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Abstract: 

We study the reaction NN + N N @  slightly above the threshold within an extended 

one-boson exchange model which also accounts for uud knock-out. It  is shown that polar- 

ization observables, like the beam-target asymmetry, are sensible quantities for identifying 

a ss admixture in the nucleon wave function on the few per cent level. 



1. Introduction: The investigation of the N N  -+ iW@ reaction is interesting for 

several reasons. First, the elementary total cross section [I, 21 is an important input for 

the calculation of the de production in heavy-ion collisions [3]. In this case one might 

expect some change of the @ width [4] due to the coupling to the decay channel de --+ 
K C K -  and peculiarities according to the in-medium modification of the kaon properties 

[ 5 ,  61. Indeed, such measurements are under way with the 47r detector FOPI at SIS in 

GSIIDarmstadt [7]. The electromagnetic decay channel de -+ e+e- will be investigated 

with the spectrometer HADES [8] also in GSI. Note, that a threshold-near measurement 

of the total cross section of the reaction pp -+ pp@ has been performed at SATURNE 

[9] and precision measurements of polarization observables are envisaged with the ANKE 

spectrometer at the cooler synchrotron COSY in Jülich [10]. 

Second, the @ meson is thought to consist mainly of strange quarks, i.e. sS, with a 

rather small contribution of the light U, d quarks. According to the OZI rule [ l l ]  the @ 

production should be suppressed if the entrance channel does not possess a considerable 

admixture of hidden or Open strangeness. Indeed, the recent experiments on the proton 

annihilation at rest, pp -+ @X (cf. [12] for a compilation of data), point to a large 

apparent violation of the 0 2 1  rule, which is interpreted [12] as a hint to an intrinsic s3 

component in the proton. Analyses of the 7rN sigma term [13] also suggest that the proton 

might contain a strange quark admixture as large as 20%. 

It would be important and interesting to look for another clear signal[12,14] that might 

be related directly with the strangeness content of nucleons. In ref. [15] it is shown that the 

polarization observables in the @ photoproductiorv are sensitive even to a small strangeness 

admixture in the proton. Other investigations concern the polarization observables in 

pp -+ ppde reactions at the threshold [12, 161. It is found [16] that spin and parity 

conservation arguments result in a precise prediction for the beam-target asymmetry 

CzT for the pp --+ ppde reaction at the threshold, 

where Si is the total spin in the entrance channel. It is also claimed [16] %hat the decay 

rnatrix density amounts poo = 0, P11 = = where the quantization axis is directed 

along the velocity of the Q! meson. Real experiments, however, are performed at  ssme 

finite energy above threshold, therefore the questions arise (i) how are the threshold pre- 

dictions modified above threshold (say in the order of 100 MeV), and (ii) how sensitive are 

polarization observables to a certain strangeness admixture in the proton tvave function. 

In this Letter we answer these guestions. We shew that the finite-energi. nmdification nf 

the asymmetry is rather strong and that the strangeness component modifies the previous 

predictions. We study both the pp -, pp@ ancl the pn -+ pn@ reactiuns. 



we assume here that in the threshold-near region the strongest contributions to the 

reaction come from the conventional one-boson exchange mechanism and the uud knack- 

out by exchanged mesons, similar to the @ photoproduction and electroproduction [15, 171. 

(We do not consider here the sS knock-out, thereby assuming that the corresponding 

meson-sS-@ coupling constants are small.) Both reaction channels are depicted in fig. 1 

as Feynman diagrams. VVe use the notation p, = (E„ p,) with a, = a, b, C, d for the 

four-momenta of nucleons, and q = (E@, q)) for the produced @ meson in the center of 

mass system (c.m.s.). Hereafter 8 denotes the polar & meson angle, and s = E, + Eb. We 

use a coordinate system with z 11 pa, y 11 paxq .  

