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Abstract: We realize an ultra-compact nanocytometer for real-time impedimetric detection and classification of 24 

subpopulations of living cells. Nanoscopic nanowires in a microfluidic channel act as nanocapacitors and measure 25 

in real time the change of the amplitude and phase of the output voltage and, thus, the electrical properties of living 26 

cells. We perform the cell classification in the human peripheral blood (PBMC), and demonstrate for the first time 27 

the possibility to discriminate monocytes and subpopulations of lymphocytes in a label-free format. Further, we 28 

demonstrate that the PBMC of acute myeloid leukemia and healthy samples grant the label free identification of 29 

the disease. Using the algorithm based on machine learning, we generated specific data patterns to discriminate 30 

healthy donors and leukemia patients. Such solution has the potential to improve the traditional diagnostics 31 

approaches with respect to the overall cost and time effort, in a label free format, and restrictions of the complex 32 

data analysis.  33 

Keywords: impedance cytometer, nanosensor, POC diagnostics, PBMCs, acute myeloid leukemia (AML), 34 

machine learning for data treatment  35 

 36 
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Healthcare of tomorrow will be dramatically affected by global processes that take place today, like societal 37 

shifts1, technological and digital revolution2,3. One of the main challenges within the healthcare sector is to establish 38 

new patient-care standards, based on e.g. new drug administering4, novel ultrasensitive diagnostics integrated into 39 

the gadgets5, to provide maximally personalized tests and doctor advices6. Medical data for patients will double 40 

every 73 days by 20207. Taking into account the trends towards personalization in medicine, patient related data 41 

can reach millions of gigabytes during the lifetime8. To make this information serving its aim to improve the quality 42 

of care while controlling the costs, these data have to be analyzed using conventional and unconventional 43 

algorithms, involving elements of machine learning. This strategy helps to fully access and interpret information 44 

on demand using e.g. modern gadgets, connected to a cloud. Thus, artificial intelligence is now rapidly entering the 45 

medical sector. Ideal proof of concept realization of diagnostic devices combining the new technological trends 46 

with the novel data treatment protocols would be a nanoscaled sensor device, for e.g. cancer diagnostics, 47 

accompanied with algorithms involving machine learning elements to distinguish proper trends within the large 48 

amount of noisy data points. The development of such systems is currently in the emerging phase9,10, due to the 49 

number of existing technological challenges, e.g. reaching the stable performance of nanosensors as well as its 50 

current disintegration with the IT sector.  51 

The primary goal of the current work is to show that all prerequisites for the development of a nanobiosensor 52 

system combined with a smart analysitical algorithm to interpret the results can be achieved.  53 

Leukemia is one of the common forms of blood cancer, affecting the production of white blood cells11, diagnosed 54 

in 352,000 people and caused 256,000 deaths worldwide in 201412. Acute myeloid leukemia (AML) is the most 55 

frequent type in adults, with around 30% of all detected leukemia cases and relatively low five-year survival rate 56 

of 20-30%, strongly dependent on the age of the patient13,14. Diagnosis of AML is multidimensional15-19, including 57 

examination of blood by flow cytometry. More specifically, optical flow cytometry makes a big impact in blood 58 

cancer diagnostics20,21 and evaluation of the immune response of the patient22,23 via analysis of peripheral blood 59 

mononuclear cells (PBMCs)24–26. For a complete qualitative and quantitative detection of blood cancer26 in PBMCs, 60 

the main immune cell subpopulations have to be distinguished, exploiting the clusters of differentiation (CD) 61 

responsible for cell surface marker expressions. Conventional flow cytometers rely on the use of specific molecular 62 

labels, e.g. monoclonal antibodies against cell surface  markers27. Finally, a combination of this and above 63 

mentioned techniques rises the diagnostics costs of cancer up to hundreds of dollars per person28. 64 

On-chip integrated nanodevices have emerged as a new generation of biodetectors 29-38. A promising approach 65 

relies on measuring electrical signals, e.g. impedance. For the latter, static (electrical impedance spectroscopy 66 

