
www.casus.science

Efficient Scientific Computing School – 12th Edition
Performance Portability With alpaka

ESC21 – Performance Portability With alpaka | 2

Life After CUDA

Previously on ESC21 …

● Parallel programming models:
● Intel TBB
● std::thread
● NVIDIA CUDA

● Many more available:
● AMD HIP
● OpenCL & SYCL / Intel oneAPI
● OpenMP
● OpenACC
● Boost.Fiber
● …

● Challenge: How to keep programs portable?

ESC21 – Performance Portability With alpaka | 3

Introduction to alpaka

alpaka – Abstraction Library for Parallel Kernel Acceleration

alpaka is…

● A parallel programming library: Accelerate your code by exploiting your hardware‘s parallelism!

● An abstraction library: Create portable code that runs on CPUs and GPUs!

● Free & open-source software

ESC21 – Performance Portability With alpaka | 4

Introduction to alpaka

Programming with alpaka

● C++ only!

● Header-only library: No additional runtime dependency introduced

● Modern library: alpaka is written entirely in C++14, transitioning to C++17 soon

● Supports a wide range of modern C++ compilers (g++, clang++, Apple LLVM, MS Visual Studio)

● Portable across operating systems: Linux, macOS, Windows are supported

ESC21 – Performance Portability With alpaka | 5

Introduction to alpaka

alpaka‘s purpose

Without alpaka

● Multiple hardware types commonly used (CPUs, GPUs, …)

● Increasingly heterogeneous hardware configurations available

● Platforms not inter-operable parallel programs not easily portable→

alpaka: one API to rule them all

● Abstraction (not hiding!) of the underlying hardware & software platforms

● Code needs only minor adjustments to support different accelerators

User

CPU

alpaka

GPU

ESC21 – Performance Portability With alpaka | 6

Portable Heterogeneous Parallel Programming

alpaka enables portability!

● Idea: Write algorithms once…
● … independently of target architecture
● … independently of available programming models

● Decision on target platform made during compilation
● Choosing another platform just requires another compilation pass

● alpaka defines an abstract programming model

● alpaka utilizes C++14 to support many architectures
● CUDA, HIP, OpenMP, TBB, …

User

CPU

alpaka

GPU

ESC21 – Performance Portability With alpaka | 7

Portable Heterogeneous Parallel Programming

alpaka enables full utilization of heterogeneous systems!

● Algorithms are generally independent of chosen target architecture
auto const taskCpu = alpaka::createTaskKernel<AccCpu>(workDivCpu, kernel, …);
auto const taskGpu = alpaka::createTaskKernel<AccGpu>(workDivGpu, kernel, …);

● Optimization for specific architecture is still possible
// general case
template <typename TAcc>
void computationallyIntensiveFunction(TAcc const & acc) { … };

// specialization for AccGpu
template <>
void computationallyIntensiveFunction<AccGpu>(AccGpu const & acc) { … };

ESC21 – Performance Portability With alpaka | 8

Portable Heterogeneous Parallel Programming

How parallelism is achieved, Part I: The grid, a digital frontier

● alpaka is ideal for data-parallel algorithms
 → execute the same algorithm on different data elements

● alpaka kernel: sequence of commands forming the algorithm on a per-element level

● alpaka thread: execution of a kernel for a single (execution) element

● threads are executed in parallel and are independent of each other

● alpaka grid: n-dimensional grid of all threads executing a specific kernel
● each thread is assigned a unique index on the grid
● threads on the grid are able to communicate through high-latency global memory

Grid

Thread (0,0) Thread (1,0)

Thread (0,1) Thread (1,1)

Thread (0,2) Thread (1,2)

Thread (0,3) Thread (1,3)

ESC21 – Performance Portability With alpaka | 9

Portable Heterogeneous Parallel Programming

How parallelism is achieved, Part II: Blocks on the grid

● Grids are divided into independent blocks of equal size

● Each thread is assigned to exactly one block

● Each thread is assigned an unique index on the block

● All threads inside a block are executed in parallel

● All threads inside a single block can be synchronized
 → no synchronization on the grid level!

● All threads inside a block can communicate through low-latency shared memory

Grid

Block (0, 0)

Thread (0,0)

Block (1, 0)

Thread (0,0)

Thread (0,1) Thread (0,1)

Block (0, 1)

Thread (0,0)

Block (1, 1)

Thread (0,0)

Thread (0,1) Thread (0,1)

ESC21 – Performance Portability With alpaka | 10

Portable Heterogeneous Parallel Programming

Summary

● alpaka is ideal for data-parallel algorithms

● Algorithms are written per data element (kernel)

● data parallelism achieved through a hierarchy of independent threads and blocks on a grid

● All threads can communicate through high-latency global memory

● Threads inside a block can be synchronized

● Threads inside a block can communicate through low-latency shared memory

ESC21 – Performance Portability With alpaka | 11

Download & Installation

ESC21 – Performance Portability With alpaka | 12

Download

How to download alpaka

● Install git for your operating system:
● Linux: sudo dnf install git (RPM) or sudo apt install git (DEB)
● macOS: Enter git --version in your terminal, you will be asked if you want to install git
● Windows: Download the installer from https://git-scm.com/download/win

