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Introduction
● Goal: 

○ Explore suitable tools for handling machine learning setups with focus on 
scientific usage 

○ Draw a first conclusion and outlook
○ Provide a basis for further exploration

● Approach: 
○ Define our use case
○ Gain understanding of emerging MLops landscape
○ Define comparison procedure
○ Examine a set of tools → Metaflow, MLflow, DVC
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https://docs.metaflow.org/
https://mlflow.org/
https://dvc.org/


Use case
● Reproducibility

○ Crucial for research work → FAIR 

● Exchangeable backend
○ Should be usable with custom computing infrastructure and HPC

● Workflow integration
○ Should be usable and comprehensible for people without computer science 

background

● Framework agnostic
○ Should work with various libraries and programming languages

● Open source

● Cost factor
○ We are on budget
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Machine Learning Lifecycle
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Comparison checklist
● General
● Version management and reproducibility
● Experiment tracking and comparison
● Pipeline execution and code invasiveness
● Scaling and backend
● Interaction with HPC
● Storage
● Logging and debugging
● Visualization
● Collaboration
● Compatibility
● Model serving
● Open source
● Costs
● Application to real world example
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Short definitions

Metaflow

Metaflow  is a python library, 
originally developed at Netflix, that 
helps building and managing data 

science projects.

DVC

DVC is an open-source version 
control system for ML projects 
which is build around existing 

engineering toolsets and workflows

MLflow

MLflow is an open source platform 
to manage machine learning 

life-cycles. The platform offers four 
distinct components, which can be 
used in either in stand-alone mode 

or together.
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https://docs.metaflow.org/
https://dvc.org/
https://mlflow.org/


General

Metaflow

Build around dataflow paradigm

High emphasis on seamless scalability 
and runtime agnostic (code can run on a 
laptop in parallel over multiple processes 
or in the cloud over multiple batch jobs)

  Strong testing philosophy
  Object Hierarchy: 

Metaflow -> Flow -> Run -> Step 
-> Task -> Data Artifact

  Flows: graph of operations
Steps: describe operations within the flow
Run: execution of flows 

Workflow implemented via namespaces
Tightly coupled with Amazon Web 
Services
Designed around failure cases

DVC

Runs on top of any Git repository 

Compatible with GitHub

Closely interacting with git (not necessary 
but recommended)

High emphasis on handling large datasets

Keep everything simple and accessible

Steps are connected  into a DAG

Build around pipelines and stages

Minimal code invasiveness

MLflow

Organized into four components:
- Tracking
- Projects
- Models
- Model Registry 

Components can be used on their own

Emphasis on maximum flexibility and 
customization

Out-of-the box with Microsoft Azure

Deployable on Amazon Sagemaker with 
one API call

Comparison 
Factors

General

● design decisions
● emphasis
● components
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https://en.wikipedia.org/wiki/Dataflow_programming
https://docs.metaflow.org/internals-of-metaflow/testing-philosophy
https://docs.metaflow.org/metaflow/tagging#namespaces
https://docs.metaflow.org/metaflow-on-aws/metaflow-on-aws
https://docs.metaflow.org/metaflow-on-aws/metaflow-on-aws
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://dvc.org/doc/start/data-pipelines
https://www.mlflow.org/docs/latest/tracking.html
https://www.mlflow.org/docs/latest/projects.html
https://mlflow.org/docs/latest/models.html#models
https://mlflow.org/docs/latest/model-registry.html#registry
https://azure.microsoft.com/en-us/
https://aws.amazon.com/sagemaker/


Version management and reproducibility

Metaflow

Built-in versioning via  tags and 
namespaces

Production namespace and user 
namespace are separated (a bit like 
working on different branches)

Creates snapshots of runs 

Environment is managed via 
conda(@conda decorator is implemented)

-

DVC

Version management works together with 
git

- like a distributed version 
control system 

- lock-free, local branching, 
versioning

Can be used together with CML for further 
improving CI/CD

Dvc manages the remote storage of data 
and creates files which then can be tracked 
via git

Due to its structure one can use different 
virtual environments as with other code 
projects, but no special integration (found 
so far)

MLflow

Handled via MLflow projects 
API and command-line tools for running 
projects, can be chained together to 
workflows

- build-in support of conda
- build-in support for 

docker-containers
Project: a directory with code/a git repository

- uses a descriptor file/ convention 
to specify dependencies/runs.