(EIS)39-43) and dynamic (impedance cytometry44–47) modes of impedance detection are proposed. The latter one is 67 

performed at fixed frequency and is used to increase an analytic and information processing throughput. From the 68 

conceptual introduction of micro-Coulter counters44,48, impedance cytometry has evolved and strengthened its 69 

impact in biological contexts for single cell detection45,46, investigations of erythrocytes49,50, eukaryotes51,52 and 70 

protozoa53 (Figure 1 A). 71 
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The scientific community accepts that scaling down of the sensor dimensions boosts the sensitivity of common 72 

detection techniques. Despite the tremendous success of e.g. nanoscaled bio-FETs54, the sensitivity issue of 73 

impedance detectors and its possible improvement via cross-scale integration of the nanostructures, have not yet 74 

been addressed. All current realizations of  impedance dynamic sensors are characterized by macro- to micro- 75 

dimensions, employing metal microscopic electrodes in a fluidic channel49,50,55,56. Proof-of-concept realizations of 76 

such devices are limited to detection of inorganic particles and isolated and purified/treated eukaryotic cells56–58 77 

with very few examples demonstrating the realistic systems, e.g. purified or diluted blood59, typically used for 78 

clinical diagnostics. 79 

Here, we present a nanosensor system, combining an ultra-compact impedance flow cytometer to analyze 80 

complex cell compositions with a software, based on conventional machine-learning algorithms, to interpret the 81 

measured data via exploiting the classification of cell subpopulations and respective clusters of differentiation (see 82 

Figure 1 B). Utilizing the term “nanocytometer”60, we work with a nanosensor that employs the interdigitated pairs 83 

of gold nanoelectrodes to reach the substantial increase of the sensitivity36,61, compared to the micron structures. 84 

We study untreated human PBMCs from healthy volunteers (Figure 1, C and D) and AML patients, and demonstrate 85 

significant differences in data patterns of healthy PBMC and AML samples (see Table S1 in Supporting). Thanks 86 

to the enhanced sensitivity of the device, we show the discrimination of the cells subpopulations in a label free 87 

format, e.g. B-, T, NK cells and myeloblasts that before was possible only using fluorescent biomarkers. The 88 

software processes the output voltage and phase signals measured by the detector in a multistep manner, followed 89 

by a final data clustering using the k-means algorithm.Fabrication of gold nanowire arrays is summarized in Figure 90 

2, A.I-III and C, and detailed in Materials and Methods in Supporting Information. The resulting cytometer 91 

devices possess 1 (sensor area ~46 µm²), 6 (~506 µm²) and 18 pairs of gold nanowires (~1610 µm², see calculations 92 

in Supplementary Information) with the width of about 100 nm each. To optimize the sensor geometry, COMSOL 93 

simulations were carried out to reach the situation of a homogeneous electric field between the nanowires. This 94 

electric field is also enhanced (Supporting Information S1-S3), compared to the geometry without nanowires. 95 

The optimal nanowire configuration was found at a distance of 2 µm from the nanowire tips to the opposing 96 

microelectrode pad, with a pitch about 1 µm (Figure 2 B, and Supporting Information S2). In order to demonstrate 97 

the effect of a 2µm silica particle on the spatial distribution of the electric field and its enhancement near the 98 

nanowires, simulations were carried out in yz- and xz-planes. (Figure 2 B (yz-plane) and Supporting Information 99 

S4). Detailed comparison of the geometry and sensitivity characteristics of the nanocytometer with reported 100 

impedance sensor devices is provided in the Table S2 in Supporting information.  101 

Next, a PDMS-based 3D flow-focusing system (Figure 2 C), confining the analyte in the middle and bottom of 102 

the channel (height 15 µm, width 200 µm) close to the sensor (Figure 2 D, Supporting Figure S5 for efficiency of 103 

the hydrodynamic focusing), was realized. Measurements were carried out with a lock-in amplifier (eLockIn205/2, 104 