● Open the terminal (Linux / macOS) or PowerShell (Windows)

● Navigate to a directory of your choice: cd /path/to/some/directory

● Download alpaka: git clone -b 0.7.0 https://github.com/alpaka-group/alpaka.git

https://git-scm.com/download/win

ESC21 – Performance Portability With alpaka | 13

Dependencies

Install alpaka’s dependencies

● alpaka only requires Boost and a modern C++ compiler (g++, clang++, Visual C++, …)
● Linux:

● sudo dnf install boost-devel (RPM)
● sudo apt install libboost-all-dev (DEB)

● macOS:
● brew install boost (Using Homebrew, https://brew.sh)
● sudo port install boost (Using MacPorts, https://macports.org)

● Windows: vcpkg install boost (Using vcpkg, https://github.com/microsoft/vcpkg)

● Depending on your target platform you may need additional packages
● NVIDIA GPUs: CUDA Toolkit (https://developer.nvidia.com/cuda-toolkit)
● AMD GPUs: ROCm / HIP (https://rocmdocs.amd.com/en/latest/index.html)

https://brew.sh/
https://github.com/microsoft/vcpkg
https://developer.nvidia.com/cuda-toolkit
https://rocmdocs.amd.com/en/latest/index.html

ESC21 – Performance Portability With alpaka | 14

Installation

(Optional) Install alpaka’s headers

● alpaka is already ready to use!

● Create an installation directory for the headers:
mkdir /some/install/dir/

● Copy the alpaka headers to the new directory:
cp -r alpaka/include /some/install/dir

ESC21 – Performance Portability With alpaka | 15

Test Your Installation

● Create a small program that includes the main alpaka header:
#include <alpaka/alpaka.hpp>

#include <cstdlib>

int main()
{
 return EXIT_SUCCESS;
}

● Compile:
$ nvcc -std=c++14 -I/some/install/dir/include tutorial.cpp
$./a.out

● Add the following compiler flag to silence the warnings:
-Xcudafe=--diag_suppress=esa_on_defaulted_function_ignored

ESC21 – Performance Portability With alpaka | 16

Exercise 0: Set up alpaka on your system!

ESC21 – Performance Portability With alpaka | 17

Before we proceed...

ESC21 – Performance Portability With alpaka | 18

Lecture Notes

● Find the cheatsheet: https://alpaka.readthedocs.io/en/0.7.0/basic/cheatsheet.html

● Assume using namespace alpaka; everywhere!

https://alpaka.readthedocs.io/en/0.7.0/basic/cheatsheet.html

ESC21 – Performance Portability With alpaka | 19

Calculating AXPY

Jan Stephan – Introduction to alpaka – 23 September 2021 | 20

struct AxpyKernel
{
 template <typename TAcc>
 ALPAKA_FN_ACC void operator()(TAcc const& acc,
 std::size_t numElements, int a, int const* X, int* Y) const
 {
 auto gridThreadIdx = getIdx<Grid, Threads>(acc)[0u];
 auto threadElems = getWorkDiv<Thread, Elems>(acc)[0u];
 auto first = gridThreadIdx * threadElems;

 if(first < numElements)
 {
 auto last = first + threadElems;
 for(auto i = first; i < last; ++i)
 Y[i] = a * X[i] + Y[i];
 }
 }
};

Introduction to alpaka

AXPY

y⃗←a⋅x⃗+ y⃗

Jan Stephan – Introduction to alpaka – 23 September 2021 | 21

Introduction to alpaka

AXPY using namespace alpaka;
using Dim = DimInt<1u>;
using Idx = std::size_t;
using Acc = AccGpuCudaRt<Dim, Idx>;

auto const host = getDevByIdx<DevCpu>(0u);
auto const dev = getDevByIdx<Acc>(0u);
using myQueue = Queue<Acc, property::Blocking>;
auto queue = myQueue{dev};

auto const ext = Vec<Dim, Idx>{1024};
auto hostBufY = allocBuf<int, Idx>(host, ext);
/* Initialize … */
auto devBufY = allocBuf<int, Idx>(dev, ext);

memcpy(queue, devBufY, hostBufY, ext);

auto workDiv = getValidWorkDiv<Acc>(dev, ext, Idx{1u});
auto taskKernel = createTaskKernel<Acc>(
 workDiv, AxpyKernel{}, /* params … */);
enqueue(queue, taskKernel);

memcpy(queue, hostBufY, devBufY, ext);

y⃗←a⋅x⃗+ y⃗

ESC21 – Performance Portability With alpaka | 22

alpaka’s Programming Model

ESC21 – Performance Portability With alpaka | 23

Handling Parallelism

Threads and cores

● alpaka Threads are different from pthreads, std::threads, OpenMP threads, CUDA threads, etc.

