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Abstract 

The interaction behavior of humia; acids with uranium(V1) and the influence of humic substances on the 
migration behavior of uranium was investigated. A main focus of this work was the synthesis of four different 
humic acid model substances and tliieir characterization and comparison to the natural hurnic acid from Aldrich. 
A radiometric method for the determination of humic acid functional groups was applied in addition to 
conventional methods for the determination of the functionality of humic acids. The humic acid model 
substances show functional and structural properties compqable to natural humic acids. Modified humic acids 
with blocked phenolic OH were synthesized to determine the influence of phenolic OH groups on the 
complexation behavior of humic acids. A synthesis method for 14c-labeled humic acids with high specific 
activity was developed. 
The complexation behavior of synthetic and natural humic acids with uranium(V1) was investigated by X-ray 
absorption spectroscopy, laser-induced fluorescence spectroscopy and FTIR spectroscopy. The synthetic model 
substances show an interaction behavior with uranium(V1) that is comparable to natural humic acids. This points 
to the fact that the synthetic humic acids simulate the functionality of their natural analogues very well. For the 
first time the influence of phenolic OH groups on the complexation behavior of humic acids was investigated by 
applying a modified humic acid with blocked phenolic OH groups. The formation of a uranyl hydro~xy humate 
complex was identified by laserspectroscopic investigations of the complexation of Aldrich humic acid with 
uranium(V1) at pH 7. 
The migration behavior of uranium in a sandy aquifer System rich in humic substances was investigated in 
column experiments. A part of uranium migrates non-retarded through the Sediment, bound to humic colloids. 
The uranium migration behavior is strongly influenced by the kinetically controlled interaction processes of 
uranium with the humic colloids. 
The influence of humic acids on the sorption of uranium(V1) onto phyllite was investigated in batch experiments 
using two different humic acids. The uranium(V1) sorption onto the phyllite is influenced by the pH-dependent 
sorption behavior of the humic acids. 

Zusammenfassung 

Im Rahmen des Forschungsvorhabens wurde das Wechselwirkungsverhalten von Huminsäuren mit Uran(V1) 
sowie der Einfluß von Huminstoffen auf das Migrationsverhalten von Uran untersucht. Einen Schwerpunkt der 
Arbeiten bildete die Synthese von vier verschiedenartigen Huminsäuremodellsubstanzen sowie deren 
Charakterisierung im Vergleich zur natürlichen Huminsäure von Aldrich. Eine radiometrische Methode zur 
Bestimmung funktioneller Gruppen wurde neben herkömmlichen Methoden zur Bestimmung der 
Huminsäurefunktionalit'at eingesetzt. Die Modellhuminsäuren zeigen mit natürlichen Huminsäuren vergleichbare 
funktionelle und strukturelle Eigenschaften, Zur Bestimmung des Einflusses phenolischer OH-Gruppen auf das 
KomplexbildungsverhaIten von Huminsäuren wurden modifizierte Huminsäuren mit blockierten phenolischen 
OH-Gruppen synthetisiert. Ein Syntheseverfahren fürI4c-markierte Huminsäuremodellsubstanmn mit hoher 
spezifischer Aktivität wurden entwickelt. 
Das Komplexbildungsverhalten synthetischer und natürlicher Huminsäuren mit Uran(V0 wurde mittels 
Röntgenabsorptionsspektroskopie, laserinduzierter Fluoreszenzspektroskopie und FTR-Spektroskopie 
untersucht. Es wurde nachgewiesen, daß die synthetischen Huminsäuremodellsubstanzen ein mit natürlichen 
Huminsäuren vergleichbares Wechselwirkungsverhalten gegenüber Uran(V1) zeigen und somit die 
Funktionalität der natürlichen Analoga gut simulieren. Erstmals wurde unter Verwendung einer modifizierten 
Huminsäure der Einfluß phenolischer OH-Gruppen auf das Komplexbildungsverhalten von Huminsäuren 
untersucht. Im Rahmen von laserspektroskopischen Untersuchungen zur Komplexierung von Aldrich 
Huminsäure mit Uran(V1) bei pH 7 wurde die Bildung eines Uranylhydroxyhumat-Komp1exes nachgewiesen. 
Das Migrationsverhalten von Uran in einem sandigen huminstoffreichen Grundwasserleiter wurde in 
Säulenexperimenten untersucht. Ein Teil des Urans wird ungehindert. huminstoffgebunden durch das Sediment 
transportiert. Das Migrationsverhalten von Uran wird stark durch kinetisch kontroilierte Wechse1wirkungs- 
Prozesse mit den HuminstofFkoiloiiden beeinflußt. 
Der Einfluß von Huminsäuren auf die Sorption von Uran an Phyllit wurde in Batchexperimenten mit zwei 
verschiedenen Huminsäuren untersucht. Die Sorption von Uran an PhylEt wird durch das vom pH-Wert 
abhängige Sorptionsverhalten der Huminsäuren beeinfh&. 
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1 Introduction 