2. One-boson exchange model: Let us consider first the one-boson exchange 

(OBE) model for the conventional NN -+ N N @  reaction dynamics. Our OBE model is 

cIose to the previously employed model [2]. The meson-nucleon interaction Lagrangian 

reads in obvious standard notation 

while the @p Lagrangian is 

where T r ( p )  = pO.irO + pf T- + p-rf,  and bold face letters denote isovectors. All coupling 

constants are dressed by monopole form factors Fi = (A2 - mi)/(A2 - k:), where ki is the 

four-momentum of the exchanged meson. 

The total invariant OBE amplitude is the sum of 4 amplitudes 

Tfi = Tfi[ab; cd] + Tfi[ba; dc] + Tfi[ab; dc] + Tfi[ba; cd], (4) 

where the last two terms stem from the antisymmetrization or from charged meson ex- 

Change for pp or pn reactions, respectively. The first term in eq, (4) reads explicitly 

with 

cTzfl denotes the @ polarization four-vector, and the index r describes the polarization 

of the @ meson in the helicity basis; m, ... md are the nucleons spin projection on the 

quantization axis, and Ic, = pc - pa, k, = pb - pd. 



The differential Cross section is related to the invariant amplitude Tfi via 

d5a - 1 ~ P C  
d ~ + d ~ + d ~ ,  8,/-(245 lTfi12 ~AP, + CE,, 

where the energy E, of particle c in the c.m.s. is defined by 

with A = (G - E+), B = s - 2E+& + Mg, C = 2qcos dqp„ where 29„ is the angle 

between q and p,. Both solutions in eq. (8) are to be taken into account. 

2.1 Fixing parameters: The coupling constant g+„, is determined by the @ -+ pn 

decay. Taking the most recent value I?(@ -+ p~)=0.69 MeV [18] we get g+„ =1.10 GeV-I. 

The laboratory kinetic energy of the initial proton in the region with Q r JS- Jso N 

0.1 - . - 0.3 GeV is about 3 . . . 3.5 GeV (here Jso = 2MN + M@). That is a quite large 

beam energy for the usual OBE model and, therefore, one must use energy dependent 

coupling constants. We use the minimal energy dependence of ref. [19], where each meson- 

nucleon coupling constant is modified by a cut-off factor, i.e. g i ~ ~  -+ gtNN exp(-li&) 

with li = 0.11 (0.18, 0.1, 0.1) GeV-I for i = T (p, a, W). We shall employ two sets of 

the OBE model parameters: set I relies on the Bonn OBE model as listed in Table B.l 

(Model 11) of Ref. [20], and set I1 uses the results of ref. [19]. The cut-off parameter Agpn 

is adjusted by a comparison of additional calcdations and data [21] for the T-p + n@ 
reaction. We find Agp, = 1.9 GeV for set I, and m for set 11. These relatively large 

cut-off values are in agreement with the pion photoproduction [22] and photon emission 

from the Vry (V = p, w )  vertices in NN bremsstrahlung 1231. Our cut-off parameter in 

set I is greater then the one found in ref. [2] because we use energy-suppressed coupling 

constants and we have a negative interference between vector and itensor parts in the 

pnp vertex which is intimately related to the deflnition of the Lagrangian eq. (2). Note 

that we describe the data [21] in a limited region of An-„,@ P. & - &IN f i%& 5 0.15 

GeV. At higher energies the OBE model overestimates the data. (In this region one could 

use a stronger energy suppression in the vertices as in ref. [I].) \Ve have cheeked that 

the momenta at the xp@ vertex in the N N  -+ N N @  reaction are in the region where 

we describe the T-p -+ TZ@ reaction correctly. Taking into account tlie symmetry of the 

off-shell mesons in the @psr vertex we use AgpK = R h ,  for each paraiueter set. 

