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Abstract 

Up-to-date methods of numerical modelling of random fields were applied to investigate some 
features of solute transport in saturated porous media with stochastic hydraulic conductivity. 
The paper describes numerical experiments which were performed and presents the first results. 

I. lntroduction 

The analysis of mass transport in groundwater systems is very important 
in view of problems of environment pollution by chemical compounds and 
radionuclides. In addition to experimental investigations, mathematical modelling 
and numerical simulation of solute transport in porous media is of essential 
interest. Due to the complexity of the physical process, the uncertainty of 
hydrological parameters and the spatial variability in soil properties, the 
stochastic approach is extensively used (cee, for example, EI-101). This 
approach assumes some of the parameters of the governing equations to be 
realisations of random fields. 

The goal of the present paper is to study the influence of randomness of 
hydraulic conductivity on the solute transport. The numerical experiments 
performed use two-dimensional flow models with stochastic fields of 
conductivity of the porous medium. To simulate the random fields we apply 
various numerical methods including new models that were elaborated in 
Novosibirsk Institute of Computational Mathennatics and Mathematical 
Geophysics [ 1 1 - 1 31. 

2. Governing equations and description of models 

The transport of non-reactive dissolved solutes through saturated soil and 
aquifer materials can be described by the convection-dispersion equation 

with 

-- 'lBCI - div (D grad C) - div (UC) + O(x,t, C) 
at 

' Visiting scientist from Institute of Computational Mathematics and Mathematical Geophysics, 
Lavrentiev Street 6, 630090 Novosibirsk, Russia 



U.U. 
D, = la, - a , ) a  

Iul i * j r  

and the filtering equation (Darcy 's law) 

div (K grad H )  + Q = 0. 

The quantities in these equations are: 
C - solute concentration, defined as mass per volume of solution, 
8 - volumetric water content in a porous medium (porosity), 
U - vector of the fluid filtration velocity and U/@ is the specific discharge (i.e. 
the Pore water velocity), 
@ - source-sink term of solute, 
D - dispersion tensor with coefficient of molecular diffusion D* and with 
coefficients a,, a, in longitudinal and transverse direction, respectively, 
K - hydraulic conductivity, 
H - pressure head, 
Q - source-sink term of water, 
t - time variable and 
X - spatial variable. 

The rigorous derivation of the convection-dispersion equation from 
microscopic or molecular physical principles remains an Open research problem 
[3]. Nevertheless, analytical and numerical solutions of this equation have been 
successfully used as models for a large number of experimental studies. 

Rernark 1. Equation (1) is used for unsaturated soil as well as for saturated. But 
in the case of partially saturated porous medium equation (2) is replaced by 
Richard's equation and some assumptions must be added on dependence 
between conductivity, pressure head and water saturation (see, for example, 
i3,5,8,10,1 41). 

Remark 2. Note that the general form of the dispersion tensor D is similar to  the 
general representation of a spectfal tensor for solenoidal isotropic random 
vector-valued fields [I 51. 

Below, only the two-dimensional case, x=fx,yl, without source-sink 
terms, @=C? = 0, is considered. Furthermore, it is assumed that the porosity 8 is 
a constant and that the conductivity K is a realisation of a random field with 
lognormal one-dimensional distribution with parameters ,U and cr, 



where E denotes the average value and V is the variance. 
Autoregressive schemes and spectral methods were used to numerically 

construct the Gaussian field 5/x,y) with different correlations. For example, the 
homogeneous discrete Gaussian field <(i dx, j Ay) = q/il/i with the correlation 
function 

can be simulated according to  the autoregressive scheme: 

where p, and p, are Parameters of the correlation function, Ax and Ay are the 

steps in X and y directions, respectively, are independent normal variables 
with zero mean and unit variance. The so-called spectral models were used to  
simulate homogeneous isotropic Gaussian random fields with the correlation 
functions 

where 

B irl = exp (-W, 

and J, is the Bessel function of the first kind (see, [ I  1-1 31 and Appendix). 



Remark 3. Correlation function of the Gaussian field <(x,y) and covariances of 
the random field of conductivity Kl'x,yl in Eq. (3) are connected by the following 
relation (see, for example [ I  31) 

For the analysis presented here the following boundary value problems are 
considered (see Fig. 1): The flow region is assumed to be a rectangular with 
zero-flux left and right boundaries; a pressure head H, is fixed at the lower 
boundary and the water entry is located at the upper boundary where a pressure 
head H, (H, >H,) is determined (Problem A) or a steady, spatially constant 
influx is fixed (Problem B). The flow region is assumed to be free of pollution at 
the initial moment of time. The pollution (with unit concentration) Comes with 
the water flow either through a central Part of the upper boundary or through 
the entire width of the water entry. 