The study of the migration behavior of radioactive and toxic metal ions in the environment is 

important for long-term risk assessment of potential nuclear waste repositories, of facilities of 

the former uranium mining and milling in Saxony and Thuringia, and of subsurface dumps 

and sites with radioactive andfor heavy metal-containing inventory. The behavior of such 

pollutants is strongly influenced by humic substances. 

Humic substances are ubiquitous, polyelectrolytic organic macromolecules. They are formed 

by the decomposition of biomass. Because of the multitude on precursor substances the 

formation process of humic substances can not be described by simple chemical or 

biochemical reactions. Depending on their origin humic substances show different structural 

and functional properties. This leads to the fact that humic substances show a great structural 

and functional heterogeneity which causes difficulties in the description of their chemical 

properties. Hurnic substances can be divided by an operational definition into three fractions 

[I]. Humin represents the fraction of humic substances which is insoluble at all pH values, 

whereas the humic acid fraction is soluble at pH values greater than pH 3.5 and the fulvic acid 

fraction is soluble at all pH values. 

Humic acids play a decisive role within natural interaction processes because of their good 

solubility in the pH range of natural waters and because of their high complexing capacity. 

For instance, due to their high complexing capacity, humic acids influence the speciation of 

metal ions, e.g., actinides, and therefore, the migration andor immobilization of this 

pollutants in the environment. Due to their complicated and heterogeneous nature, a 

thermodynaaIcally based description of the complex formation of humic acids with rnetal 

ions is difficult but nevertheless important. There are different thermodynamic models 

describing the complexation behavior of hurnic acids. However, these models differ fiom 

each other in the definition of the complexation reaction and of the humic acid ligand 

concentration, Moreover, the existing database for the interaction between metal ions and 

humic acids is incomplete, especially for actinides in the pH and concentration range of 

natural Systems. 

It was the scope of this project to irnprove the knowledge about the interaction of metal ions 

witfi humic acids under natural conditions. For this purpose model substances for hurnic acids 

were developed to investigate the humic acid complexation with well-defined substances. 

Applying natural and synthetic humic acids, studies concerning the interaction process metal 

ion - humic acid were performed and thermodynamic data were determined. In addition, 



migration and sorption studies under conditions close to the nature were carried out. Such 

information are essential to allow more precise geochemical modeling for the migration of 

radioactive and toxic metal ions in the environment in the presence of humic acids. 

Within the framework of this project the research program of the Institute of Radiochemistry 

of the Forschungszentrum Rossendorf included the following main topics: 

1. The development of synthesis procedures for the preparation of humic acids with defined 

properties and their labelling with 13c or 14c. Synthetic humic acids were to be provided 

to the project partners. 

2. The radiometric determination of functional groups of synthetic and natural hurnic acids 

and their selective blocking by methylation and/or acetylation. Functional groups should 

be blocked by selective chemical reactions to deterrnine their contribution to the 

complexation behavior of humic acids with metal ions. 

3. The investigation of the complexation behavior of uranium in humic acid-containing 

solutions above pH 4. 

4. First studies regarding the sorption of uranium - humic acid - complexes onto relevant 

sediment materials. 

This research project was performed in cooperation with a R&D-project of the Universities of 

Mainz arid-Saarbrücken funded by BMBF (contract number: 02 E 8795 8). 

2 Model substances for humic acids 

To gain a more basic knowledge about the infiuence of humic acids on the speciation of metal 

ions in the environment, eslpecially about the interaction process between humic acid and 

radionuclides, it is necessary to perform model investigations with well-defined humic acid 

model substances [2j. Compared to natural humic acids such model substances should be 

characterized by comparable chemical and operational properties. However, they should show 

a higher homogeneity, a simpler overall structure and a well defined functionality compared 

to their natural analogues. The synthesis of such rnodel substances should be easy and 

reproducible. Furthermore, the model substances should offer the possibiUy for well-defined 

variations in their functionality ancl for a defined isotopic: labelling ('k, ' 4 ~ ) .  Model 

substances for the investigation of the interactim between h u d c  acids sind metd ions should 

be characterized by a functlonality comparable to natural fiumic acids 133- 



Low-molecular organic substances, e.g., salicylic acid and malonic acid, which were 

identified as structural elements of natural humic acids are potential functional models for 

humic acids. These substances are useful to investigate elementary processes of the humic 

acid behavior, e.g., the interaction of such structural elements with metal ions. However, these 

monomeric substances are not sufficient to precisely describe the overall behavior of the 

polymeric humic acids because they are highly ordered in contrast to natural humic acids. 

