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Abstract  

We consider a chiral one-loop hedgeliog soliton of the bosonized SU(2)f Narnbu 
& Joria-Lasiriio model wliicli is e~nbedded in a hot rnediu~n of constituent quarks. 
Encrgy arid radius of the soliton are deterrriiried in sclf-coiisistent mea~i-field a p  
proximatiori. Quasi-classical correctioiis to the soliton energy are derived by means 
of tlie pusliing and cranking approaclies. S h e  corresponding inertial pararneters 
are evaluated. I t  is shown tfiat tlie inertial mass is equivalent to tlie total internal 
energy of tlie soliton. Corrected nucleon and A isobar inasses are calculated in 
dependence on temperature and density of the medium. 

As a result of tlie internal structure of the soliton wliicli is controlled by the 
self-consistent mean field, the scaling between constituent quark mass and soliton 
rnass is noticeable disturbed. 

PACS: 12.39.Fe, 11.1O.Lni 



1 Introduction 

Chiral soliton models have proven to be a fruitful approach to  the description of nucleon 
structure. Starting from the Nanibu QL Jona-Lasinio (XJL) lagrangian [I] and applying 
a well defined schenie of approxiniations one was able to obtain stationary and localized 
field configurations denoted as non-topological chiral one-loop NJL solitons. They can be 
used to  model nucleons, A isobars and strange baryons on the basis of interacting cparks 
(for review See [2, 31). 

The NJL lagrangian incorporates chiral syrnnietry and its spontaneous breakdown [4]. 
It has been used to  study the restoration of chiral synirnetry in a hot arid dence nuclear 
rnediuni modeled by a gas of constituent quarks (for review See [5]). The decrease of the 
constituent quark mass a t  higher ternperature and/or density of tlie medium describes 
the phase transition from the cliiral condensate to  the chirally sy~iirnetric phase. The 
calculated effects are in satisfactory agree~nent with the predictions of lattice calculations 
arid of tlie cliiral perturbation theory as well. 

It is an attractive idea to combine both features of the NJL lagrangian and t o  study 
tlie behavior of a soliton embedded in a liot gas of constituent quarks with a dynaini- 
cally generated rnass. Such a model incorporates the restoration of chiral syrnmetry and 
the possible dissolution of the soliton, which siniulates the deconfinement transition of 
liadroriic matter. In contrast to niany other approaches studying niediii~n rnodifications 
the non-topological soliton model eqiiips the baryon with an interrial structure which niay 
l>e rriodified by the mediurii. 

Usirig tliis approach as a model for baryons in liot hadronic rnatter one should be 
aware of its approximative character which is even not free of iriconsistencies. Below the 
critical values of tempeiature and density, the quark gas is not the ground state of strongly 
interacting matter, neither in nature nor within the model. If the soliton is stable the 
~riedium itself consists of solitons. This goes beyond the niean-field approach. The effect 
we can study within a rnean-field picture is the scale change connected with the reduction 
of the constituent quark mass a t  increasing values of temperature and density and its 
effect on the self-consistent mean-field. Such an approach rests on the assiiniption that 
the dorninating effect of the rnediuni consists in the reduction of the constituent quark 
rnass while its local variation is of niinor iniportance. The free rnotion of the quarks 
representing the rnediuni as a quark gas is an obvious sbortcorning of tlie approach arid 
rnay overestimate the infiuerice of the niediuni 011 the soliton. There are attenipts 16, 71 
to replace the quark degrees of freedom in a part of the effective action by nucleonic ones 
without introducing new Parameters. The results are not very encouraging since chiral 
syrnnietry is restored already at normal nuclear density in this approach [G]. For a more 
detailed discussion See Ref. 181. 

The soliton which we investigate is in most respects identical with the soliton described 
in Refs. [2, 7, 91. The differences concern the particular treatnient of the valence quark 
level and the use of the cliernical potential for adjusting tfie baryon nti~iiber of tlie soliton. 

Due to  niean-Geld approxiniation and hedgchopj ansatz thc soliton has further dcfects 
already known frorii tlie soliton in vacuu11i: it violates translational arid fiso-)rotational 
invariante. Therefore it is affected by center-of-mass motioii aiid tepresents a mixttire 
of nucleon arid A isobar instead of a particle with definite spiri and isospin. The vio- 
lated translational and rotational syrtixrietries casi approxitiiatcly bc restored. The q~-;i- 
classical pushing and cranking approaches [lO] constitu te  a feasible wvay to esclude SpU- 
rious contributioris to the energy arid t o  equip thc soliton with thc correct values of spin 



and isospin. The size of pushing and cranking corrections is controlled by inertial pa- 
rameters. While we relate the inertial soliton mass to  its total mean-field energy the 
(iso-)rotational mornent of inertia is calculated numerically. The relation between inertial 
mass and internal energy is an  extension of the corresponding relation for a soliton in 
vacuum [ll]. 

In Sect.2, we shortly outline the basic ideas defining the NJL soliton in a medium 
of constituent quarks a t  finite temperature and density and review the main forniulae. 
'S17e determine that region of density and temperature where a stable soliton exists. The 
baryon number of the soliton and its spatial distribution is considered in Sect. 3. Here we 
critically discuss the method to  fix the baryon number to  one which was applied in Ref. [T]. 
The numerically determined soliton energies and radii are given in Sect. 4. In Sect. 5, we 
determine quasi-classical corrections to the soliton energy. We consider the soliton in 
a boosted and rotating frame and calculate the corresponding inertial Parameters and 
energies. The corrected nucleon energies are given and discussed in Sect. 6. Conclusion 
are drawn in Sect. 7. An appendix completes the calculations in Sects. 2 ,3  and 5. 

2 NJL soliton in a heat bath 

We consider an ense~nble of u p  and down quarks with Nc=3 colors arid an average mass 
nzo = (m, + md)/2 at teniperature T and cheniical potentiaI p = p, = pd. The latter 
will be related to  temperature T and density po of the medium embedding the soliton. 
The quarks iriteract via a four-quark contact iriteraction, which consists of a chirally 
symmetric co~iibination of a scalar-isoscalar and a pseudoscalar-isovector term, with the 
coupling strength G/2 introduced by Nanibu & Jona-Lasiriio [I]. The derivation of the 
effective soliton action from the SU(2)f NJL Lagrarigian incorporates the following steps 
(for a review See Refs. [2, 31): 

1. Introduction of auxiliary meson fields o and -rr by means of a Hubbard-Stratonovich 
transforniation 112, 131 in the generating functional using the irnaginary-time for- 
malism. 

2. Derivation of an  effective meson action A&, 4 by applying the stationary phase 
approximation on the meson fields (no meson loops, o and T as classical mean 
fields). The  effective action obtained in this way consists of a purely mesonic pa7.t 
dm and of a f e ~ ~ n i o n i c  part Aq, which describes the contributions of the various 
quark levels to  the effective action (quark deterrninant). 

3. Restriction of the nieson fields to  static and spherically symmetric hedgehog configu- 
sations (o(r ,  T )  = o(7-), T(T ,  T) = ~ ( r )  T). In our numerical calculations, the meson 
fields will additionally be restricted to the chiral circle (02(r) +7i2(r) = 00 = const). 
Otherwise, a stable soliton does not exist 114, 151. 