● alpaka Thread: execution of command sequence

● Command sequence: algorithm performed on single data element (Kernel)

● Cores are physical execution units

● Cores are capable of executing alpaka Threads

● Example: AMD Threadripper 3990X with 64 CPU cores

● Example: NVIDIA Tesla V100 with 5,120 CUDA cores

ESC21 – Performance Portability With alpaka | 24

Handling Parallelism

Mapping Threads to cores

● alpaka Threads are mapped to hardware cores

● While running, one Thread is executed by
exactly one core

● Threads may run on other cores after
rescheduling

● Usually many more Threads than cores
(oversubscription)

● Waiting Threads make room for ready Threads

Processor

Core 0 Core 1

Core 2 Core 3

Thread 0

Thread 1

Thread 2

Thread 3

Thread N

ESC21 – Performance Portability With alpaka | 25

Handling Parallelism

alpaka Devices

● A set of cores is called a Device

● A single core can only belong to exactly one Device (N:1 mapping)

● All cores on the Device have access to global memory

● alpaka Devices correspond to physical devices

● Example: AMD Threadripper 3990X with 64 CPU cores is a Device with 128 cores (simultaneous
multithreading!)

● Example: NVIDIA Tesla V100 with 5,120 CUDA cores is a Device with 5,120 cores

ESC21 – Performance Portability With alpaka | 26

Handling Parallelism

Host and Device

● An alpaka Host controls the overall program
flow

● An alpaka Device executes Kernels

● All Devices are attached to a single Host

● It is impossible to have more than one Host
per process

Host

Device 0

Device 1

Device 2

ESC21 – Performance Portability With alpaka | 27

Kernels

What is a Kernel?

● Contains the algorithm

● Written on per-data-element basis

● alpaka Kernels are functors (function-
like C++ structs / classes)

● operator() is annotated with
ALPAKA_FN_ACC specifier

● operator() must return void

● operator() must be const

struct HelloWorldKernel
{
 template <typename Acc>
 ALPAKA_FN_ACC void operator()(Acc const & acc) const
 {
 uint32_t threadIdx = getIdx<Grid, Threads>(acc)[0];

 printf("Hello, World from alpaka thread %u!\n", threadIdx);
 }
};

ESC21 – Performance Portability With alpaka | 28

Kernels

Threads and Kernels

● A Kernel is executed by a number of Threads

● Threads are executing the same algorithm for
different data elements

● A Kernel defines an algorithm

● A Thread applies an algorithm

struct myKernel {
 /* … */
};

Data
Element

0

Data
Element

1

Thread 0 Thread 1

executes executes

processesprocesses

 applied to

ESC21 – Performance Portability With alpaka | 29

Kernels

Scheduling

● Threads are mapped to cores

● Many more Threads than cores Thread scheduling required→
● Thread order is unspecified!

 → Programmer cannot control the order of element processing

● Hardware specifics need to be taken into account

ESC21 – Performance Portability With alpaka | 30

Kernels

Example: Thread mapping on CPUs

● CPU consists of multiple cores
● Because of simultaneous multithreading there

can be more logical than physical cores!

● alpaka Threads are executed by CPU cores

CPU

Core 0 Core 1

Core 2 Core 3

Thread 0

Thread 1

Thread 2

Thread 3

ESC21 – Performance Portability With alpaka | 31

Kernels

Example: Thread mapping on GPUs

● GPU consists of streaming multiprocessors
(SMs)

● Each SM consists of multiple cores

● alpaka Threads are executed by individual SM
cores

GPUT0

T1

T2

T3

SM 0 SM 1

SM 2 SM 3

C0 C1

C2 C3

C0 C1

C2 C3

C0 C1

C2 C3

C0 C1

C2 C3

T4

T5

T6

T7

ESC21 – Performance Portability With alpaka | 32

The Problem Size

Problem size and hardware capabilities

● The programmer’s questions:
● How large is the problem? (= How many data elements need processing?)
● Which capabilities are offered by the hardware? (= How many cores are available?)

● The programmer’s challenge:
● Problem size and number of cores completely disjoint
● How to distribute the former amongst the latter?

ESC21 – Performance Portability With alpaka | 33

The Problem Size

How to choose the number of alpaka Threads

● The two important factors:
● Problem size number of data elements→
● Hardware capabilities number of cores→

● Rule of thumb: One Thread per data element
● Not always ideal (depending on algorithm)
● Chance for optimisation

ESC21 – Performance Portability With alpaka | 34

The Problem Size

Choosing the number of Threads

● (Usually) you have more Threads than cores

● In alpaka, the overall number of Threads is
blocksPerGrid * threadsPerBlock
● We will introduce Thread Blocks later!

using Idx = std::uint32_t;

Idx blocksPerGrid = 8;
Idx threadsPerBlock = 1;

ESC21 – Performance Portability With alpaka | 35

The Problem Size

Beware!

● Don’t run too many Threads in parallel!
● An exact definition of “too many” depends on your hardware.

● Some hardware resources are always shared between Threads

● Having too many Threads accessing shared resources results in bottlenecks
● Can seriously impact your program’s performance
● Chance for optimisation

ESC21 – Performance Portability With alpaka | 36

The Problem Size

Example: I/O buffer

● All Threads call printf

● The access to the output
buffer needs to be
serialized

● More Threads
 → more serialization
 → worse performance

template <typename Acc>
ALPAKA_FN_ACC void operator()(Acc const & acc) const
{
 auto threadIdx = getIdx<Grid, Threads>(acc)[0];
 printf("Hello, World from alpaka thread %u!\n", threadIdx);
}

ESC21 – Performance Portability With alpaka | 37

Thread Hierarchy

The “magic” Thread index

template <typename Acc>
ALPAKA_FN_ACC void operator()(Acc const & acc) const
{
 auto threadIdx = getIdx<Grid, Threads>(acc)[0];
 printf("Hello, World from alpaka thread %u!\n", threadIdx);
}

ESC21 – Performance Portability With alpaka | 38

Thread Hierarchy

Understanding the index

● Understanding alpaka’s Thread indices is the key to understanding alpaka!