Furthermore, synthetic humic acid-like polymers, e.g., humic acid-like melanoidin fractions 

[3] or condensation products of phenolic compounds [4] can be used as humic acid model 

substances. Within the scope of this project, we synthesized humic acid-like melanoidins, 

condensation products of reducing sugars and a-amino acids, as functional models for humic 

acids. 

2.1 Melanoidins as humic acid model substances with defined properl 

Melanoidins are formed by condensation of reducing sugars and amino acids, peptides or 

proteins [5-81. They play a special role in many natural processes. Their formation is 

considered as one possible way for the formation of humic substances in the environment [9]. 

Melanoidins represent a mixture of different polymers that can be operational separated into a 

humin-like, humic acid- and fulvic acid-like fraction because of their different solubility at 

different pH values. It was shown 13,101 that humic acid-like melanoidin fractions, which 

were obtained from the whole melanoidin by alkaline dissolution and acid precipitation, show 

chemical properties comparable to natural humic acids. 

Melanoidins are especially suitable as functionality models for humic acids because they 

show both structural and also functional similarities with natural humic acids. In contrast to 

the condensation products of phenolic compounds they contain aliphatic nitrogen and they 

offer many possibilities to vary their structural and functional properties by selective 

variations of their precursor substances 131. For instance, it is possible to increase the number 

of carboxylic groups by using amino dicarboxylic acids as precursor substance or to change 

the amount of aromatic or aiiphatic structural elements by using aromatic or aliphatic amino 

acids. In addition, it is possible to change the elementaf composition of the synthetic humic 

acids 133. AI1 of that offer the possibi-tity to investigate the influence of different functional 

goups or structural dements on fhe chemical behavior of humic acids, for instance the 

complexation behavior with metal ions. Furthemre, the synthesis of melanoidins st&g 



from isotopically labelled precursor substances enables us to synthesize stable isotopically 

labelled humic acids with high specific activity. 

3 General description of the synthesis of humic acid-like melanoidins 

The synthesis of humic acid model substances is based on the preparation of a "standard 

melanoidin" by Enders and Theis [6]. The synthesis of humic acid-like melanoidins is carried 

out starting from a mixture of a-amino acid, sugar and water. This mixture is heated 

temperature- and time-controlled under reflux in a nitrogen stream. During the reaction a 

solid, dark brown, polymeric substance is formed. This solid is separated from the solution by 

centrifugation. From the solid phase the humic acid-like fraction is extracted with NaOH and 

then precipitated with HC1 (pH < 3). The humic acid precipitate is centrifuged, washed, 

dialyzed against purified water using dialysis tubes ( ~ h o r n a ~ o r ~ ,  exclusion limit MWCO < 

1000, Reichelt Chemietechnik, Heidelberg, Germany), and then lyophilized. 

Within this project four different types of synthetic humic acid were developed. The precursor 

substances, i.e., a-amino acids and sugars, as well as their quantitative proportions were 

varied depending on the aspired hurnic acid functionality. The used precursors, their 

proportions and special requirements of the synthesis are surnmarized in the paragraphs which 

deal with the synthesis and characterization of the specific humic acid type. 

4 Purification of natural humic acid reference materials 

The comrnercially available natural hurnic acid k m  Aldrich (Aldrich, Steinheim, Germany) 

was used as reference material. It was purchased in its sodium humate f o m  (charge H1,675- 

2)- 

The natural k m i c  acid was purified according to the purification method described by Kim 

and Buckau [ll]. The sodium humate was dissralved in 0.1 M NaOH -F 0.01 M NaF and 

stined over night under nitrogen atmosphere. Then, the sdution was centrifuged. The 

supernatant was acidified with HC1 to pH 1. The Jlumic acid p~cipitate was washed severai 

times with 0.1 M HC1. The whole procedure was repeated t h e  times. The precipitate was 

then lyop'fu3.ized' 



Furthermore, the comrnercially available natural humic acid from Fluka (Fluka, Neu-Ulm, 

Gemany) was used as reference material for some investigations. The purification method of 

Fluka humic acid, based on alkaline dissolution and acid precipitation with HC1, is described 

in detail elsewhere [10]. 