4. Splitting the cjuark part irito a contribution dqFa (sea contribution) which re- 
stilts from a co~npletefy occupied Dirac sea and a residual contribution Aqlmed(T, p) 
(medium coiztr+ltutiar$ which describes the occupation of the quark levels according 
to  ternpcrature and chentical potentiaf (quarks in levels with positive energy and 
holes a t  negative enesgy). The  sea contribution diverges and is regulated by means 
of Cdiwingcr's proper-time regularization schenie f lG] .  Thc corresponding cut-off it 



is not considered as a free parameter but is related to  the experimental values of 
the pion mass and of the weak pion-decay constant in vacuum [2, 17, 181. 

5. In vacuum a t  T = 0, the part which appears additionally to the Dirac sea in the 
effective action consists solely of the contribution of 3 valence quarks, which occupy 
the lowest level with positive energy. It is usually called ualence contribution. The 
valence quarks are bound and do not contribute to the quark density a t  larger 
separations from the center of the soliton. To get a finite quark density outside 
the soliton one has to allow the quarks to occupy unbound levels by introducing a 
temperature and/or chemical potential larger than Zero. 

6. Interaction strength G and cut-off parameter 11 are determined in the vacuum and 
assumed to  be indeperident of T and p. 

7. The soliton itself is defined as a localized deviation of the fields from their asymptotic 
values ao and xo = O  which describe the hornogeneous medium. Solitonic expectation 
values are defined by the differente between the values obtairied for solitonic arid 
hornogeneoiis field configurations. 

The relative eflectiue action of the soliton is obtained by subtracting the effective action 
A,ff[oo, 0] of the hornogeneous configuration froni the effective actiori of the solitonic field 

It  consists of a purely ~nesonic part 

and of the quark deter~ninant which can be written 

D(P)  
dqb7 T ;  CO] ( T ,  p) = - NcTr ln - = Jt4*a[o, T ;  ao] t- Aq*nled[o, T ;  oo] (T ,  p) (3)  

D0 ( P )  

with 
1 D(0) 

Aqysea[o, T ;  ao] = --N, lim TTr In - 
T T+O D0 (0) 

and 

D b )  1 dq'm4[a, T ;  oo] (T, p) = dq - dq,sea = - NcTr In - + -N, lini TTr 111 - 
Do(p) T T40  

D(o) (5)  
D0 (0)  

with the trace Tr defined in appendix A. While the niediu~ii contribution (5) is finite and 
vanishes in the Iimit (T, p) +- 0 the sea contribution (4) diverges and does not explicit l~ 
dcpend on the therrriodyna~iiical variables. The latter is regularized by replacing tlte 
opcrator trace Tr (A.2) by a regularized tracc Trai (A.3). The sirigle-particle operators 

consist of the derivative 3, with respect to thc euctideart time coordiriste T ,  the qtiark 
harniltonians 



and the chemical potential p. The Dirac matrices are denoted by y r (y', -y2,nf3), 
y5 3 i7°71r273, a ß-y, and + is the vector of Pauli matrices. Spatial coordinates are 
denoted by T and have the components ri, the absolute value r Ir1 and unit vector 
E T / T .  

The crucial quantity for the description of a grand canonical ensemble of quarks is the 
thermodynamical (grand canonical) potential given by 

In analogy of the effective action we split the quark part of the cationical potential into a 
sea and a medium contribution 

wIiere Srn means regiilarization of only the sea contribution. For time-independent meson 
fields the determinants of the inverse propagators (6, 7) are real and the regularized sea 
contribution can be written 

In the propes-time schenie, we get by riieans of Eq. (A.3) 

whese E, (E:) are the eigenvalues of the quark haniiltonians h (ho) defined in Eqs. (8, 91, 
and RE is the regularization function 

with the incomplete Garnmafunction r ( x ,  U). Notice that the degeneration with respect t o  
the color degree of freedorn is explicitly taken into account by the factor Nc and included 
neither in the trace Tr nor in the sum over a. 

The medium contribution to  the quark part of the canonical potential (12) is finite 
and will not be regularized. One gets by means of Eqs. (A.1-A.5) 

a4irned (T, p )  = - NcTTr in - + 8, lim TTr In - 
Do(d T+O Do(0) 

Tfie nieditirri contribution depends on the thermal occupation probability of the various 
qirark lcvels wfiich s re  coritrolled by tempcrature and chernical. potential. The quanti ty 



describes the baryon number of the Dirac sea for the solitonic field. Usually the number of 
quark levels with positive and negative energy are equal and BBa vanishes. It  differs from 
Zero only if the meson field is strong enough to pul1 down (up) one or more quark levels 
which are in the positive (negative) continuuni without the soliton field. This happens 
a t  rather large interaction strength G corresponding to  vacuum constituent quark masses 
M 2 700 MeV, and we shall not consider this case here. 

Customarily one treats the contribution of the valence level (a=val) t o  the medium 
part (16) separately, ascribes occupation number one to  this level (fiEva, =1) and leaves it 
empty in the homogeneous medium ( f i ,o  = 0) [9]. This is the simplest way t o  realize a 

val 
soliton with baryon number one in a cold medium. However, the hole in the homogeneous 
configuration has serious consequences for the size of the iso-rotational rnonient of inertia 
which will be studied in Sect. 5.2. 

The rule to regularize only the sea contribution to  the quark determinant should be 
considered as an ingredierit of the rnodel. I t  does not reproduce the correct liniit T + cm 
but dealing with a low-energy model we need not consider this case. In our case, the 
regularization procedure would have a negligible effect on the medium contribution since 
the cut-off is larger than cheniical potential and ternperature (h > p + T). Moreover 
it sitnplifies the niodel considerably since it decoiiples the regularization procedure froni 
ternperature and density dependence. 

The classical rneson fields a and n- rninirnize the grand canonical potential (10) 

leading to  the equations of rnotion 

In general, the equations of niotion can only numerically be solved since the therrnal 
expectation values ((. . .)) 0x1 the right sides depend functionally on the fields on the left 
sides. Expectation values of currents such as in Eqs. (19, 20) will be evaluated in Sect. 3. 
A particular solution of the equations of niotion is given by honiogeneous fields a(r)  Eao 
and ~ ( r )  0 where ao has to  fulfill the gap equation whicti follosvs frorri Eq. (19) for 
honiogeneous fields. A constant sigrria field acts as a mass on the quarks arid ao(T, p)  
is identified with the constituent quark mass M*. Its value 11.1 a t  T = p  = 0 is the only 
free parameter of the model, which can vary within reasonable linrits (see e.g. [SI). It 
determines the strength G of the quark-quark interaction in the initial NJL lagrangian. 
Keeping G fised the constitiient mass &J* for finite valiies of ternperature and derisity 
is uniquely determined by the gap equation. We chose i2.I = 420 MeV in tIie nuriicricd 
calculations. This value reprodiices the experimental A-nucleon splitting. 

Si solution of the eqiiation of rnotiori is called a self-consistent field configiiration since 
one considers not only the esplicit dependcnce of R (10) on ttie nicsori fields via Cl'" buk 
also the dependence via energy spectrurri {E,) of the quarks which enters thc Parts RP\'SE" 
(13) and R91"1ed (16). Restricting the niccon fields to the cliiral circle o and T ficids are not 
iridependent of each other and cqiiations (19, 20) can be reploccd by a singie one e. g. for 
the chiral angle @(T) (see e. g. [19]), 51% consider hedgehog fields with tsiriding riuriiber 
one characterized by the boiiridary conditions f3(r=O) = -X  arid Q(r +W) = 0. 





small and the basis for a reliable calculation must be large. In this way the capacity of 
the computer determines a lower temperature limit for a reliable calculation. We used a 
box with radius D = 18/hI* which restricts ourselves to  temperatures above the broken 
line in Fig. 1. In contrast to  finite medium density a calculation a t  vanishing density is 
not affected by the level spacing. In this case, the Fermi energy lies in the middle of the 
energy gap between f M* and there are no quark levels in the sensitive region. 