● After this section, you will understand:
● How to navigate the grid
● How to form Thread Blocks (and why)
● The relations between Threads, Blocks and the Grid
● How to compute Thread indices yourself

ESC21 – Performance Portability With alpaka | 39

Thread Hierarchy

Threads and the Grid

● A Grid consists of all Threads executing the
same kernel

 → One Grid per Kernel execution

● Threads are distributed along one, two or
three dimensions

● Each Thread on the Grid is identified by its
unique index (gridThreadIdx)

● All Threads have access to (large but high-
latency) global memory

2D Grid

Thread (0,0) Thread (m,0)

Thread (0,n) Thread (m,n)

Thread (1,0)

Thread (1,n)

Thread (0,1) Thread (1,1) Thread (m,1)

ESC21 – Performance Portability With alpaka | 40

Thread Hierarchy

Thread Blocks

● Threads can be grouped into Thread Blocks

● All Blocks on the same Grid have the same size

● Each Block on the Grid is identified by its
unique index (gridBlockIdx)

● Each Thread inside a Block is identified by its
Block-local unique index (blockThreadIdx)

● Threads inside a Block have access to (small
but low-latency) shared memory

● Threads inside a Block can be synchronized

2D Grid

Block (0,0) Block (m,0)

Block (0,n) Block (m,n)

T (0,0) T (1,0)

T (0,1) T (1,1)

T (0,0) T (1,0)

T (0,1) T (1,1)

T (0,0) T (1,0)

T (0,1) T (1,1)

T (0,0) T (1,0)

T (0,1) T (1,1)

ESC21 – Performance Portability With alpaka | 41

Thread Hierarchy

Obtaining the indices

● alpaka provides several API functions for obtaining indices:
● Index of Thread on the Grid: getIdx<Grid, Threads>(acc)[dim];
● Index of Thread on a Block: getIdx<Block, Threads>(acc)[dim];
● Index of Block on the Grid: getIdx<Grid, Blocks>(acc)[dim];

● You can also obtain the extents of the Grid or the Blocks:
● Number of Threads on the Grid: getWorkDiv<Grid, Threads>(acc)[dim];
● Number of Threads on a Block: getWorkDiv<Block, Threads>(acc)[dim];
● Number of Blocks on the Grid: getWorkDiv<Grid, Blocks>(acc)[dim];

● Exercise: compute the index of a Thread on the Grid yourself using a combination of the remaining
indices and extents!

ESC21 – Performance Portability With alpaka | 42

2D Work Division

From 1D to 2D

● n-dimensional grids work in a similar way to 1D grids
● getIdx<Grid, Threads>(acc) returns a vector containing n indices
● getIdx<Grid, Threads>(acc)[dim] returns an integer

● Beware: In a 2D grid, y is dimension zero and x is dimension one
● getIdx<Grid, Threads>(acc) returns a vector containing 2 indices: the y-index at position 0 and the x-

index at position 1
● getIdx<Grid, Threads>(acc)[0] returns the y-index

ESC21 – Performance Portability With alpaka | 43

Computing π

Computing π

● Focus of the next four lessons

● Good example for Thread parallelism

● Introduces parameter passing and memory management

● Initial algorithm: Find points in a circle

ESC21 – Performance Portability With alpaka | 44

Computing π – Part I

Points in a circle

● Task: Given a circle quarter with the radius r
and a set of n randomly scattered points, find
all points inside the circle quarter

● Approach:
● Create a Grid with n Threads
● Each Thread evaluates a single point

r

r

r

ESC21 – Performance Portability With alpaka | 45

Computing π – Part I

Algorithm

● Using Pythagoras’ theorem, the distance d
from a point to the origin can be calculated:

● If d ≤ r, return true, otherwise false

d=√ x2+ y 2

r

y
x

ESC21 – Performance Portability With alpaka | 46

Computing π – Part I

Kernel requirements

● For the computation we need:

● The point coordinates:
struct Points {
 float* x;
 float* y;
 bool* inside;
};

● The radius: float r;

● How do we pass these to the kernel?

ESC21 – Performance Portability With alpaka | 47

Computing π – Part I

Passing parameters

● alpaka kernels accept three different parameter types:

● The accelerator: Acc const & acc (required)
● Pointers to memory buffers of any data type: float* bufferA, MyDataType* bufferB
● Scalar values of trivially copyable types: float scalar, struct Composed { int a; float b; }

● Signature of the PixelFinderKernel’s operator():
template <typename Acc>
ALPAKA_FN_ACC void operator()(Acc const & acc, // required
 Points points, // this struct contains memory buffers
 float r // this is a scalar
) const

ESC21 – Performance Portability With alpaka | 48

Computing π – Part II

Grid dimensionality

● No spatial relationship between points

● Points can be evaluated independently

● This makes a multi-dimensional grid unnecessary

struct PixelFinderKernel
{
 template <typename Acc>
 ALPAKA_FN_ACC void operator()(Acc const & acc, Points points, float r) const {

 uint32_t gridThreadIdx = getIdx<Grid, Threads>(acc)[0];
 /* … */

ESC21 – Performance Portability With alpaka | 49

Computing π – Part II

Accessing memory

● Iterating over a buffer works differently in
alpaka

● for loop: One thread accesses elements
sequentially

● Thread index: Threads access elements in
parallel

● If required, you can mix both approaches!