-
Code can be published on GitHub in the 
MLflow Project format 

MLflow Model Registry manages model 
lifecycles. (especially build for large 
collaborations and many models from many 
teams involved)

-

Comparison 
Factors

Version management + 
reproducibility

● code
● model
● data
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https://docs.metaflow.org/metaflow/tagging#namespaces
https://docs.metaflow.org/metaflow/tagging#namespaces
https://docs.conda.io/en/latest/
https://cml.dev/
https://dvc.org/doc/cml/cml-with-dvc
https://dvc.org/doc/cml/cml-with-dvc
https://www.mlflow.org/docs/latest/projects.html#projects
https://docs.conda.io/en/latest/
https://www.docker.com


Experiment tracking and comparison

Metaflow

client API is used to inspect results of past 
runs and some other parameters

Can be used within code and notebooks

data artifacts: container object, produced 
by runs. Contains actual value + metadata

DVC

Realized with DVC Experiments

Designed for exploration of many different 
configurations and scenarios

Organize experiments and keep only the 
best ones

Tracking, scheduling, comparison 
integrated

Run experiments via `dvc exp run`

Known cases where experiment data has 
been fed into external tools 
(weights&biases)

MLflow

Realized with MLflow Tracking API+UI

Can be used within code and notebooks

Automatically keeps track of parameters, 
metrics, code, and models from each 
experiment

Comparison 
Factors

Experiment tracking + 
comparison

parameter handling
metadata

data artifacts
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https://docs.metaflow.org/metaflow/client
https://docs.metaflow.org/metaflow/client#accessing-data
https://dvc.org/doc/start/experiments
https://dvc.org/doc/command-reference/exp/run
https://wandb.ai/site


Pipeline execution and code invasiveness

Metaflow

Integration:
- form the ML-Process code into 

Flows
- a flow is implemented by 

subclassing FlowSpec and 
implementing steps as methods

Run:
- execution of user-defined flows
- also executable via CLI

DVC

Integration: 
- as underlying mechanism, (no 

code needs to be altered), or via 
Python API

- (it can be helpful to structure 
code around input/output 
paradigms)

Run: 
- via execution of `dvc run` and/or 

`dvc repro`

MLflow

Integration:
- mlflow via the Python API into 

existing code
Run : 

- via CLI tool, or via 
mlflow.projects.run() Python API

Comparison 
Factors

Pipeline execution + code 
invasiveness

10

https://docs.metaflow.org/internals-of-metaflow/technical-overview#flow
https://dvc.org/doc/api-reference
https://dvc.org/doc/command-reference/run
https://dvc.org/doc/command-reference/repro
https://mlflow.org/docs/latest/python_api/index.html
https://www.mlflow.org/docs/latest/cli.html#cli
https://www.mlflow.org/docs/latest/python_api/mlflow.projects.html#mlflow.projects.run


Scaling and backend

Metaflow

Integrates with Batch from AWS 
- directly accessible via 

@ressources decorator

Languages such as C++ can be called from 
within a step for direct performance tuning

Can work with Amazon Sagemaker 

Works well with meson (workflow 
orchestration + scheduling)

Also mention of scaling up on larger 
machines but no further specs

The foreach branch offers a mechanism for 
independent/parallel executions

DVC

Integrates with  Spark, Hive 

Heavy cluster jobs can be decomposed 
into smaller DVC pipeline steps (parallel 
execution)

MLflow

Integrates with Databricks as Managed 
MLflow, Kubernetes,  Spark 

Custom backends and needs can be 
implemented and integrated via mlflow 
community plugins

Comparison 
Factors

Scaling + Backend
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https://docs.metaflow.org/metaflow/scaling
https://aws.amazon.com/sagemaker/
https://mesonbuild.com
https://docs.metaflow.org/metaflow/scaling#big-data
https://docs.metaflow.org/metaflow/scaling#big-data
https://docs.metaflow.org/metaflow/basics#foreach
https://spark.apache.org
https://hive.apache.org
https://databricks.com/product/managed-mlflow
https://databricks.com/product/managed-mlflow
https://databricks.com/product/managed-mlflow
https://kubernetes.io
https://spark.apache.org
https://mlflow.org/docs/latest/plugins.html#community-plugins
https://mlflow.org/docs/latest/plugins.html#community-plugins


Interaction with HPC cluster

Metaflow

To be tested

DVC

Work in progress

MLflow

To be tested

Comparison 
Factors

Interaction with HPC 
cluster

● installation
● requirements
● challenges
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Storage

Metaflow

Local file path

Amazon S3

DVC

Local file path, SH/SFTP, HDFS, HTTP, 
NFS,  disc to store data

Amazon S3, Microsoft Azure Blob Storage, 
Google Drive, Google Cloud Storage, 
Aliyun OSS ..