Anfatec) for a direct readout of the signal. Flow rates were actively manipulated (0.1 µl/min – 2.5 µl/min) using a 105 

syringe pump (neMESYS 290N, Cetoni) for injecting a sample solution (particles and cells solution, as well as 106 
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vertical and lateral focusing streams (100 µM, KCl). The chip was measured under the microscope (Axiovert200, 107 

Carl Zeiss Microscopy) for complementary observations. With respect to the following analysis of e.g. peripheral 108 

blood, measurements were typically performed with the average cell rate of around 3-5 cells/s at 0.5 µl/min (see 109 

Supporting information S6). The electrical characterization was carried out in both direct (DC) and alternating 110 

current (AC) modes to evaluate the equivalent circuit of the system and is summarized in Supporting Information 111 

S7 and S8. The sensing device (e.g. 18 NW) exhibits a capacitive behavior with a characteristic butterfly shape in 112 

DC voltammetry (Supporting Information S7), also confirmed by a Nyquist diagram. Living cells, that cross the 113 

sensing area, cause a local alteration of the dielectric properties of the medium around the nanocapacitor, causing 114 

an instantaneous modulation of the equivalent circuit and its complex impedance.  115 

Next, we compare three above fabricated nanocytometers to the reference nanowire-free microelectrodes 116 

(distance between microelectrodes - 50 µm, width of pads - 35 µm) to investigate the enhancement of the sensitivity 117 

and the signal dispersion, depending on the sensor dimensions. We used silica colloidal particles and peripheral 118 

blood samples as reference objects. First, a single 10 µm bead was placed onto the sensing area of all types of 119 

devices by micropipetting to investigate the EIS signature between 50 Hz and 20 MHz. Dielectric particles deform 120 

the semi-circle in the Nyquist diagram (Figure 3, A-B) via adding a particle related serial RC-element (accounting 121 

for the particles resistance and capacitance), connected in parallel to the initial RC-circuit. Based on Maxwell model 122 

for dielectric mixtures, the effect of particles and cells on the impedance signal is described using single shell 123 

models. Considering RC-like properties of the sensor, a particle or cell adds its capacitances and resistances of the 124 

membrane and cytosol. In the simplified model, cell membrane conductance and cytosol capacitance are ignored, 125 

resulting in a parallel addition to the RC-circuit of an in-series cytosol resistance and membrane capacitance62. We 126 

observe that devices with nanofabricated electrodes, possessing a single pair of nanowires, revealed stronger 127 

modulation of the amplitude and phase signals than both multiwire and microelectrode-based sensors (factor of 23 128 

for microelectrode geometry) (see Figure 3 A and B). Thus, enhancement of the electric field between the nanowires 129 

boosts the sensitivity of devices towards micro-objects, e.g. colloids and living cells. This statement is confirmed 130 

by cytometer-like measurements of 10 µm large silica particles in 0.1x phosphate buffered saline (PBS), performed 131 

at 100 kHz using devices with 1, 6 and 18 nanowire pairs (Figure 3 C, D). Here, the solution of particles is injected 132 

into a microchannel, focused by streams of 100 µM KCl and guided towards the sensors. In the following, the 133 

change of the amplitude ΔVout and the phase ΔPhase of the output signal compared to the background, when a 134 

particle (or cell) is crossing the active area of the sensor, is evaluated for each detection event. The results are 135 

presented as clusters, depicting ΔPhase (y axis) versus the ΔVout (x axis) of the output signal (Supporting 136 