5 Radiometrie determination of functional groups by derivatization 

with ['4~]diazomethane 

The radiometric deterrnination of functional groups [12] is an alternative method for the 

characterization of humic acids regarding their functional group content. This method bases 

on the derivatization of carboxylic and phenolic OH groups with ['4~]diazomethane by 

esterification and etherification, respectively. The number of methylated functional groups of 

the humic acid can be detennined precisely by measuring the specific activity of the reaction 

product and comparison with the specific activity of the ['4~]diazomethane. The 

differentiation between carboxylic and phenolic OH groups is accomplished by the alkaline 

saponification of methyl esters, whereby the phenolic ethers remain blocked as methyl ethers. 

The advantage of this method is the possibility to distinguish between phenolic OH groups 

and carboxylic groups because of the different behavior of ethers and esters in alkaline 

solutions. In contrast to potentiometric methods this method represents a procedure for the 

characterization of the humic acid functionality which is independent of the pKa values of the 

functional groups. 

Fig. 5.1 shows the reaction scheme for the radiometric determination of carboxylic, phenolic 

OH and ester groups. 



'C HIN2 *CH2N2 

COO'CH, 
COO*CH, 

, Phenolic OH + 
H&O 

Carboxylic groups 
2 

~ c o o . c " 3  

Carboxylic 
groups 

Ester groups 

Carboxylic 
groups - Phenolic OH groups 

H 0 COOH 

Figure 5.1: Radiometric deterrnination of hurnic acid functional groups (*C = 14c) [12]. 

During the first reaction step phenolic OH and carboxylic groups are methylated 

simultaneously with ['4~]diazomethane (cf. Fig. 5.1, G)). The total number of methylated 

groups, i.e., carboxylic and phenolic OH groups, in the humic substance is derivable from the 

specific activity of the reaction product (2) in connection with the specific molar activity of 

the radioactive reagent. In the next reaction step the carbonic methyl esters of the carboxylic 

groups are hydrolyzed by alkaline saponification of the methylation product. The phenolic 

OH groups remain blocked as methyl ethers (3). The resulting specific activity of the humlc 

acid (3) represents the amount of phenolic OH groups of the humic acid. The number of 

carboxylic groups can be calculated from the total activity of ['4~]methanol that is released 

during the saponification process ( 1 4 c ~ 3 0 ~ )  and the specific activity of the used radioactive 

reagent ([14~]diazomethane). The specific activity of the released methanol is eguivalent to 

the number of hydrolyzed ['4~]rnethyl ester groups. In addition, the number of carboxylic 

groups can be determined by subtracting the number of phenolic OH groups G) from the total 

number on methylated groups (2). 

The original ester groups of the humic acid are hydrolyzed simultaneously during the 

saponification of the methyl esters. This effect can be used for the detemination of the ester 

groups in the original humic acid. For this determination the humic acid is methyiated wi'th 

inactive diazomethane in the first derivatization step and than saponifoed with NaOH, 



resulting in a blocking of the phenolic OH groups and a hydrolysis of the original ester groups 

of the humic acid U). Following, the humic acid is methylated with [14~]diazomethane. The 

specific activity of the reaction product (6) represents the sum of all carboxylic groups of the 

hurnic acid, i.e., the initial carboxylic groups as well as the hydrolyzed original ester groups. 

The differente between this amount and the number of carboxylic groups represents the 

number of ester groups in the original humic acid. 

However, acidic hydroxyl groups which are swbstituted to five-membered heterocycles or 

other H-acidic hydroxyl groups, may also be methylated by [14~]diazomethane beside 

phenolic OH groups. The resulting ["k]methyl ether groups are also not hydrolyzable. Hence 

it follows, that these acid hydroxyl groups are determined together with phenolic OH groups, 

which leads to an overevaluation of the number of phenolic OH groups. 

Disadvantages exist in the occurrence of secondary reactions which may occur during the 

methylation, e-g., the methylation of aldehyde, keto and amino groups. Such secondary 

reactions may cause an overestimation of the sum of carboxylic and phenolic OH groups. The 

determination of carboxylic groups is not influenced by such reactions, if the methanol which 

is rel~eased during the saponification is used for their quantification. Further sources of errors 

are secondary reactions caused by UV light and metal catalysts as well as the many required 

operations, especially weightings, during the analytical process. However, the extent of these 

errors can be minimized. 

