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For the analysis of boron 'dilution transients and main steam line break scenarios the 
modelling of the coolant mixing inside the reactor vessel is important. The reactivity insertion 
due to overcooling or deboration depends strongly on the coolant temperature and boron 
concentration. 
The three-dimensional flow distribution in the downcomer and the lower plenum of PWR's 
was calculated with a computational fluid dynami~cs (CFD) code (CFX-4). Calculations were 
performed for the PWR's o~f SIEMENS KWU, Westinghouse and VVER-440 1 V-230 type. 
The following important factors were identified: exact representation of the cold leg inlet 
region (bend radii etc:), extension of the downcomer below the inlet region at the PWR 
Konvoi, obstruction of the flow by the outlet nozzles penetrating the downcomer, etc. The k- 
E turbulence model was used. Construction elements like perforated plates in the lower 
plenum have large influence on the velocity field. It is impossible to model all the orifices in 
the perforated plates. A porous region model was used to simulate perforated plates and the 
core. The porous medium is added with additional body forces to simulate the pressure drop 
through perforated plates in the WER-440. For the PWR Konvoi the whole core was 
modelled with porous media Parameters. The velocity fields of the PWR Konvoi calculated 
for the case of operation of all four main circulation pumps show a good agreement with 
experimental results. The CFD-calculation especidly confirms the back flow areas below the 
inlet nozzles. The downcomer flow of the Russian WER-440 has no recirculation areas 
under normal operation conditions. By CFD calculations for the downcomer and the lower 
plenum an analytical mixing model used in the reactor dynamic code DYN3D was verified. 
The measurements, the anialytical model arid the CFD-calculations provided very well 
agreeing results particularly for the inlet region. 
The difficulties of analytical solutions arid the uncertainties of turbulence models for the 
numerical solutions require additional experiments. Therefore a 1 5  scaled plexiglas model is 
under construction at RC Rossendorf. The mo~del can be used variably for PWR's of 
KONVOI- and EPR- types including the primary loops. The measurements of the mixing 
effects will be performed with modern wire mesh Sensors based on conductivity differences 
and LDA is used to measure the flow conditions. 



1 1. INTRODUCTION 

Efficient models for the description of temperature and boron concentration distribution at the 

core inlet have to be developed for the case of different conditions in the cold legs of the 

primary circuit. The emphasis is put on ATWS accidents, boron dilution accidents and steam 

line breaks. Further, the mixing between core outlet and reactor outlet nozzles has to be 

described. The main goal is to provide computationally efficient modules for the coupling of 

thermal hydraulic Computer codes with three-dimensional neutron-kinetic models. 

Starting from existing analytical solutions for the velocity and temperature fields in VVER 

reactors similar models will be developed and checked with regard to their feasibility for 

Western PWRs. The specific geometrical boundary conditions have to be taken into account, 

because they lead to considerable differences in the velocity profile. 

Another aim is to validate the CFD-Code and the existing analytical solutions for the velocity 

and temperature fields under steady state conditions (nominal flow) against measurements 

and to compare the flow fieSd and the coolant mixing in the Russian VVER-440 type reactors 

with the German type reactor SIEMENS Konvoi. 

2. GEOMETRY AND TECHNICAL DATA OF THE PWR KONVOI AND THE 
VVER-440 

The Primary Cuircit of the PWR Konvoi has 4 loops, the inlet and outlet nozzles are in the 

sarne plane. 
The VVER-440 has 6 loops and the outlet nozzles are above the inlet nozzles. In the paper 

presented, only the V-230 design version of VVER-440 is considered, which has a perforated 

plate at the inlet of the lower control rod chamber, but no elliptical sieve for additional flow 

smoothing like the V-2 13. 

Tab. 1: Comparison of the Reactor Types PWR Konvoi and VVER-440 

VVER-440 (440 MWei) Reactor types 

No of Loops 
Mass flow per loopl 

PWR KONVOI (1300 MWei) 

kg/s 
inlet temperature I 'C 

pressure 1 bar 
velocity at the inlet 

4 
18800 

6 
. 8550 

291.3 
158 
14.2 

268.8 
125 
9.55 



3. THE ANALYTICAL MMING MODEL 

A special model for the mixing of coolant from different primary loops in the downcomer 

and lower plenum of VVER-440 type reactors was introduced by Dräger 141. This model is 

based on the analytical solution of the Navier-Stokes equations in the potential flow 

approximation for a 2D flow in the downcomer. The velocity gradient in the radial direction 

was neglected. In the lower control rod chamber a parallel flow with constant velocity was 

assumed. 

The flow field in the lower plenum, where the coolant changes its flow direction is controlled 

by a downcomer outlet boundary condition, i.e. there is no modelling of the flow field in this 

part. With this approximation of the velocity field the diffusion equation for the temperature 

is solved. The solution is presented as a closed analytical expression' based on series of 

orthogonal eigen-functions. The turbulence was taken into account by constant scalar 

turbulent thermal conductivities defined individually for the downcomer and the lower 

control rod chamber. The turbulent Peclet numbers describe the intensity of turbulent 

diffusion. Dräger has found that in the case of highly turbullent flow the mixing can be well 

described by choosing values for these two Pe-numbers on the basis of experimental data. 