// Using a for loop for buffer access
for(std::size_t i = 0; i < n; ++i)
{
 float x = points.x[i];
 float y = points.y[i];
}

// Using the thread index for buffer access
float x = points.x[gridThreadIdx];
float y = points.y[gridThreadIdx];

ESC21 – Performance Portability With alpaka | 50

Computing π – Part II

Computing the distance

● Use Pythagoras’ theorem for computing the distance

● Use sqrt() for computing the square root
● Requires the acc parameter!

 /* … */
 float d = sqrt(acc, x * x + y * y);

 bool isInside = (d <= r);

 points.inside[gridThreadIdx] = isInside;
 }
};

ESC21 – Performance Portability With alpaka | 51

Computing π – Part II

The complete Kernel

struct PixelFinderKernel
{
 template <typename Acc>
 ALPAKA_FN_ACC void operator()(Acc const & acc, Points points, float r) const {

 uint32_t gridThreadIdx = getIdx<Grid, Threads>(acc)[0];

 float x = points.x[gridThreadIdx];
 float y = points.y[gridThreadIdx];
 float d = sqrt(acc, x * x + y * y);

 bool isInside = (d <= r);

 points.inside[gridThreadIdx] = isInside;
 }
};

ESC21 – Performance Portability With alpaka | 52

Computing π – Part III

Kernel requirements

● alpaka kernels accept pointers to Device memory

● Challenge: Host and Device don’t always share memory

● Memory buffers need to be allocated on both the Host and the Device

● Memory needs to be transferred from the Host to the Device and vice versa

● In case of CPU Devices there is optimisation potential in avoiding unnecessary copies!

ESC21 – Performance Portability With alpaka | 53

Computing π – Part III

Allocating memory on the Host

● Memory can be allocated using allocBuf()
using Host = /* … */; // not important now
using BufHost = Buf<Host, float, Dim, Idx>; // Host buffer type
using MyVec = Vec<Dim, Idx>; // Vector type

auto const devHost = getDevByIdx<Host>(0u); // create host device
Vec const extents(n); // create extents
BufHost hostBuffer = allocBuf<float, Idx>(devHost, extents);

● Pre-allocated memory can be used with alpaka:

std::vector<float> plainBuffer(n);
using ViewHost = ViewPlainPtr<Host, float, Dim, Idx>;
ViewHost hostViewPlainPtr(plainBuffer.data(), devHost, Vec(plainBuffer.size());

ESC21 – Performance Portability With alpaka | 54

Computing π – Part III

Allocating memory on the Device

● Allocating memory on the Device works the same way!

● Memory can be allocated using allocBuf()
using Acc = /* … */; // not important now
using BufAcc = Buf<Acc, float, Dim, std::size_t>; // Accelerator buffer type

auto const devAcc = getDevByIdx<Acc>(0u); // create accelerator device

BufAcc accBuffer = allocBuf<float, std::size_t>(devAcc, extents);

ESC21 – Performance Portability With alpaka | 55

Computing π – Part III

Memory transfers

● After initializing the Host buffer (for loop, <algorithm>, memset, …) memory can be transferred

● In alpaka all memory operations are explicit

● Use memcpy() to initiate transfers:
memcpy(devQueue, // queue (explained later)
 devBuffer, // copy target
 hostBuffer, // copy source
 extents); // number of elements
memcpy(devQueue,
 devBuffer,
 hostViewPlainPtr, // for pre-allocated memory
 extents);

ESC21 – Performance Portability With alpaka | 56

Computing π – Part IV

Approach

● We will use the formula for the area of a circle
quarter:

● The number of points inside the circle (P) can
be used to approximate A:

● The PixelFinderKernel does the counting on
the Device, integration is done by the Host.

P
n ≈ A

r 2
= π

4
→ π ≈

4 P
n

r

A= π⋅r 2

4

ESC21 – Performance Portability With alpaka | 57

Lesson 26: Computing π – Part IV

Kernel execution and memory transfer

● We will measure the execution time:
auto start = std::chrono::steady_clock::now();

● Execute the kernel using enqueue():
PixelFinderKernel pixelFinderKernel;
auto taskRunKernel = createTaskKernel<Acc>(workDiv, pixelFinderKernel, pointsAcc, r);
enqueue(queue, taskRunKernel);

● Copy back the results and synchronize:
memcpy(devQueue, insideBufferHost, insideBufferAcc, extents);
wait(devQueue);

ESC21 – Performance Portability With alpaka | 58

Computing π – Part IV

Integration

● First, determine P:
std::uint64_t P = 0;
for(std::size_t i = 0; i < n; ++i)
{
 if(pointsHost.inside[i])
 ++P;
}

● Then, divide by the radius to approximate π:

float pi = (4.f * P) / n;
● Measure the execution time:

auto end = std::chrono::steady_clock::now();

ESC21 – Performance Portability With alpaka | 59

Computing π – Part IV

Aftermath

● Print out π and execution time:
std::chrono::duration<double, std::milli> duration = end – start;
std::cout << "Computed pi is " << pi << "\n";
std::cout << "Execution time: " << duration.count() << "ms" << std::endl;

● Homework #1: Play around with n. How does this affect the precision of π and the execution time?