At temperatures and densities above the solid line in Fig. 1 a solitonic solution of the 
equations of motion (19, 20) has not been found. Here the self-consistent meson field is 
too shallow to  bind quarks not even the valence quarks. 

Knowing the grand canonical potential R the free energy F of the soliton can be ob- 
tained by means of a Legendre transformations replacing the independent variable p by 
the baryon nuniber B = -d!iI/(N, dp,). The internal energy is obtained by an additional 
Legendre transforniation from the dependence on temperature to entropy S = -an/aT. 
Analogously to the effective action we split internal and free energy into mesonic, regular- 
ized quark-sea and quark-triediutri contributions and subtract the corresponding energies 
of the honiogeneous mediurri 

Sitice riiesonic and sea contributions to the grand canonical potential are independent of 
T arid p, we have 

EI" = F'" = (;2In (23) 

The medium contributions are given by 

and 

where we have introduced the rnodified occupation nuniber 

which describes the therniodynaniical probability to find an  occiipicd lese1 a t  positive 
energy E, and a hole a t  negative energy, rcsgectisely. Thc latter is supplied with a niinus 
sign. For the co~npletely occupicd Dirac sea without any additional cparks above it \W. 
have 5, (0,O) = 0 Va. 



3 Baryon number, density and chemical potential 

Now Iet us investigate the baryon number B of the self-consistently determined solitonic 
field and their spatial distribution p(r). For that aim we consider thermal expectation 
values ((0)) of single-particle quark opesators 

where 0 is a time-independent operator acting in the Dirac and/or flavor (isospin) space. 
The baryon number is obtained with 0= l/Nc. 

The thermal expectation value of the single-particle quark operator (28) in a state 
characterized by the grand canonical potential (10) can be expressed by nieans of a gen- 
erating function 

Rq (T, p; K )  = -ATCTTr(,i) In D(P; 4 - flq,sea - (K) + fl"7n'ed 
Do(p; 4 (T7 P; 4 

given by the canonical quark potential (12) with the inverse propagators D(o)(p) replaced 

iIlv 
D(0) (P; K) = D(0) (P) - ~0 = a, + h(0) - p - K O  . (30) 

Restricting the rnesori fields t o  their classical values the mesonic part of the grand canon- 
ical potential does not influelice expectation values. We shall use both the unregularized 
vession 

D(0; K )  
SPsea(i;) = -Nc lini TTrln 

T 4 0  DO(@ K) 

and the regularized version R ~ ( K )  of the sea coritribution to (29) with Tr replaced by 
TrA. The  niedium contribution is given by 

(T, P; K) = - NcTTr In D(p; K, + Nc lim TTr ln D(O; 4 
D ~ ( ~ ;  K) T 4 0  D0(0; K) ' 

Expectation values of an operator (28) can be expressed by 

P; / = (0); + ((o))med 
( 0 )  = - dK 

ri=O 

with the unregularized sea contribution 

( O y  „ - dWsea ( E )  I = -N, I in~  TT~[(D(o)-I-D,,(o)-') 01 
&=O T+O 

- - -5 C [sign(~.) Off -sign(~:) o:] 
2 .  

and the medium contribution 

ivitli the modified occupation numl>ew iiEP(T,p) (27) and tlie niatrix elements 



of the operator 8 with the normalized eigenfunctions @a) ( r )  of the hamiltonian h (ho). 
Sea contributions such as expression (34) are defined as expectation values a t  Zero tem- 
perature and we use the single brackets instead of the double ones which stand for a 
thermal expectation value. In fact, the sea contribution is not completely independent 
of T and ,U but depends on them via the self-consistent rnean fields a and T. Using the 
regularized version of the sea contribution (31) we get 

In the proper-time scheme, the regiilarization function is given by 

ivith the complemcntary ersocfunction erfc(z.) = Jyd t  e-"~' . Iriserting 8 = l /Nc one 
gets the solitonic baryon nii~riber 

with the unregularized sea contribution already introduced in Eq. (17). The Same ex- 
pression is obtained if one starts from the grand canonical potential (10) arid uses the 
therrnodynarnical relation B= -BR/N, d p  keeping in mind that the meson fields have to  
iriinimize the potential (18). 

So  investigate the properties of a soliton which is enibedded in a medium with given 
density po we have to establish a relation between T,  po and p. This will be done below 
(45). Knowing T and p one can determine the solitonic fiePd by means of the equations of 
motion (19, 20). Its baryon number (39) varies with T and p and is different from one in 
general. The usual method to get a state with definite baryon number by minimizing the 
free energy can not be applied since it changes the chemical potential which has already 
uniquely been determined by the medium density po. In Ref. [7], a che~iiical potential 
p, for the solitonic field configuration was introduced, which differs from the cheniical 
potential p of the homogeneous field, in order to fix the solitonic baryon number exactly 
to one. However, such a soliton is unlimited in space since a finite fraction of the baryon 
number is unifornily spread over the whole space. To elucidate this statenient we consider 
the baryon density which is defined as the expectation value of the current 

with O=l/Nc.  The expectation value of currents (40) with a tirrie-independent operator 
0 can be treated in a way similar to  the expectation value of the operator (28). Une 
defines a generating functional fiq[~](T, p) by forrnally the sarne espression (29) but with a 
space-dependent function &(T) instead of the parariieter K. Tlie corresponding expectation 
values are obtained by varying the generating functional with respect t o  ~ ( r )  and can be 
espresscd by Eqs. (34-3s) with the matrix elernents O('] replaced by 

The expcctation valiies in the eqiiations of niotions (29, 20) aw of tfie sarric type and cart 
be obtained with 0=70 and 8 = iy0y57.T, respectiv~?V, Applied to  the baryon density 



with 

Integrating over the whole space we recover the total baryon number (39). 
First let us consider the homogeneous medium characterized by the hamiltonian ho 

with a constant a field ao = &P and vanishing T field. The corresponding eigenfunctioris 
are plane waves characterized by the rriomentum vector k and norrnalized to  one particle 
in the volurne V. The sea contribution (43) vanishes, and the surn C in the ri1ediurr-i 

Q 

contribution (44) has to  be replaced by an integral ~ V J &  taking into accourit both 

sigris of the energies &E* with E X =  and spin and isaspin degeneration as well. 
One gets 

(45) 
Equation (45) estabIishes a relation between medium density arid cheniical potential and 
is used to  deterrnine ,U for a given medium density po and ternperature T. It  is also used 

Fig. 2: Baryon density distri- 
bution of the soliton. (full l ines) 
nonnalized to b a y o n  number 
B = 4rJdr  r2p(r) as  a func- 
t i on  of the distance r from 
the  Center. The  broken lines 
show the  reproduction of the 
medium densitg bp the discrete 
basis. T h e  contributions of the 
Dirac sea are given by t he  dot- 
ted lines. T h e  r i h t  end of the 
curves indicates the  size of t he  
box (D = 1 8 / W ) ,  which is dif- 
ferent in all three cases. 