These values are able to generalize the mixing behaviour, i.e. they are insensitive against 

changes of the operation mode of the reactor (e.g. different situations of disturbed reactor 

inlet temperatures, mass flow rates of running pumps etc.) in the case of operating MCP's in a 

VVER-440. 

However, the assumption of the absence of vortices in the downcomer is not fulfilled in 
general. Further, the model was not yet tested for natural circulation conditions. 

The analytical model is used in the reactor dynamics code DYN3D 161 to describe the coolant 

mixing in WER-440 type reactors. In the coupled code cornplex DYN3D-ATHLET it links 

the cold leg parameters with the reactor core inlet distributions. This code system was used 

for the analysis of main steam line break scenarios for 'WER-440 type reactors. 

In order to validate the analytical mixing model, measured values from an air operated X:5 

scaled VVER-440 model were used /3,4, 51. The use of air for liquid flows has the advantage 

to have sufficiently large Reynolds numbers and to be technologicaliy better controllable. 

Temperature measurement technology was used and the measuremerits were perforrned at the 

end of the downcomer and at the inlet of the reactor core. 

Measurement results frorn the air flow model were used tu validate the -D-calculations, too. 



4. ASSUMPTIONS FOR CFD-CALCULATIONS 

4.1 View of the software package CFX 4.2 

CFX is a finite volumes program /I/ that offers the following options 

0 Block structured discretization grids 

Solution of the Navier-Stokes-Equations for steady and unsteady flows for compressible 

and not compressible fluids 

Applicability for laminary and turbulent flows (different models of turbulence) and non 

Newtonian fluids 

0 Modelling of heat transfers 

Use of different coordinate Systems 

4.2 Model assumptions, geometry preparation and grid generation 

Following assumptions for the modeling of the coolant flow in 

pressurized water reactors are made: 

incompressible fluid 

use of the Standard k- E turbulence model 

pressure boundary condition at the outlet 

applying passive scalar fields to describe boron 

concentration 

simulation of perforated plates with the help of a porous 

medium 

simulation of the pressure resistance to sieve plates with the 

help of Body Forces 

model the heat transfer 

For the CFD calculations a SGI Origin 200 workstation ( 1 GB 

RAM, 4x R 10000 processors of 180 MHz,64 Bit CPU) was 

used. 

Fig. 1 Grid model the VVER-440 



For the calculations following discretizations (Tab. 2) have been developed (see Fig. 1): 

Tab. 2: Discretizations of the Reactor Types PWR Konvoi and VVER-440 

PWR I No. of I No. of I No. of Grid cells I 

In order to receive an optimal net griding for the later flow simulation one must consider the 

following items: Checking grid number in special regions to minimize numerical diffusion,, 

refinement of the griding in fields with strong changes of the dependent variables, adaptationi 

of the griding to estimated flow lines, generation of nets as orthogonal as possible (angle 

>20°). 

KONVOI 

4.3 Boundary conditions and the modeling of the perforated plate (VVER-440) and the 
core (Konvoi) 

At both reactor types the inlet boundary conditions were Set at the inlet nozzles. The outlet 

boundary conditions were set to pressure controlled. In the case of the WER-440 I V-230 

there was no need to model the reactor core because the outlet boundq  conditions are 

dominated by the control rod chamber (Fig.2). The core was modeled at the PWR Konvoi 

because the lower plenum boundary conditions are more strongly influenced by the core . 

Blocks 
166 

In the case of the reactor model WER-440 / V-230, no elliptical sieve plate exists. 

However, a perforated plate is located at the inlet into the lower control rod chamber below 

the core inlet. This plate plays a irnportant role for controlling the size and the place of the 

vortices and therefore for mixing the coolant. 

It was also not possible to simulate the whole core with the fuel elements, control elements 

etc. The flow volume has a certain degree of porosity y , which can be choseni 

anisotropically. Further, within a porous medium, body forces can be defmed to describe 

distributed friction losses. 

Patches 
685 109194 



Fig. 2 Perforated plate (VVER-440) and core (Konvoi) 

as a porous media 

The momentum equation: 

The porosity value y 

for perforated plates can 

be determined easily, by 

relating the area of 

orifices to the total area 

of the sieve plate . The 

body forces B are added 

to the momentum 

equation. The porosity 

value y describes the 

change of free flow area 

A within the porous 

medium. 

The speed-factor RF .(kglm4) is useful to calculate a flow resistance depending on the local 

velocity. The following relation between the Speed-Factor RF and the flow resistance 

coefficient 4 is valid: 

Measured values for the flow resistance 4 were used to calculate the speed-factor RF at the 
perforated plate of the VVER-440. For the Konvoi core calculated values from SIEMENS 
KWlr' were taken to simulate the flow resistance C. 