● Homework #2: Implement the kernel in a more generic way, so that it works for any number of
threads, blocks and grids.
● The workload has to be distributed between all threads in the grid.
● It requires to have a loop over points inside the kernel.

ESC21 – Performance Portability With alpaka | 60

Changing the Back-end

Moving from CPU to GPU

alpaka allows for easy …
● … exchange of the accelerator
● … porting of programs across accelerators
● … experimentation with different devices
● … mixing of accelerator types

User

CPU

alpaka

GPU

ESC21 – Performance Portability With alpaka | 61

Changing the Back-end

Switching the Accelerator

● alpaka provides a number of pre-defined back-
ends (called Accelerators)

● For GPUs:
● AccGpuCudaRt for NVIDIA GPUs
● AccGpuHipRt for AMD (and NVIDIA) GPUs

● For CPUs
● AccCpuFibers based on Boost.Fiber
● AccCpuOmp2Blocks based on OpenMP 2.x
● AccCpuOmp5 based on OpenMP 5.x
● AccCpuTbbBlocks based on TBB
● AccCpuThreads based on std::thread

// Example: CPU accelerator
using Acc = AccCpuOmp2Blocks<Dim, Idx>;

// Example: CUDA GPU accelerator
using Acc = AccGpuCudaRt<Dim, Idx>;

// Example: HIP GPU accelerator
using Acc = AccGpuHipRt<Dim, Idx>;

ESC21 – Performance Portability With alpaka | 62

Changing the Back-end

Changing the work division

● GPUs have many more cores than CPUs
 → More parallel threads possible

● GPUs have several multiprocessors

● Each multiprocessor can execute multiple threads

● Threads are grouped into blocks

● Blocks are scheduled to run on multiprocessors

// CPU work division (example)
Idx blocksPerGrid = 8;
Idx threadsPerBlock = 1;
Idx elementsPerThread = 1;

// GPU work division (example)
Idx blocksPerGrid = 64;
Idx threadsPerBlock = 512;
Idx elementsPerThread = 1;

ESC21 – Performance Portability With alpaka | 63

Changing the Back-end

GPU performance hints

● Avoid divergent if-else-blocks
● GPU threads are organized into groups (NVIDIA: warp, AMD: wavefront)
● Groups are executed in lock step

 → If there is divergence, all threads execute the if block first and the else block next

● GPU threads are much more lightweight than CPU threads
● Context switch is much cheaper on GPUs
● Spawn many more threads than you have GPU cores

 → Hide memory latency behind computation

ESC21 – Performance Portability With alpaka | 64

The Accelerator Concept

Introduction

● alpaka’s Accelerator concept is an important tool

● Accelerator hides hardware specifics behind alpaka’s abstract API

● Chosen by programmer:
using Acc = AccGpuCudaRt<Dim, Idx>;

● Used on both Host and Device

● Inside Kernel: contains thread state, provides access to alpaka’s device-side API

● On Host: Meta-parameter for choosing correct physical device and dependent types

ESC21 – Performance Portability With alpaka | 65

The Accelerator Concept

Accelerators and devices

● Accelerator concept is an abstraction of
concrete devices and programming models

● The programmer changes the accelerator in
just one line of code

● In the background, an entirely different code
path for the “new” device is chosen

● Accelerator provides portable access to
device-specific functions

/* Before the code change */
using Acc = AccCpuOmp2Blocks<Dim, Idx>;

/* Kernels will run on CPUs */
/* Parallelism provided by OpenMP 2.x */

/* After the code change */
using Acc = AccGpuHipRt<Dim, Idx>;

/* Kernels will run on AMD + NVIDIA GPUs */
/* Parallelism provided by HIP */

ESC21 – Performance Portability With alpaka | 66

The Accelerator Concept

Grid navigation

● The Accelerator provides the means to navigate the grid:
// get thread index on the grid
auto gridThreadIdx = getIdx<Grid, Threads(acc);
// get block index on the grid
auto gridBlockIdx = getIdx<Grid, Blocks>(acc);
// get thread index on the block
auto blockThreadIdx = getIdx<Block, Threads>(acc);
// get number of blocks on the grid
auto gridBlockExtent = getWorkDiv<Grid, Blocks>(acc);
// get number of threads on the block
auto blockThreadExtent = getWorkDiv<Block, Threads>(acc);

ESC21 – Performance Portability With alpaka | 67

The Accelerator Concept

Memory management and synchronization

● The Accelerator gives access to alpaka’s shared memory (for threads inside the same block):
// allocate a variable in block shared static memory
auto & mySharedVar = declareSharedVar<int, __COUNTER__>(acc);
// get pointer to the block shared dynamic memory
float * mySharedBuffer = getDynSharedMem<float>(acc);