Information S9-S11 for details). Such representation of detection events allows us to compare not only output 137 

signal modulations but also the dispersion of the signal, measured by different devices. The devices with the 138 

smallest area reveal highest signal deviation, but they are prone to higher signal dispersion due to the stronger 139 

influence of the spatial location of the particle with respect to the electrodes (Figure 3, D). The sensitivity of the 140 
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device in arbitrary units and with respect to resistance and capacitance changes per particle is calculated for 141 

different sensor dimensions (Supporting Table S2 and S12-S13).  142 

This result is a direct fundamental consequence of the nanoscopic scaling effect that makes a great impact in the 143 

field of nanobiosensorics. Indeed, the miniaturization of the detector size down to the dimensions of the analyte, 144 

boosts its sensitivity on one hand62, but unavoidably leads to an increase of the signal to noise ratio. We further 145 

apply a nanoscaled cytometer with 6 pairs of interdigitated nanowire electrodes for analysis of blood and 146 

diagnostics of AML by identifying human PBMC subpopulations with particular interest to classify the 147 

subpopulations of the cells within PBMCs in label-free format (e.g. monocytes, T-cells, B-cells, NK-cells63,64, 148 

myeloblasts). PBMCs of healthy donors are represented by subpopulations of peripheral cellular blood components 149 

exhibiting a round nucleus and visible granules65, consisting of monocytes (CD14) and lymphocytes which can be 150 

additionally divided into T cells (CD3+), B cells (CD19/CD20) and natural killer (NK) (CD16/CD56) cells63. In 151 

turn, the peripheral blood smear from the AML patients is highly probed with undifferentiated myeloid progenitor 152 

cells, the myeloblasts (CD34+/CD123). 153 

First, we realize the measurements of PBMCs in order to determine the specific calibration pattern, peculiar for 154 

the impedance nanocytometer. The fresh human blood from healthy male donor and AML patient was purified 155 

using standardized Ficoll protocol (ratio 1:1) and resuspended in PBS buffer for measurements. This unified 156 

protocol has been applied to all further measurements, including impedance and conventional cytometry. Further, 157 

the traditional FACS technique was employed to sort the labeled subpopulations of PBMCs into separate vials (i.e. 158 

monocytes, B-, T-, NK- cells for healthy donor, and myeloblasts for AML positive patient) for calibration 159 

measurements (Supporting Information S14). The output potential ΔVout and phase shift ΔPhase were acquired 160 

by applying a sinusoidal reference signal with an amplitude of 0.5 V and a frequency 500 kHz.  161 

Next, we placed the microfluidic chip under the fluorescent microscope to perform parallel impedimetric and 162 

microscopy measurements. We did the calibration for healthy samples injecting each cells subpopulations one-by-163 

one (1 - T-cells, 2 - NK cells, 3 – B cells, 4 - Monocytes), and repeated them in random order sequence (see 5 - 164 

NK-cells, 6 - T-cells, 7 – B-cells, respectively), to prove the fact of the signal differentiation and absence of  drift 165 

in the system (Figure 4 A, different colors for coding each cell subpopulation). This data sequence resulted in the 166 

clusters of differentiations for each of the detected subpopulations (Figure 4, B-G). Measurements of myeloblasts 167 

are performed in similar manner and are summarized in Figure 4 L-N. Resulting cloud of the myeloblasts data is 168 

plotted in Figure 4 M (red circles) and converged with the whole data pattern of labeled PBMC of the AML patient 169 

(black circles) measured by the nanocytometer for localization of the subpopulation of malignant cells. Analysis of 170 

the whole datasets determines a calibration pattern (Figure 4 H - healthy and M, N - AML, Supporting S15). 171 

Afterwards, both labeled and unlabeled PBMC mixtures of a healthy volunteer (Figure 4 J and K, respectively) and 172 

AML patient #2 (Figure 4 M and N) were matched to compare with the aforementioned calibrations to fine-tune 173 

the thresholds for data clustering. Raw samples and calibration patterns match well at the level of the pattern shape, 174 

while normalization is needed to compare between labeled/unlabeled samples (Supporting S16). Normalization of 175 
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the AML data plot in the range [0, 1] enables to match the data patterns of myeloblasts (red circles), unlabeled 176 

samples of AML (black circles) and healthy PBMC (green circles, Figure 4 N). Interestingly, analysis of healthy 177 

PBMC (green) and myeloblasts (red) shows additivity of both patterns. Thus, we believe that the isolated labeled 178 