6 Synthesis and characterization of humic acids 

The objective of the synthesis of humic acids was to prepare model substances which show 

operational properties comparable to natural humic acids, a defined functionality and a higher 

chemical homogeneity than natural humic acids. 

The following paragraphs show the synthesis and characterization of four different hurnic 

acids : 

- a humic acid with a low contlent of carboxylic groups and a high amount of aromatic 

structural elements (Type MI,  [10]), 

- a humic acid type M1 with an ultra high purity, 

- a humic acid with a carboxylic group cointent comparable to most natural humic acids 

(Type M42), and 

- a nitrogen-free humic acid. 



The characterization of the synthetic humic acids was performed in comparison to Aldrich 

humic acid as reference material. 

6.1 Synthesis of humic acid type M1 with a low content of carboxylic groups and a 

high amount of aromatic structural elements 

6.1.1 Synthesis 

Synthetic humic acid type M1 (charge R36/95) was synthesized from a mixture of 34 g xylose 

(Merck, Darmstadt, Germany), 10 g phenylalanine (Merck), 5 g glycine (Merck) and 80 rnL 

water (Fig. 6.1). This mixture was refluxed in a nitrogen stream for 10 hours. 

Xylose Phenylalanine Glycine 

OHH OH 
I I I  

CH2 CH-COOH H~C-COOH 

HOC-C-C-C-CH20H 
I I I  

I I 
H OHH NH2 

Figure 6.1: Precursor substances of humic acid type MI. 

The reaction product was washed and then ground with ethanol (Merck) and ether {Merck). 

Subsequently, the product was shaken with 2 M NaOH (Merck) for 24 hours under inert gas. 

After centrifugation the supernatant was acidified with 2 M HCl (Merck) to pH < 3. The 

resulting humic acid precipitate was washed, dialyzed against purified water using dialysis 

tubes ( ~ h o r n a ~ o r ~ ,  exclusion limit MWCO < 1000), and lyophilized, The synthesis was 

repeated five times. The total yield of synthetic humic acid amounts to 90 g. 

This synthetic humic acid was handed out to all project partners for comparative studies and 

to establish sirnilar experimental conditions for further investigations. 



6.1.2 Characterization 

Elemental analysis 

The results of the elemental analysis for humic acid type M1 and Aldrich hurnic acid are 

summarized in Tab. 6.1. in comparison to literature values. The values were corrected 

considering the moisture and ash content of both humic acids. 

Table 6.1: Elemental composition of synthetic humic acid type M1 in comparison to natural 
humic acids. 

Element / (9%) Synthetic humic acid type Aldrich humic acid Literature [13] 

M1 (charge R36/95) (charge A2) 

C 63.92 2 0.72 54.47 rr 1.42 50 - 60 

ob 22.5 1 + 0.53 29.26 rr 1.53 30 - 35 

Ash content / (%) 0.7 3.7 - 
Moisture content / (%) 2.8 4.2 - 

" Corrected for water content of the humic acid. The oxygen content was calculated from the 
differente to 100 %. 

The synthetic product exhibits an elemental composition that is close to literature values for 

natural humic acids of different origins. Contrary to Aldrich humic acid the synthetic product 

contains no sulfur due to the use of sulfur-free amino acids. The synthetic product has a 

higher amount of carbon and nitrogen and a slightly lower oxygen content than Aldrich hurnic 

acid. 

The elemental composition of the synthetic humic acids, e.g., the nitrogen or sulfur content, 

could be modified by varying the precursor substances as well as their proportions. 

Inorganic constituents 

Tab. 6.2 surnmarizes the amount of inorganic constituents of synthetic humic acid type M1 in 

comparison to Aldrich humic acid. 



Table 6.2: Inorganic main constituents of synthetic humic acid type M1 in comparison to the 
purified Aldrich humic acid. 

Element / (ppm) Synthetic humic acid type M1 Aldrich humic acid 

Na 245 1 +. 698 2465 + 418 

Mg 2061104 . 1015 

AI 204 t 179 78 2 9  

As expected, the synthetic humic acid has only a low amount of inorganic impurities. The 

inorganic impurities that are present in the synthetic product may be caused by the precursor 

materials applied and by the glassware used. The high sodium content is due to an incomplete 

sodium elimination by dialysis. 

