , ;
By = z=Aoww)|  =pDolw) — Do(w)'p’ = 2p'0:, (B.5)
v=0

which are independent of the chemical potential x. Here we consider more general meson
ficlds o(r) and 7(r) which are not necessarily restricted to hedgehog configuration and
to the chiral circle. The commutator [h,p?] in Eq. (B.4) is given by the derivative of the
mean field and vanishes for A = hy. Following Ref.[11] we introduce the commutator
representation of B* and Bj

Bl = [CF, 4)(0)] = [C', A (1) + 211h0)] (B.6)

with

Ci= 92- ~ir'd, . (B.7)



First we treat the proper-time regularized sea contribution and notice that the first deriva-
tive of the exponential function is given by

1
_8_%’; e—sA(O;v) = ¢ /dt e—(l—t)sA(O;'u) [Bk__kaplvl] e—tsA(O;v) . (B.S)
0

At v =0 only B* survives in the inner bracket and can be replaced by the commutator

(B.6). The integral is just the commutator between C* and e™*4(% (see e. g. appendix of
Ref. [25])

9 —sA(0;v)
—_e »
Ovk

- /1 dte~(-9s40) [CF, —54(0)] &7 = [CF,ems20)] | (B.9)
0

v=0

The second derivative is obtained by differentiating Eq. (B.8). At v =0 we can apply
Eq. (B.9) and get

1

= —s [t [CF, e (70sA0] gt mieAl) (B.10)

v=0 0

2
e ¢ A0
PYY A v

1 1
15 / dt e~ (- DsAO) gpjinh o~tsA0) _ / dt e~ (1-t)sA0) pk [Ci’ e—tsA(O)] )
0 0

Calculating the trace of expression (B.10) the various terms can be rearranged and sim-
plified. The integration over ¢ becomes trivial

2 A ) 11
. —sA(0;v) _ —sAO) [ ik 4 * k
T Sige § T 2Tr [se ()(pp +3 [C‘,B ])] (B.11)
and we get
0o (B.12)
o= — ——0"(v) 12
ik A A
ovidv*k 2=0

7 : 1 1 :
- H —sA(0) [ ik o 2 (i pklY _ Za-ede(0) [ Rk
= N;/Ldsr}}g})TTr [e (p "+ 5 [G ,B D 3¢ 0 [C ) Bo]]

with the commutators

[C,,B¥] = 26%8% +iy'0 (0 +iys7-7) , (B.13)
[c,Bf| = 25%a. (B.14)

Notice that Tr[e~**9®)pip*] vanishes because of pip* = 1[Aq(0), r'p*] and the cyclic prop-
erty of the trace.
Now we consider the medium contribution (16) to the inertial mass and find

2

———Q—-Tr In Ay v)

o = 9T I:l(;z}"ip‘ip" £ LA B! Bk} . (B.15)

v=0

t
Ot



Tq evaluate the second term we apply the commutator representation (B.6) of the operator
B* and get
Te[A(u) ™ B'A(u)™ B¥] = Tr[A(u)™ [C7, A() + 2uh] A(u) ™ BY] (B.16)
= Tr[A(s) ™ [CF, A()] A(w)™ B + 26 Te[A(u) ™} [CF, h] A(w) ™! BY].
The first term in Eq. (B.16) will be treated as in [11] yielding

Tr[A(p) ™ [C, A(w)] Aw) ™" BY] = Te[A(w)Y(CF, BY] - (B.17)
To reformulate the second term we rewrite the commutator
[C*, ] = =5 {r', A1)} +iD(1)'r* D(n) (B.18)

with {4, B} = AB 4 BA and get
Tr [A(1) ™" [CF, BA(w) ™ B] r (B.19)
= —iTr[A(u) ™ BFA(w)" ( {r', Alw)} - D(p)frfp(u)) ]
— iTr [A(/z)“l 5{3&#}] +iTr {(D(u)f)—lB"D(u)‘lriJ .
Using Egs. (B.1, B.4) we obtain
%{Ti, B} = (27'ip’“ — iéi") 8, — ri[h, p*] (B.20)
and
Te (D) B0 | = Tr[a@) ™ (hrD() — D)) (B.21)
= Tr[A()™ (2r'p*0. — 6% D(u) + [r'p*, h])] .

The last term does not contribute to the trace since h commutes with A(u)~"'. Altogether

we have
2

ook 7= Tr In A(y; v) . (B.22)
= _TY[A(#)_l(QPiPk +[C%, BY] + 20 [(h— 5™ + ir'[h, o] )
and
g T A =T (a0 (O B+ 2utta — )] (B2
Gvid dviont o =0 B FoolH » -0 Mg — [ .
with the commutators [C*, B¥] and [C?, B] given in Egs. (B.13, B.14). Finally we get
2
med me
M — aviavkﬂq’ d(T, 1 'v) 0 (B.24)

= —NTTr[A(p) (pp +z [C’ B‘"]) —-};Ao(u)"[c”', Bi]]
+N, }jg}}TTr[A(O)“I (p P+ [C" B’”]) - ';-Ao(o)_l[ci: B«m
—NTTe[A(w) ™ o ((h — )™ +ir'[h, ) — Ao(ie) ™ (ko — 1)5*]
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