to  test the acciiracy of the nimcrical proeedtirc and to detcrmine the necessary size of 
tife bwis. For that aim ise esalttate the lzaryon dcnsity for a hornogeneous a ficld by 
rlrearis of Eq. (34) w i t b  the discrete basis arid check thc agreernent with the result (45) 
obtaincct in thc rrion~eiltitni basis. tVc increa~e the basis until suficient agreeriient is 



reached. The result is shown in Fig. 2. Apart from a region close to the edge of the box, 
which is sufficiently far away froni the soliton, the medium density is well reproduced by 
the discrete basis with a finite nuniber of states. Additionally, Fig. 2 illustrates the sizes 
of the various contributions t o  the baryon density and their niodification when changing 
the medium paranieters from the vacuum to  values close to the border of instability. The 
dominating contribution results from the valence level which give rise to the bump around 
the center of the soliton. The residual ternis in the medium contribution (44) describe 
the polarization of the Fermi sea. Their contribution to  the density is too small to  be 
visible in Fig. 2. However, this contribution is located a t  larger distances than the valence 
contribution and has a remarkable influence on the soliton radius. Moreover it depends on 
temperature and density and contributes to  the total baryon number. It  is just this part of 
the total baryon nuniber which is responsible for the deviation from one. The contribution 
resulting from the polarization of the Dirac sea modifies the density distribution slightly. 
It does not contribute to the baryon number. Fig. 2 illiistrates nicely the swelling of the 
soliton when increasing teriiperature and density. The riiean-square radius of the soliton 
will systenlatically be studied in Sect. 4. 

Now let us consider the consequences of introducing a che~riical potential p, = /I + bp 
for the soliton which is different from the p for the honiogeneous background field. In 
this case we get for the baryon density instcad of Eq. (42) 

In the asymptotic region far away froni the center of the soliton (T » R) we can replace the 
cluark propagator D(ps)-' by the propagator Do(ps)-I in the hornogeneous field with ttie 
cheniical potential for the soliton. This can be proven by expanding D(pS)" in Eq, (46) 
around Do(ps)-' (gradient expansion). As a result, the propagators differ only by terrns 
which are proportional to the deviatioris of a and T frorn tlieir asyniptotic values arid by 
terms proportional t o  their derivatives which vanish in the asyniptotic region. So we get 

with the result that the soliton density vanishes at large distarices fsorn the center only if 
the cheniicai potentials p and p, are equal. Introducing a different chenlical potential PS 
one modifies the occupation probability for qiiarks in iinboi~nd states which contribiite to  
observables at large distanccs. As a result, a finite fraction of tlie baryo~t ~iurnbcr [arid 
of other observables as  well) is unifornity spread over ttic wholt? space. Tlie root meail 
squarc (r.m.s.) radius R defined by 

is infinitely lasge. The  appearance of unbourid qiiark statcc balow criticaf tcmperrtturc ünd 
density is a consequence of thc riiissing confintrriicnt in ttie KJL rilodet. T h  situation is 
didfererit for an isoiated solitoti a t  T=O. llerc orie gcts ttic soliton 13y adilirig 3 qiizzrks ortto 



the bound valence level which does not contribute to the density a t  large distances. As 
soon as T > 0 and/or _oo > 0 unbound quark levels are involved and the lack of confinernent 
becomes evident. 

The difference 6p which is necessary to ensure B = 1 aniounts to  a few hundreds of 
ke\r and decreases as 1/D3 with increasing box radius D. The resulting solitonic density 
at large radii decreases correspondingly. It vanishes in the liniit D --+ co and the effect 
nlight be considered as caused by the box. Unfortunately that is not true. Independentl~ 
of the box size a finite fraction of the baryon number lies hornogerieously spread outside 
the soliton, i. e. we have J . d r  ~ ~ ~ ( r )  $1 0 outside any sphere with radius R aroiind the 
soliton, and the mean-squared radius diverges J g d r  r4p(r) --+ f co. In Ref. [7], tlie (srnall) 
deviation from the medium density outside the soliton was sirnply neglected, while it was 
taken irito account when calculating the baryon nuniber B. Sirnilar problenis will occur 
when calciilating the rnoriient of iriertia in Sect. 5. That is why we tolerate a baryon 
nuriibcr slightly different frorri one arid do not introduce different che~riical potentials witli 
the conseqiience that  any local espectation valiie of tlie soliton variishes asyniptotically. 

These is a proniising rnethod in the literature which rnight be applied to fix the baryon 
nurnber of the soliton to  one withoiit changing the cherriical potential. In Ref. [21] the 
regularized version of the baryon nurnber in vacuum, which differs also froni orie, coiild 
be constrained after iritroducing the chiral radius field as an  additional dynarnical clegree 
of freedom. In the center of the solitori, this radius field deviates noticeably frorn the 
chiral circle. Additionally, the constrairit 0x1 the baryori nurnber preverits the soliton with 
a space dependent radius field frorn collapsing. Sincc this method goes bcyorid the chiral 
circle we shall not consider it in this paper. 

4 Energy and radius of the soliton 

In this section we display and discuss energy, baryon nuniber and r.1n.s. radius of the 
soliton defined in Sect. 2. Fig. 3 shows internal and free energy. While tlie interrial energy 
represents the total energy which is necessary to generate the soliton the free energy 
disregards that  part of the energy which is automatically delivered by the heat bath. 

The first striking feature we want to mention is the independence of the valence quark 
energy on teniperature and rnedium density, and hence on the constituent qiiark mass 
M*. The latter determines the depth of the a field which binds the valence quarks. The  
decreasing depth a t  growing T and/or po is nearly compensated by a larger radius of 
the self-consisteritly deterniined potential well with the result that the valence level is 
kept at an almost unchanged energy of roughly 500/3 MeV . The solitonic solution of the 
equations of motion disappears if the valence Ievel Comes close to the top of the well in 
the o field. Cornparing total soliton energy with tlie rnass of 3 free constituent' quarks we 
notice that  the soliton energy depends weaker on T and po than the constituent quark 
1nilSs. 

Cornparing tIie frec soliton energy with the results of Ref. [7] we notice differerices up 
t o  several huridred MeV especially at larger rnediurii density. They rest on the differences 
betiwen both approaches, in particular on the hole in the valence level of the honiogeneous 
configuration assiirned in Ref. M, arid ori their different chemical potentials. On the other 
harid, our baryon riuniber which decreases with increasing ternperatiire superir~iposes the 
T deperidence of the soliton energy. Dividing the free energy by the baryon nurnber it 
cxtiibits a sligl~t iricrease with increasing terriperature. 
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Fig. 3: Total internal 
(E) und free energy (F)  
of the soliton as a func- 
tion of the medium tem- 
perature T for various 
medium densities po 
(P„ = 0.16 fm-3: normal 
nuclear density). The 
dotted lines show the con- 
tribution Eba' of the va- 
lence quarks to the inter- 
nal energy und the dashed 
lines represent the en- 
ergy 31U* of 3 free con- 
stituent quarks. The cal- 
culation was performed 
with a constituent quark 
muss 1Vf = 420 MeV in  
vacuu7n. 
The lowesl right part 
shows the banjon 
number B as a function 
of T for the densities 
considered i7r the other 
purts of the figure. 