Contrary to the purified Aldrich humic acid and other natural humic acids, which always 

contain non-removable iron, the synthetic humic acid shows a smaller amount of iron. The 

iron which is non-removable bound to natural humic acids can compete to other metal ions, 

e.g., in experiments investigating the complexation behavior of humic acids with metal ions. 

This might lead to incorrect results. Thus the low iron content of synthetic humic acids 

represents a great advantage of these products compared to natural humic acids, when they are 

used for model investigations. 

Functional groups 

Tab. 6.3 shows the functional group content of synthetic humic acid type M1 and Aldrich 

humic acid in comparison to literature data [14]. The synthetic humic acid has fewer 

functional groups than Aldrich humic acid. Particularly the amount of carboxylic groups, 

which are the most important functional groups for the protolysis and complexation behavior 

of humic acids, is smaller than in Aldrich hurnic acid. However, other natural humic acids 

having low amounts of functional groups and comparable low amounts of carboxylic groups 

like humic acid type M1 have been reported in the literature [14]. 





Capillary electrophoresis 

Fig. 6.2 depicts the electropherograms of synthetic humic acid type M1 and purified Aldrich 

humic acid. The electropherograms are different. Aldrich humic acid shows superimposed 

peaks that were also present in other natural humic acids [153. We assume that this is due to 

the presence of several individual humic acid fractions with different charge-to-size-ratios. 

Synthetic humic acid type M1 shows only one peak in the electropherogram. From this, we 

conclude that our synthetic product is more homogeneous (smaller charge-to-size-ratio 

distribution) than the natural humic acid. Furthermore, the synthetic product shows a shorter 

migration time compared to Aldrich humic acid. This can be explained by a smaller charge- 

to-size-ratio of humic acid type M1 caused by a larger molecular size and a smaller number of 

dissociated functional groups, which are the charge carriers of the humic acid. Its relatively 

smaller number of dissociated functional groups corresponds to its lower total amount of 

functional groups. The larger molecular size of the synthetic product was determined by size 

exclusion chromatography. 

Migration time 1 jmin) 



FTIR spectroscopy 

Fig. 6.3 shows the FTlR spectra of synthetic humic acid type M1 and Aldrich humic acid. In 

general synthetic humic acid type M1 shows IR absorption bands which are characteristic for 

natural humic acids [9,16]. Both humic acids differ in their aromatic and aliphatic carbon 

content. The synthetic product exhibits a greater arnount of mono-substituted aromatic carbon 

stnictures than AIdrich humic acid, which is indicated by the IR absorption bands at 700 cm" 

and 750 cm-'. These structural elements are caused by the use of phenylalanine as precursor 

substance. Aldrich humic acid possesses a higher content of aliphatic structural elements 

indicated by the higher intensities of the corresponding absorption bands at 2920 cm-' and 

2850 cm-'. 

Furthermore, the FTIR spectra point to the higher carboxylic group content of Aldrich humic 

acid in contrast to synthetic humic acid type MI. The IR absorption band at 1720 cm-I which 

corresponds to carboxylic groups is stronger pronounced in the spectrum of Aldrich humic 

acid. This result corresponds to the result of the functional group determination (Tab. 6.3). 

4000 3500 3000 2500 2000 1500 1000 500 

Wavenumber l (cm-') 

Fiere 6.3: FTIR spectra of synthetic humic acid type M1 and Aldrich humic acid. 



13 C-CPMAS-NMR-spectroscopy 

Fig. 6.4 shows the ' 3 ~ - ~ ~ / ~ ~ ~ - ~ ~ ~  spectrum of synthetic humic acid type MI. The 

spectrum shows l3c chemical shifts which are characteristic for humic acids [9,17,18]. This 

result points to structural and functional similarities between the synthetic product and natural 

hurnic acids and agrees with the FTIR results. . 

The spectrum of the synthetic humic acid shows an intensive resonance signal at 129 ppm, 

corresponding to mono-substituted aromatics due to the use of phenylalanine as precursor 

substance. The small half-width of this signal indicates sirnilar aromatic structural elements 

andlor free-movable aromatic end groups. Tke diffuse, not well-resolved resonance signals 

can be attributed to aliphatic carbon (20-50 ppm) and aliphatic C-0 groups (60-90 ppm). The 

width of these signals indicates a high heterogeneity andlor a rigid binding of these structural 

elements. The weak signal at 172 ppm is caused by carboxylic-, ester- and amide groups. A 

differentiation between these functional groups is not possible with this spectrum. The 

resonance signals at 110 and 150 ppm indicate the presence of phenolic structural elements. 