2.2 Threshold iimit: At the threshold, where A -+ 0, one can neglect terms pra- 

portional to fql/iMh in the amplitude, Meson propagatsrs and form factors 

become constants because they depend on the Same variable k;,, -+ ki = -~4$.&7hf@. Hence 

one can express the amplitudes in the form 



For 8 = 0 the spin is transferred to the @ meson only a t  the NNp vertex by a nucleon 

spin-flip. Then for the initial polarization m, = i (-i) only T+ (T-) is non-zero, while 

for 6 = ir only T+ (Tw) is non-zero for m, = -i ( i ) .  Summation of ITiiI2 over spin 

projections of the outgoing particles leads to the following expressions for pp and pn 

collisions 

where A K m b  = 4(l  +L„, - and AEajmb = 2(1+4[l +L„, - 6„,-„]). Using 

these equations we get the threshold limits for the beam-target asymmetry CET = 1 and 

0.8 for pp and pn collisions, respectively. For both reactions the Q> spin density matrix 

elements are poo = 0 and pll = i .  For the pp reaction this result agrees with a previous 

prediction [16]. Moreover, eqs. (10, 11) predict the ratio of the corresponding total cross 

sections as og/og = 80/(32 - i )  = 5, where the additional factor f in the pp cross section 

represents the symmetry factor. 

3. uud knock-out: The main ingredient of the knock-out photoproduction mecha- 

nism is the assumption that the constituent quark wave function of the proton contains, 

in addition to the usual 3-quark (uud) component, a configuration with an explicit sS 

contribution. A simple realization of this picture is the following wave function in the 

Fock space [17] 

where denotes the strangeness admixture in the proton, and U:,, = i are the fractions 

of the ss pair with spin 0 and 1, respectively. The superscripts represent the spin of 

each cluster, and €4 represents the vector addition of spins of the uud and sS clusters and 

their relative orbital angular momentum (C = 1). Details on the wave functions in the 

relativistic harmonic oscillator model 1241 can be found in refs. [15, 171. We assume that 

the exchanged mesons interact with the uud cluster as with a structureless particle and 



describe this interaction within the OBE model with exchanged T, p, W ,  o mesons, See 

fig. lb. The ss component is considered as spectator, that means only the configuration 

with spin Sss = 1 is realized. The corresponding S matrix element for the diagram with 

meson exchange shotvn in fig. l b  reads 

where Dpv is the propagator and T, is the vertes function when the exchanged mesons 

are p and W ;  tlie Lorentz indices at the vertes and propagator disappear for T and a 

exchange. The T matrix is calculated in the rest frame of the decaying nucleon and is 

expressed via the two-body scattering T matrix and the transition amplitude by 

(x is the momentum fraction carried by the uud duster) with the abbreviations 

where q* is the Q> momentum in the laboratory system, 4; denotes its projected unit 

vector in the circular basis, and V(k) stands for the wave function of the relative mo- 

tion normalized as J ~ ~ ( k ) d k / ( 2 i 1 ) ~ / 2 J m  = 1; is the corresponding Lorentz 

factor,which reflects the Lorentz contraction in the relativistic constituent model. In our 

calculations we use a Gaussian distribution V(x) = N z  exp(-z2/2a) with d? = 2.41 

fm-' [15, 171. The final amplitude contains the sum over all exchanged mesons and con- 

sists of 2 direct and 2 exchange amplitudes for the pp reaction, and 2 direct and 0 (W, D) 

or 2 (T, p) exchange amplitudes for the pn reaction to be taken with their proper isospin 

factors. 

The corresponding amplitudes in the @ helicity basis can be obtained by T' = 

L. d&,,r(t9) Tm@ with the Wigner rotation functions d&*,T. Note that this amplitude 

may be expressed in the covariant form TT = IVPer, where the time component Wo 

is found from the transversality condition. The net result is a rensrrndizcttion ~f the 

component with r = 0 as T0 + TO.A&/E~. 

In the threshold Iimit the beam-target asym~netry is 1 (' reaction) or O (pn rex-  

tion). a$/g$ depends on the model for tlie two-body T matrix, and in our Gase it is 

close to 1. The 4[n spin density matrix elements here coincide with the conve11tiona.1 OBE 

model predictions. 

4. Results: Our result for the total cross section in the yp reaction is shotvn in fig. 2. 

The lower (upper) solid lines correspond to the conve~itional OBE channel for the set I with 



AG = 1.9 GeV (Ag, = 1.9 GeV, Ag, = m); the short-dashed line is the prediction for 

set 11. The dashed line depicts the calculation with the constant matrix element of eq. (10). 