The r.m.s. radii R (48) displayed in Fig. 4 indicate a swelling of the soliton when 
temperature and density increase. At low temperature the soliton swells roughly lineariy 
with increasing medium density. The soliton at normal nuclear dcnsity is by roughly 
20 percent larger than in vacuum. Above 125 MeV the r.ri1.s. radius grows continuously 

Fig. 4: Root meair-square radz'us 
R of the soliton as a junction 
o f the inedium temperature T for 
various vulues o f the inediuin den- 
~ i t y  po i 7 i  u d s  of the normal nu- 
clear densitp P„„, = 0.1 ili f ~ i i - ~  cal- 
cztlaled for hf =420 MeV. 



towards the deconfinement transition. There are two different reasons for the modification 
of the soliton size in the medium: the increase of the radius of the self-consistent mean 
field and the polarization of the medium quarks around the soliton. The first effect is 
rather pronounced and nearly proportional to  l / A l * .  The polarization modifies the baryon 
density very slightly but at  rather large distances froni the center of the soliton and has 
therefore a remarkable influence on the mean-square radius. The effect is positive a t  
lower temperatures and negative a t  high temperatures. I t  amplifies the depcndence of 
the r.ni.s. radius on the medium density and restricts its dependence on the teniperature. 
A cornparison with the r.rn.s. radii obtained in Ref. [7] is qucstionable bcciiise of the 
honiogeneously spread part of the baryon density in a calculation with different cheniical 
potentials for solitonic and homogeneous field. Nevertheless the values are in the sariie 
order of magnitude. In contrast to  Ref. [7] we get always a larger radius if tlie rnediiim 
density increases for any temperature. 

5 Quasi-classical energy corrections 

The solitori considered so far exhibits several uridesired propcrties which do not allow a 
direct cornparison with the nucleon or other baryons. Due to the rrieün-field approsirriatiori 
the translational syniriietry is violated and the soliton energy is coritaniiriuteci by spurious 
center-of-niass motion. We estiniate the spurious part of the soliton cncrgy which is 
connccted with quantu~n fluctuations around the artificially fixed position of ttie soliton 
by means of quasi-classical rriethods and subtract it froni thc total cncrgy, Thc  sanie is 
done for the rotational degree of freedom where the restriction to hcdgchog configurations 
iritroduces an  orientation of the soliton in space and isospace with thc corrcsponding 
spurious fluctuations. Moreover we introduce a collective rotatiori of the soliton as a whole 
in order t o  ecluip i t  with definite values of spin and isospin and add the corresponding 
rotational energy to  the total soliton energy giving rise to  a mass difference between 
riucleon and A isobar. Rotations in space and isospace are not independent of each other 
since the total isospin of the hedgehog soliton is directed opposite to  its spin. Fluctuations 
and rotational energies in both spaces are equal and have t o  be considered only once. We 
perform our calculation in isospace which can simpler be treated. 

The  perturbative quasi-classical approach used for the deterniination of spurious trans- 
latioria1 and rotational contributions t o  the soliton energy has been adopted from low- 
energy nuclear physics where it is denoted as pushing and crariking approach [10]. The 
sanie cosrection terms can be derived if one includes boosted and rotating meson fields in 
the stationary phase approxiniation which leads to the effective action of the rriodel 121. 

First we consider fluctuations of the total soliton rnonieritum P = l d 3 r  qt(r)  p q(r )  
which are described by the dispersion 

To evaluate expectation values of P and p2 we use the regirlarized version of the extended 
canonical quark potential (29-38) with a soiirce term -V-P. It describes the grand canon- 
ical poteritial in a frame boostcd with velocity V relative to the rest frarne of the soliton. 
'C.\%? get 



which vanishes for any time-independent hamiltonian h with ah/ar = 0. Squares like P' of 
a single-particle operator ( 2 3 )  can be decomposed into a single-particle operator [P'](,) = 

Jd3r qt(r) p2 q ( r )  and a normal ordered trw-particle operator [P'](,). The expectation 
values of the latter can be expressed by the second derivative of the extended canonical 
potential ( 2 9 )  and the product of two single-particle espectation values. 1J7e get 

Introducing the inertial mass tensor 

Mik(T7 P )  = - a2 nh (T> P;  V) / = M (T, P )  &„ 
Lhidvk 

which is diagonal for spherically syrmiietric solitons and has ideritical niatrix elenients, 
we get for the dispersiori (49) 

The rninus sign in the rriass definition ( 5 2 )  results frorn the anti-herrnitian character of 
the euclideari velocity V. Eqiiation ( 5 2 )  defiries the inertial soliton rriass by the response 
of the grand canonical potential to a boost at  fixed values of T and p. Since the variation 
of R a t  fixed T and p is equivalent to the variation of the free energy ( 2 2 )  at fixed T and 
B ( 3 9 ) ,  and also equivalent to  the variation of the internal energy ( 2 1 )  if B arid entropy 
S = -aR/aT are fixed, we can rewrite Ecl. ( 5 2 )  accordingly. However, the determinatiori 
via R is the most appropriate one in oiir case since we have an esplicit representation of 
the grand carionical potential on its variables T and P. That is not the case for iriteriial 
( 2 1 )  and free energy (22) .  

In the non-relativistic limit, the dispersion ( 5 3 )  corresponds to the following energy of 
the translational fiuctuations of the soliton 

While the second terni describes thermal fluctuations of the soliton mass center iri a 
rnedium with T > 0 the first terrn represcnts the energy of the unphysical cjuantuni fluctu- 
ations of the mass center which has to be elirninated frorn the total soliton energy. Fig. 5 
displays this energy as a furiction of rnedium ternperaturc and density. The rnain con- 
tribution to the center-of-mass energy Sterns frorri the valence quarks which are confincd 
by the well in the rnean field. The calculated reduction of E„„ with increasing tem- 
perature can be explained by the swelling of the soliton in accordance with Wciseiihcrg's 
uncertainty principle. But there is only a loose relation between center-of-111;~cs energy 
and r.m.s. radius (Fig. 4) since the solitori radiiis incorporatcs not only the xxiodificd nican 
field but also the medium polarizatiori. 

After an equivalent corisideratiori for the dispcrsioti of tlie isospiri o1)arator 2' = 
Jd3r q t ( r )  t q ( r ) ,  whcre t = 7/2 denotes the singlcpnrticIc isospia ol~erator, wt.e gct b~ 
nieans of a gerieratirig furiction (-9) with thc source terni -W-t 
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Fig. 5: Energy Ecmm = (([P~](,)))/~M 
of the center-of-muss motion as a func- 
tion of the medium temperature T for 
various values of the density in units 
of  the norrnal nuclear density pI„ = 
0.16 fm3 und h.l= 420 MeV. 
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for the energy of the rotational fluctuations with the iso-rotational nionient of inertia 

The  moment of inertia is diagonal for syrnilietry reasons arid h a ~  idcntical diagonal ele- 
riierits. The eriergy of a soliton rotating setni-classically in isospace with isospin quarituni 
riurriber T arid monient of inertia 3 is given by 

The  corrected energy of a soliton with isospin 'T and spin J = 7  is obtained by subtracting 
ttie energy of the spurious quantum fluctuations (first term in Eqs. (54, 55)) and adding 
the cranking energy (57) to  the soliton energy (21) 

The  differente between the masses of A isobar ( T = 3 / 2 )  and nucleon ( 7 = 1 / 2 )  is then 
given by .-. 