5. RESULTS 

5.1 Steady flow results in the PWR Konvoi 

The calculated velocity field of the PWR Konvoi agrees well with experimental results ( air 

operated model of Ulrych and Weber 121). This especially confirms the back flow areas below 

the inlet nozzles. The coolant mixing at nominal condition is low (App Big. 1). A sector of 

low temperature coolant is existing at the inlet of the core if in one of the loops lower 

temperature is assumed. A maximum velocity exists at azimutal positions between the inlet 

and outlet nozzles. 

5.2 Flow field in the VVER-440 

The downcomer flow of the Russian VVER-440 has no back flow areas. With calculations of 

the downcomer and lower plenum there could be confirmed the validity of the analytical 

mixing model of Dräger I41 (applicability of potential fiow approximation). In the case of 

VVER-440, no recirculation vortices are found. However, a maximum velocity exists also on 

azimutal positions between the inlet nozzles. In Fig. 3 the velocity at azimutal positions at the 

end of the downcomer at the VVER-440 is shown. 

Fig. 3 Velocity distribution at tthe end of the downcomer of V+VER-440 

The flow fields in the downcomer, nozzle plane and lower plenum of the W R - 4 4 0  1 V-230 

are represented in App.lEig 213 at steady state conditions. In App.lF1g. 4, the flow fiefd of the 



DWR Konvoi was added to compare it with the flow field of the VVER-440. The flow field 

is more homogenous than at PWR Konvoi. However, in the lower plenum of the VER-440 

large vortices are existing. The perforated plate is controlling the size and location of the 

vortices and therefore also the mixing of the coolant. The maximum velocity at the core inlet 

is situated at the outer core radius (App.JFig.2). 

5.3 Comparison of the mixing phenomena with measurements and the analytical model 
at the VVER-440 

0 50 100 150 200 250 300 350 

azirnutual position I' 

Fig. 4 Scaled temperature distribution at the end of the downcomer of WER-440 

In Fig. 4 the temperature distribution at the downcomer outlet is shown, when all loops are in 

operation. One of the six loops is operating with lower temperature. This case was also 

investigated in the air operated mixing model of the VVER-440. Incomplete mixing occurs 

i.e. a sector of cold water is located below the inlet nozzle. There is almost no mixing in the 

downcomer flow field that means a relatively sharp sector of cold water is located below the 

inlet nozzle (App. Eig.3) . 

The comparison of the 2 planes close to the perforated plate and below the core inlet indicates 

a good mixing in the lower control rod chamber (App. lFig.3). In the left picture App.fFig.3 

there is a field of low temperature recognizable, that appears below the reactor core with less 

intensity. 



Fig. 5 shows the scaled temperature distribution over the core diameter of the WER-440N- 

230. A comparison between CFD-calculation, measurement and analytical model shows a 

good agreement .The CFD-calculation shows the lowest mixing rate, which can be seen from 

the greater difference between maximum and minimum scaled temperatures. This could be a 

result of the turbulence model in the CFD-calculation (k, E - Model). However, sector 

formation can be clearly seen in all processes. 
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Fig. 5 Scaled temperature distribution at the core inlet of the VVER-440 

6. COOLANT MMING TEST FACILITY AT RCR 

The validation of the theoretical models, especially with respect to the choice of an 

appropriate turbulence model or the dispersion coefficients in the analytical solutions 

respectively, requires experiments at a test facility, which is reproducing the flow phenomena 

of the original reactor as much as possible. For KONVOI type reactors such a test facility did 

not exist up to now. To find an optimum scaling factor for the flow model, (IFD-calcufation~ 

were performed. It turned out that the 1 5  scaling meets economic and physicd demands 

optimally. The flow fields are shown to be self similar for this scaling factor. 

The requirements concerning quality of the experimental results need a non- pressurized test 

rig operated with water (room temperature). It has to dispose of separately controllable main 

coolant pumps in each loop (Fig. 6). The measurement instrumentation has to be designed for 



the required spatial and time resolution. This test facility was constructed at the Research 

Center Rossendorf and test operations have already been performed. 

Hg. 6 1 5  scaled plexiglas model of the PWR Konvoi 
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8. NOMENCLATURE 

ui component of velocity in m/s 

x i  position coordinate in m 

kg p density in - 
m3 

p static pressure in Pa 

t time 

q viscosity 

T temperature in K . 

k turbulent kinetic energy 

E dissipation factor 

y volume porosity 

N .  
B Body Force T 

m 

N 
B, Body Force 

m 

kg R, resistance factor 
m 

kg RF velocity factor - 
m4 

A surface m2 

V volume m3 

flow resistance 

o shear Stress 



9. APPENDIX 



Fig. 2 Flow fields of the VVER-440 in the nozzle area and lower plenurn 
at nominal conditions 



lower ternperature 

Fig. 3 Coolant mixing of the VVER-440 at the nozzle area (1) downcomer (2) 
perforated plate (3) and core inlet (4) in comparison with the analyticai 
model(5) 



Fig. 4 Flow fields in the downcomer of the PWR Konvoi and VVER-440 at 
nominal conditions (steady state) 
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