● It also enables synchronization on the block level:
// synchronize all threads within the block
syncBlockThreads(acc);
// synchronize some threads within the block and evaluate predicate
syncBlockThreadsPredicate(acc, predicate);

ESC21 – Performance Portability With alpaka | 68

The Accelerator Concept

Device-side functions

● Internally, the accelerator maps all device-side functions to their native counterparts

● Device-side functions require the accelerator as first argument:

● sqrt(acc, /* … */); (Math functions)

● atomicOp<AtomicOr>(acc, /* … */, hierarchy::Grids); (Atomics)

● rand::distribution::createNormalReal<float>(acc); (Random-number generation)

● clock(acc); (Clock cycles)

ESC21 – Performance Portability With alpaka | 69

The Device Concept

alpaka Devices

● alpaka Devices represent
physical devices

● Determined by programmer’s
Accelerator choice

● Easy management of physical
devices

/* Chosen by programmer */
using Acc = AccGpuHipRt<Dim, Idx>;

/* Return number of HIP GPU devices */
auto const numDevs = getDevCount<Acc>();

/* Return the first entry from vector of HIP GPU devices */
auto myDev = getDevByIdx<Acc>(0u);

/* Return list of all HIP GPU devices */
auto devs = getDevs<Acc>();

ESC21 – Performance Portability With alpaka | 70

The Device Concept

Devices and hardware

● Each alpaka Device represents a single physical device

● Contains device information:
auto const name = getName(myDev); // Back-end-defined device name
auto const bytes = getMemBytes(myDev); // Size of device memory
auto const free = getFreeMemBytes(myDev); // Size of available device memory

● Provides the means for device management:
reset(myDev); // Reset GPU device state

● Encapsulates back-end device:
auto nativeDevice = getDev(myDev); // nativeDevice is not portable!

ESC21 – Performance Portability With alpaka | 71

The Device Concept

alpaka Devices and the Accelerator concept

● Device and Accelerator are different concepts!

● An alpaka Accelerator is an abstract view of all physical devices (for the chosen back-end)

● Kernel POV: thread state, device functions, memory management, synchronization

● Host POV: meta-parameter for overall abstraction

● An alpaka Device is a representation of exactly one physical device

● Device information

● Device management

ESC21 – Performance Portability With alpaka | 72

The Queue Concept

Connecting Host and Device

● alpaka Queues enable communication
between Host and Device

● Two queue types: blocking and non-
blocking

● Blocking queues block the Host until
Device-side command returns

● Non-blocking queues return control to
Host immediately, Device-side
command runs asynchronously

// Choose queue behaviour - Blocking or NonBlocking
using QueueProperty = property::NonBlocking;

// Define queue type
using MyQueue = Queue<Acc, QueueProperty>;

// Create queue for communication with myDev
auto myQueue = MyQueue{myDev};

ESC21 – Performance Portability With alpaka | 73

The Queue Concept

Queue operations

● Queues execute Tasks (see next slide):
enqueue(myQueue, taskRunKernel);

● Check for completion:
bool done = empty(myQueue);

● Wait for completion, Events (see next slide), or other Queues:

wait(myQueue); // blocks caller until all operations have completed
wait(myQueue, myEvent); // blocks myQueue until myEvent has been reached
wait(myQueue, otherQueue); // blocks myQueue until otherQueue’s ops have completed

ESC21 – Performance Portability With alpaka | 74

The Queue Concept

Tasks and Events

● Device-side operations (kernels, memory operations) are called Tasks

● Tasks on the same queue are executed in order (FIFO principle)
enqueue(queueA, task1);
enqueue(queueA, task2); // task2 starts after task1 has finished

● Order of tasks in different queues is unspecified
enqueue(queueA, task1);
enqueue(queueB, task2); // task2 starts before, after or in parallel to task1

● For easier synchronization, alpaka Events can be inserted before, after or between Tasks:
auto myEvent = event::Event<Queue>(myDev);
enqueue(queueA, myEvent);
wait(queueB, myEvent); // queueB will only resume after queueA reached myEvent

ESC21 – Performance Portability With alpaka | 75

The Queue Concept

Setting up Accelerator, Device and Queue

// Choose types for dimensionality and indices
using Dim = DimInt<1>;
using Idx = std::size_t;

// Choose the back-end
using Acc = AccGpuHipRt<Dim, Idx>;

// Obtain first device in the HIP GPU list
auto myDev = getDevByIdx<Acc>(0u);

// Create non-blocking queue for chosen device
using Queue = Queue<Acc, property::NonBlocking>;
auto myQueue = Queue{myDev};

// Done! We can now enqueue device-side operations.