J T=3/2 - ~T=1/2  = - ~ E A  N Ecom corr 
2 3 -  

The  expectation value of the single-particle operator [p2](,) has to  be calculated nurner- 
icaHy using Eqs. (33-38) with O = p2 and the regularized sea contribution (37). The 
espectation value of the correspondirig isospin operator can analytically be determined 
since the sirigloparticlc expectation values of t2 are the sarne for all cliiark levels inde- 
perideritly of the riiesori fields ((alt2[tr) = (a0/t21a0) = 1/2(1 /2+ 1 ) ) .  Hence rnost of the 
contribiitions t o  the expectation vaItie canceI out each other and we get 

TIie inertisl parütiieters (52, 56) will be deterriiincd in the subseqiient siibsectioris. 



5.1 Inertial soliton mass 

In this subsection, we show that the inertial mass (52) of the soliton is identical with its 
internal energy (21) and need not be calculated separately 

Xssuming spherical symmetry we get by Ineans of Eq. (B.12, B.24) for the inertial soliton 
mass (52) 

where we have introduced the contributions 

and 

with A(o)(p) defined in Eq. (B.1). Now we exploit the invariance of the potential 0 with 
respect to  an arbitrary variation of the nieson fields a and T around the stationary point in 
accordance with the equation of ~iiotion (18). A variation which is in accordance with both 
the spherical hedgehog synmietry and the chiral circle respecting the boundary cconditions 
6a=0 and 6 ~ = 0  at small and large separations frorn the center of the soliton is given by 

Mmed - - -- 1 d2R""'ed (T, P; V) 
- 3 av-du 

with an infinitesimal variation parameter 6. Such a variation of the riieson fields gives rise 
to  the following changes 6Rm, 6f'li*a and 6iPmed in the mesonic and qiiark contribiitions 
to the grand canonical potential (10) 

,=O 

d s  li tr i  TTI~~-""(O) 6h2 , 



Now we introduce first 6h, 6h2 and 6 ( h - / . ~ ) ~  and then 6 f i y  arid 6fPmed into Eqs. (62-64) 
and get by rneans of the equation of motion (18) and the variation (66) of R'" 

M = Cln1 - N, lirn T T ~  [(e-""(') - e-'"~(')) a:] 
T 4 0  

+Nc liin TTS[(A(O)-' - AO(O)-')~:] . 
T-tO 

The  agreerrient with the internal energy (21) can now be establishcd Ily rriearls of Eqs. (A.9- 
A.12) by comparing the various terms in Eq. (72) with the coniponents (23-25) of the 
internal energy. 

The equivalence of inertial soliton mass and total man-field cnergy is by far not 
trivial despite the Lorentz-invariance of the initial NJL Lagrangian. The approxirnations, 
the particular regularization sche~ne applied only on the Dirac-sea contribution and thc 
presence of the medium might dist urb the equivalence of inertial rnass and total internal 
energy. 

5.2 Iso-rotational moment of inertia and A-nucleon mass split- 
ting 

The iso-rotational nioment 

1 1 d2Rh (T, /.L; w )  ,p-p.--- 11 - 
3 aw-aw = Zra + rned 

3 i 

consists of the coniponents 



and 

While the sea component (74) has been derived in Ref. [23] the medium contribution (76) is 
obtained by rneans of Eqs. (6, 7, A.1, A.2, A.7, A.8). Since the single-particle hamiltonian 
ho of the honiogeneous medium cornniutes with r3 only diagonal elements with a0 = ß0 
contribute to the corresponding terms in the inertial rnomenta (74, 76). Because of 
lirn Rs(&, E'; A)/(E - E ' )  = 0 these terrns vanish iri Eq. (74) and the honiogeneous medium 

E'-% 

does not coritribute to sea cornporient of the iriertial rnonierit. That is not true for a 
calculation in thc discrete basis [20] with bouridary coriditions deperidirig on the superspin 
quarituni nuriiber. I-Iere we have riurrierically to deterrnirie the inertial mornent of tlie 
honiogcneous niediuni and to subtract frorii the monient of the solitonic configuration. 

Fig. 6 illustrates the nioment of iriertia as a function of rnediurn tcrnperature and den- 
sity. At vanishing density, the rnornent is nearly constant and increases reriiarkably only 
in the neighborhood of the critical tenipwature a t  185 MeV. At finite rnediurn density, the 
increase starts earlier. The main contribution to the rno~rient of inertia cornes from tran- 
sition matrix elements between tlie valence level and an unoccupied level in its vicinity. 
At finite density, the levels around the valence level are well occupied by quarks repre- 
senting the riiedium arid tlie monient of inertia is rernarkably reduced in comparison to  
the vacuuni (Pauli blockirig). Only a higher teniperature increases the probability to find 
a hole close to the valence level and increases J .  The resulting moment of iriertia is very 
small and the AN mass splitting (Fig. 6, lower part) is huge a t  low teniperature and finite 
density. This is an obvious shortcoming of the model describing the rnediuni as gas of 
constituent quarks. In a more realistic picture, the medium quarks are bound in solitons 
and the corresponding transition matrix elements are not blocked to that degree. On the 
other hand, if one keeps the valence level of the homogeneous medium free (ndo =0) as 
in Refs. 17, 91 one gets big transition matrix elements to  that level, and the moriient of 
inertia is huge. The  resulting AN splitting is negligibly small already a t  half of normal 
nuclear density (lowest line in Fig. 6) and further decreases if the density grows. That is 
why we discarded this method of tailoring a B=l  soliton. 

The quasi-classical energy comctions in Eq. (55) represent approxirnatioric to the fi-t 
terms in an l/Nc expansion. Wfiile the quantunl fliictuations behave Iike (~/JV~)O the 
cranking term is proportional to  l/Nc. So it is not surprisirig that the 11iacs shift a t  po=O 
obtained in oiir approach exhibits a sirriilar dependencr! ori T as thc shift evatuated in 
heavy baryon chiral perturbation theory (HBxPT) using a 1 JA{ expansion [24. Tfie shift 
is negative for nucleons and positive for A isobars and has the Same alisolute v&ie in our 
approach apart froni a terrn whicli is proportional to the deviation of tfie baryon nunaber 
fror11 orie. The ideritity of tlie al~soliitc valiics of the iitücs shifts for iiucleon arid A isobar 
is the result of the rcstriction to 2 qtiark flavors in  contrast to tlie WBXPT calculatiort 
which irtcltides strange quarks. At T = 130 MeV Ehe A'; spiitting is reduced by orily 



5% in comparison t o  20% in Ref. [X] .  Again a partial blocking of quark levels in the 
neiphborhood of the valence level prevents a larger monient of inertia and reduces the 
decrease of the AN splitting a t  finite temperature. 

Fig. 6:  Moment of inertia 3 
(upper part) und A-nucleon mass 
splitting AEAN (lower part) as a 
function of the medium temper- 
ature T for various values po of 
the density and cor~stituent quark 
muss M = 420 MeV in vacuum. 
The lowest line in the lower part 
shows the splitting for po = 0 . 5 ~ ~  
obtained WZth the assu?nption that 
the valelice level is ee?npty in the 
horr~ogeneous ~ncdiuin. 
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6 Energy of the nucleon 

In Fig. 7, we display the corrected internal energy (58) and the corresponding free energy 
in dependence on temperature and density of the rnediurn for isospin 7 = 4 with the 
espectation value (60) of the isospin operator. In the considered region, the baryon 
number of the soliton varies between 1.2 and 0.8 as shown in the lower right Corner of 
Fig.3. To estimate the effect of the varyirig baryon number we display the eriergy Per 
baryon nuniber on the right panel of the figure. We See that the variation in the baryon 
nurnber has only a moderate influence on the corrected soliton energy. The behavior of 
the soliton energy in dependence on temperature and density differs reniarkably from the 
corresponding behavior of free constituent quarks. While constituent quarks get lighter 
with increasing temperatiire the soliton gets heavier. The dependence on the rnediiim 
density is weaker for solitons than for constituent quarks. 