PBMC subpopulations of healthy and AML positive patients can serve as a valid guideline for impedimetric 179 

measurements of unlabeled PBMC samples. 180 

Note that the discrimination between PBMC cells according to their dielectric properties has been predicted 181 

around two decades ago66,67. Natural reason is that the membrane surface of immune cells is not even, and its 182 

textures is related to the cells function68-70). Still, discrimination of unlabeled lymphocytes at single cell level was 183 

not demonstrated by now. We attribute successful discrimination of the lymphocyte cells in this work to the 184 

essentially increased sensitivity of the nanoscopic cytometer device (Table S2, PBMC measured by different 185 

sensors in Supporting Information S16).  186 

Next, we strengthen the classification of the PBMCs by proportion analysis of all measured cells. All together 5 187 

samples from healthy volunteers were studied (4 male and 1 female, age 25-35 years, Supporting Table S1). 188 

Calibration patterns are used for determination of the clusters of monocytes and subpopulations of the lymphocytes 189 

within the solution (Figure 4 H-K, Figure 5 A (inset), F, and Supporting Figures S16, S17). Thus, the 190 

subpopulations of T cells (62.31%, purple), B cells (31.34%, green) and NK cells (7.34%, red) could be 191 

distinguished (Figure 5 A, inset). These percentages are in agreement with the proportions of cells within healthy 192 

human PBMCs predetermined via FACS (Supporting Information S17), deviating within 1-3% only (table in 193 

Figure 5 D).  194 

Finally, for analysis of AML positive cases, all together 3 patients (2x female, 1x male) were tested, using a small 195 

sample volumes, compared to regular assays in the clinical practice71,72 (~5 µl). Blood from AML Patient#1 196 

(female) and a healthy donor (female) was taken at the same day for comparison (Figure 5 A, and inset in A). 197 

Further, 2 samples were analyzed additionally (Supporting Figure S14 for FACS). Sensors with 18 pairs of 198 

nanowires (AML Patient #1) and 6 pairs (AML Patient #2 and #3) were utilized for these studies. All AML data 199 

were analyzed manually and compared to the calibration (Figure 4M) and healthy reference, measured earlier. An 200 

additional large data cluster was identified in all samples (black circles, Figure 5 A). We attribute it to the 201 

myeloblasts that account for 34.16% ( AML #1), 60,07% (AML #2) and 54,96% (AML #3) (Figure 5 D, and 202 

Supporting Information S18, S19). Results are in agreement with the proportions of myeloblasts cells, provided 203 

by flow cytometer analysis (Supporting Information S14,) and are comparable to the data provided by World 204 

Health Organization (WHO)75. Further details on cell proportions and merged AML#2-AML#3 data are given in 205 

Supporting S18. 206 

AML#1 raw data were additionally analyzed with the developed software for classification of cell subpopulations 207 

for comparison73,74. Algorithm for clustering of the of PBMC cells was divided into four subparts: signals baseline 208 

estimation, baseline subtraction, interquartile range analysis for peak detection and coupled peaks clusterization. 209 
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(Supporting Information, Methods). Additional data cluster in the scatter analysis was identified with excellent 210 

precision, which can assist in the pattern based disease diagnostics (see Figure 5, B-C).  211 

In conclusion, we demonstrate an ultra-compact impedance flow nanocytometer combined with software 212 

employing the conventional machine-learning algorithms. We successfully apply this system for the discriminative 213 

analysis of healthy PBMC (B-, T-, NK-cells and monocytes), as well as discrimination of PBMCs of leukemia 214 

patients, using extremely low sample volumes in a short time. The developed platform can contribute to the modern 215 

clinical diagnostics assays as a miniaturized, reusable, easy in operation tool, with an option of an autonomous 216 

analysis. Due to small dimensions of each individual sensor, many detectors can be integrated on a chip that paves 217 

a way towards a new type of miniaturized bio-analytics. Namely, the cytometer measurements format coupled to 218 

the smart data treatment opens a route towards the realization of a platform for the rapid detection and recognition 219 

of a broad spectrum of e.g. blood-related (Supporting S20) and immune system diseases. The task of the software 220 

is in the utilization of learning algorithms to train the network for the recognition of multiple data patterns, 221 

indicating different diseases, and used for the diagnostics of multiple patients. As the data complexity increases 222 

dramatically in this case, we envision the evolution of the signal treatment methods, e.g. towards deep learning 223 

approaches78.  224 
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Figures 

 