ESC21 – Performance Portability With alpaka | 76

The Platform Concept

alpaka Platform

● Platform is meta-concept in alpaka

● Union of Accelerator, Device and Kernel
functionality
● Accelerator gives structure to the host side and

functionality to the device side
● Device gives functionality to the host side
● Kernels are agnostic of Device details

 → Portable Kernels

Accelerator Device

Kernel

Platform

is part of is part o
f

is
 p

ar
t o

f

is not

is not is
no

t

ESC21 – Performance Portability With alpaka | 77

The Platform Concept

Changing the target platform

using namespace alpaka;

using Dim = DimInt<1u>;
using Idx = std::size_t;

/*** BEFORE ***/
using Acc = AccCpuOmp2Blocks<Dim, Idx>;

/*** AFTER ***/
using Acc = AccGpuHipRt<Dim, Idx>;

/* No change required - dependent types and variables are automatically changed */
auto myDev = getDevByIdx<Acc>(0u);

using Queue = Queue<Acc, property::NonBlocking>;
auto myQueue = Queue{myDev};

ESC21 – Performance Portability With alpaka | 78

The Platform Concept

What alpaka does for you

● Configuration with standalone headers:
● Enables chosen back-ends for your system

● After changing the Accelerator:
● Back-end switched automatically
● All Queue operations will be executed on associated devices

ESC21 – Performance Portability With alpaka | 79

The Platform Concept

What you have to do for alpaka

● Standalone mode: Handle back-end dependencies and compiler flags

● Device side: Make no assumptions about your hardware!
● Program your Kernels as abstract and portably as possible
● Use the Accelerator for device-side operations
● Kernels are instantiated for a specific platform at compile-time
● This is what the Accelerator template parameter is for!

template <typename Acc>
ALPAKA_FN_ACC void operator()(Acc const & acc, /* … */) const;

● Host side: Know your hardware!
● Use Devices for management of physical devices
● Adapt the work division (Blocks per Grid, Threads per Block, elements per Thread) to your hardware and

problem size

ESC21 – Performance Portability With alpaka | 80

Programming Heterogeneous Systems

Heterogeneous Systems

● Real-world scenario: Use all available compute
power

● Also real-world scenario: Multiple different
hardware types available

● Requirement: Usage of one back-end per
hardware platform

● Requirement: Back-ends need to be
interoperable

Host

CPU

NVIDIA GPU

ESC21 – Performance Portability With alpaka | 81

Programming Heterogeneous Systems

Using multiple Platforms

● alpaka enables easy heterogeneous
programming!

● Create one Accelerator per back-end

● Acquire at least one Device per
Accelerator

● Create one Queue per Device

// Define Accelerators
using AccCpu = AccCpuOmp2Blocks<Dim, Idx>;
using AccGpu = AccGpuCudaRt<Dim, Idx>;

// Acquire Devices
auto devCpu = getDevByIdx<AccCpu>(0u);
auto devGpu = getDevByIdx<AccGpu>(0u);

// Create Queues
using QueueProperty = property::NonBlocking;
using QueueCpu = Queue<AccCpu, QueueProperty>;
using QueueGpu = Queue<AccGpu, QueueProperty>;

auto queueCpu = QueueCpu{devCpu};
auto queueGpu = QueueGpu{devGpu};

ESC21 – Performance Portability With alpaka | 82

Programming Heterogeneous Systems

Communication

● Buffers are defined and created
per Device

● Buffers can be copied between
different Devices / Queues

● Not restricted to a single
platform!

● Restriction: CPU to GPU copies
(and vice versa) require GPU
queue

// Allocate buffers
auto bufCpu = allocBuf<float, Idx>(devCpu, extent);
auto bufGpu = allocBuf<float, Idx>(devGpu, extent);

/* Initialization … */

// Copy buffer from CPU to GPU - destination comes first
memcpy(gpuQueue, bufGpu, bufCpu, extent);

// Execute GPU kernel
enqueue(gpuQueue, someKernelTask);

// Copy results back to CPU and wait for completion
memcpy(gpuQueue, bufCpu, bufGpu, extent);

// Wait for GPU, then execute CPU kernel
wait(cpuQueue, gpuQueue);
enqueue(cpuQueue, anotherKernelTask);

ESC21 – Performance Portability With alpaka | 83

Programming Heterogeneous Systems

Heterogeneous programming with alpaka

● alpaka gives you access to all of your system’s computation resources

● alpaka eases programming for different device types

● alpaka enables simple data transfers between different devices

● alpaka makes your code reusable

● alpaka makes your code portable

Write once, scale everywhere!

ESC21 – Performance Portability With alpaka | 84

Heterogeneous Programming With the Caravan Ecosystem

I already have a CUDA program. Do I really need to port everything?

● No. Try our CUDA portability layer cupla.

● Kernels need to be ported to alpaka-style kernels

● cudaApiCall() becomes cuplaApiCall()

● https://github.com/alpaka-group/cupla

https://github.com/alpaka-group/cupla

ESC21 – Performance Portability With alpaka | 85

Heterogeneous Programming With the Caravan Ecosystem

How can I easily switch between different memory layouts?

● Example: From array-of-struct to struct-of-array and back

● Problem: Changing memory layout requires changing of algorithm

● Solution: LLAMA

● https://github.com/alpaka-group/llama

https://github.com/alpaka-group/llama

ESC21 – Performance Portability With alpaka | 86

Heterogeneous Programming With the Caravan Ecosystem

But I just want to do transform & reduce!

● Solution: vikunja

● More standard algorithms planned soon

● https://github.com/alpaka-group/vikunja

https://github.com/alpaka-group/vikunja

www.casus.science

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Folie 74
	Folie 75
	Folie 76
	Folie 77
	Folie 78
	Folie 79
	Folie 80
	Folie 81
	Folie 82
	Folie 83
	Folie 84
	Folie 85
	Folie 86
	Folie 87