The  increase of the nucleon is rnainly due t o  the reduction of the center-of- nass energy 
(Fig. 5 )  which shrinks frorn 350 MeV a t  T=O to  100 MeV close to the critical temperature. 
This has to  be taken into account if one compares with calculations which do not consider 
this spurious energy. A slight decrease of the nucleorl rnass a t  higher ternperature as 
e. g. observed in Ref. [22] is changed into an increase by Imans of the center-of-mass energy. 
Center-of-rnass corrections do also rcduce the density dependence of the nucleon rnass a t  
low teniperatures. 

We shouId niention that  ttic catciilated nucleon niass in vacuurn is by roiighly 200 MeV 
srnaller than ttie esperirncntal value. Ttiis is an  obvious shortcornirig of tlie si~riple effective 
rnodcl arid tEie approsiniation riiade in the couscc of the evaluatiori. For that reason 



the model is preferably used for the evaluation of the splitting between the masses of 
different baryons. In that sense we do not consider the absolute masses but their variation 
in dependence on temperature and density. Furthermore we used the experimental A- 
nucleon mass-splitting in vacuum in order to fix the only free parameter of the model - 
the constituent quark mass in vacuum - to  a value of 420 MeV . 

Fig. 7: Total corrected 
internal (E) and free 
energy (F)  of the nu- 
cleon as a function of 
the medium temperature 
T for 3 values of the 
medium densities po und 
constituent quark muss 
12.I = 420 MeV in vacuu7n. 
The  left panel shows the 
corrected energies for 
particles with the vary- 
ing b a q o n  numbers dis- 
played i n  Fig. 3. The  en- 
ergies per banjon number 
are shown o n  the right 
panel. 
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7 Conclusions 

We investigated the properties of a two-fiavor NJL soliton which is embedded in a medium 
of constituent quarks with self-consistently determined constituerit mass. Energy and 
rxiass distribution of the investigated soliton are deterniined in niean-field approximation 
with the restriction to hedgehog configurations and to the chiral cirde. To get a solitoriic 
solutio~i of the corresponding eqiiations of motion we haw to fix the occupation probability 
of the valence level independently of tlie thertiiodyriarnical parameters of the mediiirn. 
Otherwise the soliton dissolves already below 100XIeJ~ . The espected critical valiics of 
riiediiirn teniperature and density are obtained witli the assuniption that the occupntion 
probability of the valence lcvel equals one, the saine valiic as assuriied for tlie soliton in 
vacuu~n. 

Throiigh lack of confinernent the modcl does not zlllow thc eonstsiictiori of a locaIized 
soliton witli fixcd Baryon niirnbcr as soon as n~ediiim tcinpcrature or density diffcr frort1 
zcro. Kceping thc baryonie charge corifincci withiii a fh i t e  radius arsuxid t'iie soliton the 



baryon nuniber of the self-consistent field configuration varies between 0.8 and 1.2 in 
dependence on teniperature and density. Fixing the baryon nurnber to a definite value by 
iiieans of a che~iiical potential which differs from the chernical potential of the medium a 
part of solitonic baryon charge is uniformly distributed over the whole space. This is an 
obvious contradiction to  the defiriition of a soliton. 

To remove spurious contributions to  the rnean-field energy and to  equip the soliton 
with the qiiantum numbers of nucleon or A isobar we adopted the quasi-classical pushing 
and cranking approaches. The resulting energy corrections are deterrnined by inertial 
parameters describing the response of the soliton as a whole with r e s~~ec t  to a translation 
or rotation. We found the nontrivial result that the inertial rnass in the riiediurn is identical 
with the internal energy of the soliton. The rotational niornent of inertia was deterniined 
rlumerically. 

It has turned out that the description of the rnediurn as a non-iriteracting gas of con- 
stituent quarks nioving in the solitonic niean Geld overestirnates the effect of the ~ncdiurii 
on the solitori. In particular, the espected decrease of the AN splittirig a t  iricreasirig 
teniperature and density is rernarkably reduced by the quarks of the riiediurri. At lower 
te~npcratures, the Pauli blocking of low lyirig cpark level by mediiini quarks dorninates 
the behavior of such quantities whicli are described by trarisitiori rriatris elernents betweeri 
different quark levcls. I t  overconipensates, for instance, the influence of the swelling effect 
on the  nionierit of iricrtia. Instead of increasing the ~norncnt of inertia dccreases with 
iricreasing ~iiediurii density. 

As a result of its internal structure, which is generated by a self-corisistently determiried 
mean field, the behavior of the soliton encrgy iri deperidence ori te~iiperature arid density 
deviates remarkably from tlie corresponding behavior of the constituent quark rnass. The 
scaling property between both quantities is noticeably disturbed since the influence of the 
changed constituent rnass (depth of the well in the mean field) on the soliton energy is 
accornpanied by an  variation of the size extension of the well in the self-consistent mean 
field. 

After subtracting translational and rotational corrections the discrepancy gets everi 
rnore pronounced since translational and rotational corrections decrease with increasing 
temperature and density. As a result the soliton mass increases with increasing ternpera- 
tim while the constituent mass decreases. 

The  swelling effect of the soliton in dependence on medium temperature and density 
is weil pronounced. I t  does not only correspond to the increase of the radius of the 
self-consistent mean field but is also related to the polarization of the medium in the 
neigltiborhood of the soliton. The latter intensifies the stvelling with increasi~ig mediurii 
density but reduces the depende~ice on temperature. 
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Appendix 

A Operator traces 

Evaluating the trace Tr of an operator O(&, h), which contains the differential operator 
8, and the tinie-independent operator h, and which includes functional trace with anti- 
periodic boundary conditions for the euclidean time-interval [O, 1/T] and traces t r  over 
Dirac and Pauli matrices, we use the representation 

with the eigenvalues E, of h and the Matsubara frequencies W „  = (2n+1)7iT. At T -+ 0, 
the sunl over n has to be replaced by an integral 

SVithin Schwinger's proper-time regularization ccheme the regularized trace of the loga- 
rithni of a positively definite single-particle operator 0 a t  T + 0 is given by 

CO CO +W 

liin TTrA ln O(a„ h) = - / - Iim ~ ~ r e - " ~ ( " ~ )  = - / $ C / $ e-""(Y+~) , (A.3) 
T+O S T+O 

l/A2 I/h2 -W 

When calculating traces such as in Eq. (-4.1, A.2) we use the relations 

and 

Evaluating products of two thermal propagators wc use 



The following identities for traces of the operators ( B . l )  can be proven by nieans of the 
representations (Al--4.3) 

CO 
1 / ds lini T T ~  [e-"(') d:] = - lim TTrA In A(0) , 

T-tO 2 T 4 0  
1/A2 

(A. 10) 

P a ~ r [ A ( p ) " p ( h - p ) ]  = ---Trh 4 ( p )  , (A. 11) 
2 a~ 

1 
lirn T T S [ A ( ~ ) - ' ~ : ]  = - lirn TTr ln A ( p )  . 
T 4 0  2 T 4 0  

( A. 12) 

In some of the equatioris above we hase neglected an infinitely large coristant which 
variishes if one corisiders the differente betweeri two traces. 