Problem A: upper boundary with a fixed pressure head H1 (H1 > HO) 

Problem B: upper boundary with a fixed steady, spatial invariant influx 

zero-flux 

boundary 

boundary with a fixed pressure head Ho 

Fig. 1 : Scheme of computational problems 



3. Results of simulations 

At the first Stage of research the investigations were restricted to the 
dispersion-free pollution transport that is described by equation (1 ) with D = 0. 
The following effects caused by randomness of the field of conductivity were 
observed in numerical experiments performed so far. 

Al Essential increase o f the polluted region in the medium 
Figs. 2-6 represent some realisations of stochastic fields of logarithm of 

hydraulic conductivity, the correspondent fields of the pressure head and the 
asymptotic limit of pollution concentration, i.e. the values of C(x,y,tl when t-. 
The problem A was solved for a 100x100 rectangular domain with the following 
parameters: Ho=O, Hf = 75, Ko= I ,  s2 =3.0. The polluted area is much larger for 
stochastic fields of conductivity compared with the nonrandom case which is 
shown in Fig. 7. This increase of the pollution area is of essential interest if the 
contamination is important even for small values of concentration. 

B) Decrease of the breakthrough time and smoothing of the pollution front (a 
variant of Problem B) 

An example for the temporal behaviour of the polluted region in a medium 
with stochastic conductivity for such a boundary value problem is shown in Fig. 
8 for a pollution entry zone which coincides with the whole upper boundary. A 
time diagram of the solute outflow at the lower boundary in a nonrandom 
medium has a step form as shown by the dashed line in Fig. 9 where to is the 
breakthrough time. The solid line shows the outflow for the stochastic medium 
characterised by the Same expectation value of conductivity. In the stochastic 
medium the step is smoothed and the breakthrough time t~ is smaller than to. 
The results presented in Figs. 8 and 9 correspond to the boundary value problem 
with hydraulic conductivity simulated according to model (3), (5) in a 100x1 00 
rectangular domain with parameters /2 = 0.5, HO = 0, 0 = 0.7, Ko = 1, P= 0.3, 
6= 0.3. 

CI Decrease of the medium conductivity in average (Problem Al 
In accordance with the filtering equation (2) for Problem A the integral 

water flux F through the medium is given by 

where {X = 0, ydO, Y)], {X =X, ~€10, Y)} are the sets of points of the lower and 
upper boundaries, respectively. For spatially invariant hydraulic conductivity 
K(x,y) = Ko we have F= Fo, with 

F. = (H, - Ho)KoY / X .  



Fig. 2: Realisations of the fields of hydraulic conductivity, correspondent 
pressure head and asymtotic limit of concentration of pollution (from 
top to bottoml for Problem A, model ( 3 )  with correlation function (4). 



Fig. 3: Realisations of the fields o i  togarithrn of hydraulic conductiviiy, 
correspondent pressure head and asyrnptotic finit of concentrarion of 
pollution ffrorn top to bottom) for Problem A, rnodel (3) with correiation 
function (5). 



Fig. 4: Realisations of the fields of logarithm of hydraulic conductivity, 
correspondent pressure head and asymptotic limit of concentration of 
pollution (from top to bottom) for Problem A, model (3) with correlation 
function 16). 



Fig. 5: Realisations of the fields of logarithm of hydraulic conductivity. 
correspondent pressure head and asymptotic limit of concentration of 
pollution (from top to bottom) for Problem A, model (3) with correlation 
function (7). 



Fig, 6: Realisations of the fields of logarithm of hydraulic conductivity, correspondent 
pressure head and asymptotic limit of concentration of pollution ffrom top to 
bottorn) for Problem A, nodet (3) wi th the Gaussian white noise as t h e  
randorn field :. 



Fig. 7 :  Illustration concerning Problems A and B for spatially invariant 
(nonrandom) conductivity. 

Fig. 9: Outflow of solute at the lower boundary for stochastic (SI and 
nonrandom (N) conductivity (Problem B, see details in text). 



Fig. 8: Fields of soiute concentration in a medium with stochastic conductivity 
at different times (numericai solution of Problem 3; see dettails in text]. 