One can See that up to A N 1 GeV the cross section is described fairly well by the phase 

space integral alone. The space between upper solid and dashed curves indicates upper 

and lower lirnits for the OBE model prediction. In spite of the fact that the OBE niodel 

is reliable in the region of A 5 0.2 GeV it fits satisfactorily the available experimental 

data [9, 251 in a much wider interval. The cross section for the pn reaction is greater by 

a factor e 5 as given already in our threshold-near prediction above. Open Squares and 

black dots show the predictions for the knock-out channel within the OBE model with 

sets I and 11, respectively, and a strangeness probability B2 = 0.01. The distance between 

them is indicative for the accuracy of the theoretical prediction. Taking into account that, 

contrary to set 11, the set I overestimates the elastic NN scattering at  -t 1 . - - 2  GeV2 

by a factor of 20. + - 40, the prediction based on set I1 seems to be more realistic. So, we 

can conclude, that the difference between conventional OBE and knock-out channels for 

the total cross section is about two orders of magnitude at A = 0.1 GeV for B2 = 1%. 

However, in the differential cross section this ratio changes, because the knock-out model 

predicts a large enhancement for the Q> production in forward and backward directions 

when the recoil nucleons move along the z axis. In this case the difference between two 

channels drastically decreases and becomes a factor 5 - . -8. The interference between 

these two channels is negligible, and in coplanar geometry it disappears because the OBE 

amplitude is real, while the knockout amplitude is imaginary since the exchanged meson 

is absorbed by the 5-quark component in the proton wave function. 

Figs. 3 and 4 show our predictions for the beam-target asymmetry as a function 

of the @ production angle 19 a t  fixed recoil nucleon angles at A = 0.1 GeV and 

141 = $X (s, M:, 4M$)/2+ for pp and pn reactions, respectively (X is the usual trian- 

gle function). The left panels of figs. 3 and 4 show separately the asymmetry for pure 

OBE and knock-out channels. For the pp reaction the long-dashed line is the threshold 

prediction. One can See that at finite energy the asymmetry differs significantly from the 

threshold value for both the conventional OBE (solid lines) and knock-out (short-dashed 

line) mechanisms. The Same is Seen for the pn reaction, where the dashed line is the 

threshold prediction for the knock-out channel. The right panels of figs. 3 and 4 display 

the asymmetrgr for the sum of the two channels for two strangeness probabilities B2 = 

2 and 5% (dashed and short-dashed curves). One can See that the knock-out channel 

modifies the OBE model prediction strongly in tke forward and backward directions in 

pp reactions. In pn reactions this modification is smaller because the total cross section 

for the OBE channel is about 5 times greater then in pp reaction, while for the knock-out 

channel it is on Same level. 



The <P meson spin density is niodified too. At finite energy their modifications for 

the OBE channel are negligible and the matrix elements are poo E 0, pll E 0.5. The 

inclusion of knock-out channel changes them to poo = 0.12 (0.22), pl l  0.44 (0.39) for 

the strangeness probabilities B2 = 2 (5)% in backward and forward directions. 

5.  Summary: In Summary we calculate within an extended OBE model with a 

uud knock-out mechanism the cross section and polarization observables for the reaction 

NN 4 NNQ.  While the total cross section is hardly sensitive to an admixture of a sS 

configuration in the nucleon, a measurement of the target-beam asymmetry should reveal 

the presence of hidden strangeness. Already slightly above the threshold the interaction 

dynamics becomes important and changes the threshold predictions. 
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Figure 1: Tree level Feynman diagrams for the Q> production. 

Figure 2: The total Cross section fort the reaction pp -+ P@. The metning of symbols 

and curves is described in the text. Data from [25]. 



Figure 3: The beam-target asymmetry for the reaction pp 4 pp@ as a function of the 

c.m.s. polar angle 19 of the @. Left (right) panel: contributions from conventional OBE 
model and uud knock-out mechanism separately (together). The meaning of symbols and 

curves is described in the text. 

Figure 4: The Same as in fig. 3 but for the reaction pn -+ pn@. 
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