MLflow

MLflow Tracking Server offers two types of 
storage

- database-backed store: 
experiment and run metadata as 
well as params, metrics, and 
tags for runs

- file store: large data, log of 
artifact output (eg models).

supports: 
- local file paths, NFS, SFTP
- Amazon S3, Azure Blob Storage, 

Google Cloud Storage

Comparison 
Factors

Storage
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https://aws.amazon.com/de/s3/
https://www.mlflow.org/docs/latest/tracking.html#id49


Logging and debugging

Metaflow

Persists all runs + resulting data artifacts

Results can be accessed via unique run ID

Retrieval generally via namespaces + tags 
via Client API, see debugging

Resume execution of a past run at a failed 
step. Iterate quickly on  step code 

Python stack trace available

Plugin for VScode

..some other IDE’s also work (PyCharm)

Explicit Metaflow Test Suite for test-driven 
development

DVC

Realized via Checkpoints (checkpoints can 
be registered during your code or script 
runtime (similar to a logger) to track 
successive steps in a longer experiment)

Automatic log of stage runs (run cache)

VScode plugin currently in development

MLflow

MLflow Tracking

Automatic logging via mlflow.autolog()

Library-specific autolog calls available (eg 
pytorch, fastai, scikit-learn..)

Runs can be annotated via tags

No specific debugging information found

Comparison 
Factors

Logging and debugging

what
where
how
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https://docs.metaflow.org/metaflow/client
https://docs.metaflow.org/metaflow/debugging
https://docs.metaflow.org/internals-of-metaflow/testing-philosophy#metaflow-test-suite
https://dvc.org/doc/command-reference/exp/run#checkpoints
https://dvc.org/doc/user-guide/experiment-management#automatic-log-of-stage-runs-run-cache
https://www.mlflow.org/docs/latest/tracking.html#mlflow-tracking
https://www.mlflow.org/docs/latest/python_api/mlflow.html#mlflow.autolog
https://www.mlflow.org/docs/latest/tracking.html#id53


Visualization

Metaflow

flow graphs are visualized

Didn’t find anything comparable for 
specific parameters or trainings

DVC

DVC Studio

As it just launched (as of this writing) 
yet to be tested

Seems to offer similar functionality to 
MLflows GUI

Plotting of metrics and results can be 
handled via `dvc plots`

MLflow

MLflow Tracking UI

Good GUI to compare and select models

Experiment-based run listing and 
comparison

Searching for runs by parameter or metric 
value

Visualizing run metrics

Downloading run results

Comparison 
Factors

Visualization of results

Graphical user interface
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https://docs.metaflow.org/going-to-production-with-metaflow/scheduling-metaflow-flows#pushing-a-flow-to-production
https://studio.iterative.ai
https://dvc.org/doc/command-reference/plots
https://www.mlflow.org/docs/latest/tracking.html#tracking-ui


Collaboration

Metaflow

Collaboration is enabled and achieved by 
using tags and namespaces

People create different flows in their user 
namespaces, results can be accessed by 
other members

DVC

Achievable by utilizing remote storage 
capabilities, also similar to collaboration in 
github/gitlab

DVC Studio also seems to offer some 
collaboration specific functionalities

MLflow

MLflow supports git, collaborative work 
on  MLflow Projects workflows possible

Collaboration via Model Registry possible 
(suitable for large scale setups)

Community efforts to add collaboration 
possibilities: combining MLflow with 
neptune -> WIP

Comparison 
Factors

Collaboration with 
others
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https://docs.metaflow.org/metaflow/tagging#namespaces
https://dvc.org/doc/use-cases/sharing-data-and-model-files
https://dvc.org/doc/use-cases/sharing-data-and-model-files
https://studio.iterative.ai
https://mlflow.org/docs/latest/projects.html#building-multistep-workflows
https://mlflow.org/docs/latest/model-registry.html
https://docs.neptune.ai/integrations-and-supported-tools/experiment-tracking/mlflow


Compatibility

Metaflow

Different python libraries are supported

Languages such as C++ can be called 
within a step

Jupyter notebooks are supported

DVC

Pipelines are defined around input/output, 
thus language-agnostic, support for 
Python, R, Julia, Scala 

Spark, custom binary,TensorFlow, PyTorch, 
etc

Jupyter notebooks are supported

MLflow

Different python libraries are supported

Languages such as C++ can be called 
within a step

Comparison 
Factors

Compatibility

● Pytorch
● Keras
● other languages
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Model serving

Metaflow

pickle for object 
serialization/deserialization as default

Others possible

DVC

No concrete defaults as dvc is mainly 
concerned with the data storage/retrieval 
part

Get models via `dvc get` or dvc.api.open()

MLflow

MLflow Models 

Served via concept of flavors, thus models 
can be processed by different downstream 
tools

Variety of tools to deploy models
(eg. a TensorFlow model can be loaded as 
a TensorFlow DAG, or as a Python function 
to apply to input data.)