In the case of stochastic conductivity with mathematical expectation 
EK(x,yl =Ko the integral flux (8) may rather differ from the value determined by 
Eq. (9). Numerical experiments showed that the value F can be considerably 
smaller than Fa. In other words, an "effective" conductivity K, of stochastic 
medium defined by equation 

is smaller than the conductivity Ko. Fig. 10 illustrates this effect in dependence 
on the variance SZ of the random field of conductivity K(x,y). These fields were 
sampled for correlation functions (4), (7) and parameters X=100, Y=100, 
K o = l .  

4. Conclusions and plans 

The stochastic structure of the fields of hydraulic conductivity is a 
principal point that must be taken into account for investigations of solute 
transport in porous media. Some of the effects caused by random conductivity 
are rather different from those that can be described by introducing the 
dispersion term in the convection-dispersion equation (1) (see item C in section 
3 and Fig. 11). 

The presented first results suggest that the study of solute transport in 
stochastic poraus media using up-to-date numerical models of random fields 
seems to  be a promising direction of research. Therefore, the following items 
will be considered further On: 
- to  take into account the randomness of porosity as well as the randomness of 

conductivity; 
- to  elaborate the correspondent algorithms for soiving problems in the three- 

dimensional case; 
- to  study the correlation between the stochastic convection term and the 

dispersion term of the convection-dispersion equation using theoretical 
methods and numerical experiments. 

Appendix 

Spectrai models of random fields: basic principle and general algorithm 
Let us consider a real homogeneous Gaussian random field {(X), XER', 

with zero mean, unit variance and correlation function Rlx) = E{fx+ y){(y). The 
spectral representations of the random field and its correlation function are of 
the form (see, for example, [ I  61): 



Variance of the field of conductivity 

Variance of the field of cunductivity 

Fig. 10: The coefficient K,/K, of "effective conductivity decrease" in stochastic 
stochastic medium in dependence on the variance of the field of 
onductivity (see details in text): ( A l )  - model (31, (41, p, =0.81, 

p,=0.81; (A2) - model (31, (4), p,=0.4, p,=0.81; (B) - model (3), 

(7), h=0.5. 



Fig. 11 : Typical asymptotic distribution of solute concentration for Problems A 
and B with nonrandom conductivity and nonzero dispersion term. 

Here <(da), q(dwl are real-valued orthogonal stochastic Gaussian measures on a 
half-space P that is called "spectral space" (i.e., P is a measurable set such that 
Pr> -P= 101, Pu-P=@), m(dwl is a spectral measure of the random field elx) and 
(.,.) denotes the scalar product in H. In this case the following properties are 

fulfilled: 
(1) EC(AI = EqIB) = 0, 
(2) EC(A)q(B) = 0, 
(3) Ef (Al = E #  (Al = #(Al, 
(4) If A n  B=g,  then E<(Alg(B)=Eq(A)q (B)=O, 
where A  and B stand for measurable subsets of P. 

The main idea underlying the methods of constructing the spectral models 
is to  take an approxirnation of the stochastic integral ( A l )  as a numerical model 
of the random field g(x). In general form a spectral model of hornogeneous 
Gaussian random field {lxl can be written as a sum of harmonics: 

where a >O, <, and q j  are independent random variables (usuatly Gaussian), 



and oj are random vectors distributed in spectral space P. One of the most 

promising spectral models - the method of "spectrum splitting and 
randomisation" - was proposed first in 1171. 

Spectral models turned out to be a very effective tool for nurnerical 
modelling of various classes of Gaussian homogeneous random fields: scalar, 
vector-valued, isotropic, spatial-temporal, and etc. Some modifications of 
spectral models are used even for the simulation of non-Gaussian and non- 
homogeneous random fields. Detailed information on spectral models can be 
found in [ I  1-1 3,181. The simullations of isotropic Gaussian random fields of 
hydraulic conductivity on a plane area were performed according to the 
following formulas (for details see [I 2,13,18]) 

N M 

C„ (X, Y)  = (NM)-"' 7 J-- X cos[pj ( X  cos + y s i .  X,) + 2nßjk), 
j=r k=l 

where NxM is the number of harmonics, 

a„ Pik, y j  are independent random variables uniformly distributed in [0,11, and 

+ p j  are independent random variables distributed in [O,+oo) according to the 
radial spectral density gfp) of the Gaussian field 

For Bfr) = 
sin (Ar)  

the radial spectral density g is given by 
Ar 

for Bfr) = exp f-Rr) 

g (p~  = + a2)-jVZ, 

and for Bfr) =J, (M it is the delta-function NA-P.. 
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