B Evaluation of the rnass tensor 

Evaluatirig the mass tensor (52) we introduce the herniitiari operators 

4 0 )  (4 - ~ ( 0 )  (dt  D(0) (P)  = -a: + (h(0) - d 2  ( B 4  

and 

A ( p ;  V )  z D(p;  v ) ~  D(p;  V )  = A ( p )  + Bivi - (V , (B.2) 

Ao(p; V) r Do(p; v ) t  Do(p; V )  = Ao(p) + B;vi - ( v - ~ ) ~  (B-3)  

with ( p )  frorii Eqs. (6, 7 ) ,  D(o) (P; V )  defined in Eq. (30) with a source term rcO = V - p ,  
and with the operators 

= 2p% - [h, pi] = 2piör - iß di [ a ( r )  + iys-i-- x(r)] , 

which are independent of the che~liical I)otential p. Here we consider rnore general Ineson 
fields o(r) and ~ ( r )  which are not riecessarily restricted to  hedgehog configuration and 
t o  tEie chirai circle. Thc  commutator [h,piJ in Eq. (B.4) is given by the derivative of the 
niean Geld and vanishes for h = h,,. Following Ref-[11] we introduce the commutator 
rcpresent-ation of Bi arid BA 



First we treat the proper-time repularized sea conltribution and notice that the first deriva- 
tive of the exponential function is piven by 

At v=O only Bk ssuvives in the inner bracket and can be replaced by the commutator 
(B.6). The integral is just the commutator between Ck and e-SA(0) (see e. g. appendix of 
Ref. 1251) 

The second derivative is obtained by differeritiatinp Eq. (B.8). At W = O we can apply 
Eq. (B.9) and get 

Calculating the trace of expression (B.10) the vaiious ternls can be reasranged and sim- 
plified. The integration over t becomes trivial 

and we get 



So  evaluate the second terni we apply the co~~imutator representatiori (B.6) of the operator 
Bi and get 

Tr [ ~ ( p ) - '  BiA(p)-' Bk] = Tr [ ~ ( p ) - '  [C', A(p) + 2ph] d(p)- '  B*] (B. 16) 

= Tr [A(p)-' [c i ,  A(p)] il(p)-' B'] + 2p ~r [&)-I [cil h] A(p)-l B*] . 
The first term in Eq. (B.16) will be treated as in [11] yielding 

T~[A(,u)-' [C', A(p)] Bk] = T~[II(~)-'[C', B"] . (B.17) 

To reforniulate the second terni we rewrite the conmutator 
1 

[Ci, h] = -S{~i, A(p)} + i ~ ( ~ i ) ~ r ' D ( p )  (B.18) 

with (-4, B) A B  + BA and get 

Ti. [/I(p)-' [C', h]A(p)-' Bk] (BSci) 

= -iTr [ ~ ( p ) - '  B*A(~)- '  ( 5  {T', A ( ~ ) ]  - D(p)tri ~ ( ~ 4 ) )  ] 
d 

Using Eqs. (B.l, 13.4) we obtain 

1 - 
-{T', B*} = (2riy' - idi" - ri[h, $1 
2 

(B. 20) 

and 

Tr [ ( ~ ( p ) ~ )  -' BkD(p)-'ri] = Tr [ ~ ( p ) - '  (pkr"(p) - ~ ( p ) ~ r ' ~ ~ ]  (B.21) 

= Tr [ ~ ( p ) - '  (2ripkd, - i d " ~ ( ~ )  + [rip*, h])] . 

The last term does not contribute to  the trace since h commutes with A(p)-'. Altogether 
we have 

= -Tr[il(p)-' (2pip* + [C', B*] + 2p [(h-- p)Pk + ir"h, pp" I]] 
and 

with the commutators [C', B" arid [Ci, Bk] given i r i  Eqs. (B.13, B.14). Finally we get 

(B. 24) 

-NTTL.[A(/L)-' jd ((h - p)di* + i~~. l [h,~ ' ] )  - d0(p) - lp(h~ - P)@*] - 



References 

[I] Nambu, Y., Jona-Lasinio, G.: Phys. Rev. 122, 345 (1961); 124, 246 (1961) 

[2] Christov, C.V., Blotz, A., Kim, H.C., Pobylitsa, P.V., 'CVatabe, T., Meißner, T., 
Arriola, E.R., Goeke, I<.: Prog. Part. Nucl. Phys. 37, 1 (1996) 

[3] Alkofer, R.,Reinhardt, H., 'CITeigel, H.: Phys. Rep. 265, 139 (1996) 

[4] Vogl, U. and Weise, W.: Prog. Part. Nucl. Phys. 27, 195 (1991) 

[5] Hatsuda, T., Kunihiro, T.: Phys. Rep. 247, 221 (1994) 

[6] Janiinon, M., Ripka, G., Stassart, P.: Nucl. Phys. A504, 733 (1989) 

[7] Berges, J., Christov, C.V.: Nucl. Phys. ,4609, 537 (1996) 

[SI Bisse, M.C.: J. Phys. G 20, 1537 (1994) 

[9] Christov, C.V., Goeke, I<.: Nucl. Phys. -4564, 551 (1993) 

[10] Ring, P., Schick, P.: The Nucleur Maiiy-Body Problerii. Berliri, Heidelberg, New 
York: Springer 1980 

[ll] Pobylitsa, P.V., Arriola, ER. ,  Meißner, T., Grü~iirrier, F., Goekc, K., Broniowski, 
W.: J. Phys. G18, 1455 (1992) 

[12] Stratonovich, R.L.: Dokl. Akad. Naiik S.S.S.R 115, 1907 (1957) 

[13] Hubbard, J.: Phys. Rev. Lett. 3, 77 (1959); Proc. Roy. Soc A276, 238 (1963); Proc. 
Roy. Soc A277, 237 (1964); Proc. Roy. Soc A281, 401 (1964); 

[14] Sieber, P., Meissner, Th., Grünimer, F., Goeke, I<.: Nucl. Phys. A547, 459 (1992) 

[15] Watabe, T ,  Toki, H.: Prog. Theor. Phys. 87, 651 (1992) 

[16] Schwinger, J.: Phys. Rev. 82, 664 (1951) 

[17] Eguchi, T.: Phys. Rev. D14,  2755 (1976) 

[18] Meissner, T., Goeke, I<.: Nucl. Phys. A524, 719 (1991) 

[19] Wunsch, R., Goeke, K., Meissner, Th.: Z. Phys. A348, 111 (1994) 

[20] Kahana, S., Ripka, G.: Nucl. PIiys. A419, 462 (1984) 

[X] Schlicnz, H., TITeigcl, H., Rei~ihardt, H., Alkofer, R.: Phys. Lett. B315, B (1993) 

1227 Christov, C.V., Arriola, ER. ,  Gocke, K.: Xitcl. Phys. X556, 641 (1993) 

[23] Reirihardt, H.: Nucl. Phys. A503, 825 (1989) 

L241 Bedacpe, P.F.: Phys. Lett. B387, 1 (1996) 

r25] tJcltrnan, 31.: Diagrartirnatica: Ttic Pat'ti to Feynrtiari Diagranis, Cü~iibrictge Lecture 
Notcc in Physics 4. Caniliridgc: Carilbridgc U~iimrsity Press 1994 


	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 
	Seite 20 
	Seite 21 
	Seite 22 
	Seite 23 
	Seite 24 
	Seite 25 
	Seite 26 
	Seite 27 
	Seite 28 
	Seite 29 
	Seite 30 