 

Figure 1: Conceptual figure describing the developed sensor platform. (a) Contribution of the nano-sensor platform 

to previously reported and state of the art techniques, i.e. immunofluorescence (IF)80, fluorescence-activated cell 

sorting (FACS)81, electrical impedance spectroscopy (EIS)47 and impedance cytometry (IC)64. (b) Schematically 

illustration of PBMC detection by nano-impedance cytometry (c) Comparison of signal magnitudes of PBMCs with 

different diameters. (d) Real-time output response of the sensor with complex mixture of PBMCs. 

 



 

 

 

Figure 2: Fabrication and integration of the nanoscaled sensor chip. (a) Nano-impedance cytometer fabrication 

process. (b) COMSOL Multiphysics simulation of the electric field perturbation in presence of a dielectric 

microparticle in the microfluidic channel. (c) Layout of the nano-sensor array of 6 independent accessible electrode 

pairs approaching the contact pads of the EBL-patterned design. The main channel of the microfluidic geometry is 

placed to incorporate the electrodes. (d) 3D hydrodynamic focusing technique allowing analyte guidance in the 

middle and at the bottom of the channel. 

 



 

 

 

Figure 3: Comparison of the signal change with and w/o present micro-particle in the sensing area in static mode. 

While (a) only micro-electrodes grant a weak electric field and thus have a small signal change when a particle is 

present (0.26%), introduction of 16 interdigitating nanowires (b) and single nanowire pair. (c) cytometer mode 

summary: signal modulation while detecting 10 µm particle, using different sensor dimensions. (d) Calculated 

change of device output signal in dependence of sensor dimensions, from (c). 



 

 

 

Figure 4: Detection and classification of isolated PBMCs and formation of the calibration pattern. (a) detection of 

the main subpopulations of PBMCs one-by-one, i.e. lymphocytes and monocytes. (b-g) Formation of the pattern: 

plot of individually measured fluorescently labelled PBMC cells. (h) Exemplary calibration pattern. (j) Impedance 

cytometry of unlabeled PBMCs: matching of the labelled PBMC mixture with the calibration pattern. The 

lymphocyte cluster is divided based on its subpopulations, namely NK-, T-, and B-cells. (k) Matching the 



 

 

unlabelled PBMC mixture with the calibration pattern. The lymphocyte cluster is divided based on its 

subpopulations, namely NK-, T-, and B-cells. Panels (l)-(n): calibration of the signal for impedimetric detection of 

myeloblasts. (l) Detection of the labeled isolated blasts one-by-one in time domain; (m) formation of the data cloud 

and its localization within the pattern of peripheral blood of the AML positive donor; (n) matching the myeloblasts 

cluster (red) with the unlabeled PBMC of the AML positive donor (black open circles) and PBMC of healthy donor 

(gray circles). 



 

 

 

Figure 5: (a) Detection and characterization of PBMC of healthy human donors (see Inset) and AML patients#1-

3. A new cluster is found in the AML samples caused by the presence of the myeloblast subfamily. (b) Impedance 

cytometry scatter plot of PBMCs of healthy donor (n=1000 cells) and (c) AML patient (n=1400 cells) calculated 

via the machine learning algorithm. (d) Overview of the individual cell counts, comparison to healthy patient. AML 

patients PBMCs shows a myeloblast percentage in the range 30-60%. 

  



 

 

TOC image:  

Ultra-compact nanocytometer for real-time impedimetric detection and classification of subpopulations of living 

cells in peripheral blood. 

 