Tools to deploy many common model 
types to diverse platforms: e.g model 
supporting the “Python function” flavor can 
be deployed to a Docker-based REST 
server or to cloud platforms such as Azure 
ML and AWS 

Comparison 
Factors

Model serving
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https://docs.python.org/3/library/pickle.html
https://dvc.org/doc/command-reference/get
https://dvc.org/doc/api-reference/open
https://www.mlflow.org/docs/latest/models.html#mlflow-models
https://www.mlflow.org/docs/latest/models.html#storage-format


Open source 

Metaflow

Yes

DVC

Yes

MLflow

Yes

Comparison 
Factors

Open Source version 
available?
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Costs

Metaflow

No entreprise plan or anything, usage of 
metaflow itself is free

You pay for the AWS service in case of 
usage

DVC

Usage of DVC itself is free

DVC studio free up to 5 team members

MLflow

No entreprise plan or anything, usage of 
MLFlow itself is free

You pay for additional services in case of 
usage (Managed MLflow, Cloud storage..)

Comparison 
Factors

Costs
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https://databricks.com/product/managed-mlflow


Real world application

Metaflow

To be tested

DVC

Work in progress
 (see Interaction with HPC)

MLflow

To be tested

Comparison 
Factors

Tested with real-world 
example?
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Wrap up

● This was a lot…
● Table and code available at 

https://gitlab.hzdr.de/haicu/vouchers/desy/ml_ops_exploration
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https://gitlab.hzdr.de/haicu/vouchers/desy/ml_ops_exploration


Conclusion
● Metaflow

○ Build with scaling and collaboration in mind
○ Code structured as graph flow, features controlled via decorators, iterators for chaining everything together
○ Powerful approach 
○ requires sufficient familiarity with programming
○ Strong reliance on amazon products in order to function optimally

● Mlflow
○ Very diverse functionality
○ Highly customizable
○ Well developed GUI
○ Detailed documentation
○ Vast framework
○ Requires a lot of time and aimed at advanced users
○ No emphasis on collaboration 
○ Initial code investment (writing plugins) for integrating custom backends

● DVC
○ Build upon existing and well-known tools, especially git
○ Least code-invasiveness
○ Pipelines and stages are extremely useful
○ Lightweight compared to the other tools
○ Accessible documentation
○ (offers GUI now)
○ Less features
○ Has a smaller focus, does not handle model specifics
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Conclusion

● Metaflow → great for large in-production use cases and large teams but not for our use-case

● MLflow → should be seriously considered if HelmholtzAI is planning to standartize and scale up, developing and maintaining a full 
machine learning lifecycle infrastructure. Can be used by single researchers if they only focus on MLflow Tracking and run 
experiments locally.

● DVC → smaller compared to the other tools but easier in implementation and usage, has best balance between advantages and 
disadvantages for our use-case
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Outlook

● Either a boiled-down usage of MLflow or going with DVC 
○ In both cases the usage of custom backend, remote storage and a more throughout examination of the UI is 

yet to be estimated (coming soon, experiments with a real voucher are on their way)

● In terms of community support, all three tools offer some ways to interact and get help.
○  DVCs discord server has been proved to be very active and welcoming when addressed with questions, also 

regarding usage together with SLURM (Yet to be tested for the others)

● Use cases and requirements will change over time and this work might and should be re-evaluated
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Discussion

Questions? :)
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Glossary

FAIR: Findable Accessible Interoperable Reproducible
Data Artifacts: results from a flow, usually model + metadata
CLI: command line interface - a text-based interface that is used to operate software and operating systems 
Dataflow paradigm: Programming paradigm that models programs as directed graphs of the data flowing between 
operations
API: application programming interface - a set of commands, functions, protocols], and objects that programmers 
can use to create software or interact with an external system
Namespace: like scope  for variables, but for functions and classes. It allows you to use the same function or class 
name in different parts of the same program without causing a name collision.
Data pipeline: a set of data processing elements connected in series, where the output of one element is the input 
of the next one. The elements of a pipeline are often executed in parallel or in time-sliced fashion.
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