Figure 6.4: ' 3 ~ - ~ ~ / M ~ ~ - ~ ~ ~  spectrum of synthetic hurnic acid type MI. 

The 1 3 ~ - ~ ~ / ~ ~ ~ - ~ ~ ~  spectrum of Aldrich hurnic acid is not shown because this spectnim 

is hampered by the relatively large concentration of residual iron, ujhich could not Be 

separated during the purification of the humic acid. 



Pyrolysis-Gas chromatography/Mass spectrometry (Py-GCMS) 

The pyrolysis gas chromatogams of synthetic humic acid type M1 and Aldrich humic acid 

are depicted in Fig. 6.5 a and 6.5 b, sespectively. The dominant carbon dioxide peaks are due 

to decarboxylation reactions, mairrly of carboxylic groups. The difference in the peak 

intensities between the synthetic hnimic acid aql Aldrich humic acid corresponds to the 

analysis of the carboxylic group concentration. 

Synthetic humic acid 

Figure 6.5 a: Pyrogram of synthetic humic acid type MI. 

Aldrich humic acid 

Figure 6.5 b: Pyrogram of the natural humic acid from Mdrich. 



The pyrogram of synthetic humic acid type M1 shows intensive peaks in the range between 4 

and 12 minutes originating from aromatic fragments such as, for example, benzene, toluene, 

ethyl benzene, and styrene. These organic structures are due to the use of phenylalanine for 

the synthesis. Such fragments are also present in the pyrogram of Aldrich humic acid but to a 

lesser extent. Aldrich humic acid shows a large number of aliphatic pyrolysis fragrnents, i.e., 

alkanes and alkenes up to (221, detected between 20 and 50 rninutes retention time, which were 

not detected for the synthetic product type MI. 

The pyrolysis fragments of synthetic humic acid type M1 consist of several nitrogen- 

containing components. Thus, we identified aromatic arnines, e.g., 2-aminonaphthalene and 

N-methyl-N-phenylbenzylamine, as well as substitution products of pyridine, e.g., 3- 

phenylpyridine and 4-phenyl-N-methylpyridine. Again, this structural elements can be 

explained by the use of phenylalanine as a synthesis precursor. The pyrogram of Aldrich 

humic acid did not show any nitrogen-containing product because of its low nitrogen content 

(0.7 %). 

6.2 Synthesis of humic acid type M1 with an ultra high purity 

As already mentioned above natural humic acids, e-g., Aldrich humic acid, contain a 

considerable quantity of non-removable bound inorganic elements, especially iron, which can 

influence the structure and functionality of humic acids and which can compete to other metal 

ions during complexation processes. A great advantage of the synthetic humic acids is their 

low content on inorganic impurities, especially iron. The use of these substances offers the 

possibility to rninimize or to exclude competition reactions during basic studies of the 

complexation behavior of humic acids with metal ions. 

Although synthetic humic acid type M1 shows a lower iron content than Aldrich humic acid, 

it still contains inorganic impurities resulting from chemicals and glassware applied during 

the synthesis (cf. Tab. 6.2). To reduce the amount of inorganic impurities of the synthetic 

product we developed a special synthesis method for extremely pure humic acid type MI. 

Based on the synthesis described in 6.1.1 we synthesized a humic acid type M1 using highly 

purified precusors and likewise ultra pure auxiliaries, e.g., keighly purified water, 

hydrochloric acid (Merck) and sodium hydroxide (Merck) solution. The synthesis was carried 

out in a apparatus made of Teflon. 



6.2.1 Characterization 

As a result of the ,,high-purity" chemistry the arnount of inorganic impurities of the humic 

acid was strongly reduced in comparison to the conventional synthesis. Iron was not 

detectable in the hurnic acid fractions. Furthermore, the content of other inorganic 

constituents was partially reduced by a factor of 10 to 100 and reaches the range of the 

detection Limit. The ash content of this humic acid amounts to < 0.05 %. 

The ultra pure synthetic humic acid type M1 shows a somewhat higher content of carboxylic 

and phenolic OH groups than synthetic humic acid type M1 synthesized by the conventional 

method (cf. Tab. 6.3). The carboxylic group content determined by calcium acetate exchange 

amounts to 1.36 -i- 0.08 meqlg and the radiometric determined content of phenolic OH groups 

amounts to 2.5 +. 0.3 meqlg. This nesult points to the fact, that inorganic impurities of the 

conventional humic acid type M1 may influence the humic acid functionality by masking 

functional groups. 

hvestigations by FTIR spectroscopy show that the ultra pure hurnic acid of type M1 shows a 

comparable structure to the conventional hurnic acid of type MI. FTIR spectra of both humic 

acids are depicted in Fig. 6.6. 

Wavenumber / (cm-') 

Figure 6.6: FTIR spectra of synthetic humic acid type M1 synthesized by the conventional 
method and by a special synthesis method for ultra pure humic acids. 
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6.3 Synthesis of humic acid type M42 with a carboxylic group content comparable to 

most natural humic acids 

In order to simulate the functionality of most natural humic acids, it is necessary to synthesize 

humic acids with higher amounts of functional groups, especially carboxylic groups compared 

to synthetic humic acid type MI. Thus we developed a synthesis method for a humic acid 

with a higher amount of carboxylic groups. 

6.3.1 Synthesis 

A rnixture of 22 g DL-glutamic acid monohydrate (Fluka), 33.3 g xylose (Merck), and 60 mL, 

water was continuously heated for 90 hours at 80 -i- 2 'C under reflux and inert gas. The 

precursor substances are depicted in Fig. 6.7. 

Xylose Glutamic acid 

OHH OH 
I 1 1  

HOC-C-C-C-CH20H HOOC-CH2-CH2-CH-COOH 
I I I I 
H OHH NH2 

Figure 6.7: Precursor substances of synthetic humic acid type M42. 

During the reaction a dark-brown solid and solution were formed. After centrifugation the 

solid reaction product was ground with ethanol (Merck) and ether (Merck), and then ag&n 

centrifuged. The solid product was stirred with 150 mL, 2 M NaOH (Merck) for 8 hotlrs under 

inert gas. After centrifugation the remaining solid product was stirred once more with 100 rnL 

2 M NaOH for 8 hours under inert gas. The alkaline solution, containing the humic acid-like 

melanoidin fraction, was acidified with 2 M HC1 (Merck). The resulting precipitate was 

washed, dialyzed using dialysis tubes ( ~ h o m a ~ o r ~ ,  exclusion limit MWCO s100-0) agdnst 

purified water, and then lyophilized. 

This synthesis was repeated four times. The synthesis products were combined. The yield 

arnounts to 25 g synthetic hurnic acid type M42 (charge M8 1)- 



6.3.2 Characterization 

Elemental analysis 

The elemental composition of synthetic humic acid type M42 (charge M81), surnmarized in 

Tab. 6.4, is comparable to natural hurnic acids. Differences in the nitrogen and sulfur content 

compared to Aldrich hurnic acid are attribnted to the precursor substances of the synthetic 

product. 

Table 6.4: Elemental composition of synthetic humic acid type M42 (charge M81) in 
comparison to natural hurnic acids. 

Element / (%) Synthetic humic acid Aldrich hurnic acid Literature 

type M42 (charge M8 1) (charge A2) [W 

Ash content 1 (%) 0.3 3.7 

Moisture content / (%) 5.2 4.2 - 

" Corrected for water content of the humic acid. The oxygen content was calculated from the 
difference to 100 %. 

inorganic constituents 

The inorganic main constituents of synthetic humic acid type M42 are sumrnarized in Tab. 6.5 

in comparison to Aldrich humic acid. 

Comparable to synthetic humic acid type M1 hurnic acid type M42 has only a low amount of 

inorganic impurities. A great advantage of the synthetic product is the low iron content 

compared to AIdrich hurnic acid. 

Functtonal grmps 

The results of the functional gmup analysis with diffeient methods are comprised in Tab. 6.6. 

Due to the fact that tluc humic acid does not form an insoluble barium salt, the barium 

hydroxide method f'or the detennination OE the total acidity was not applied. 



Table 6.5: Inorganic main constituents of synthetic humic acid type M42 in comparison to the 
purified Aldrich humic acid. 

Element 1 (ppm) Synthetic hurnic acid type M42 Aldrich humic acid 

(charge M8 1) (charge A2) 

Na 1393-i-151 . 2465 -i- 418 

Mg 19k9 10k5 

Al 38 -i- 16 7829  

Si 86 +: 40 372 t 187 

Ca 815 e 357 126 -+ 95 

Fe C 20 3651 I 224 

Table 6.6: Functional groups of synthetic hurnic acid type M42 (charge M81) detennined by 
different methods. 

Functional Synthetic humic acid type M42 (charge M81) AlcUrich Literature 

groups/(meq/g) Radiometrie Calcium acetate Direct hurnic acid 1141 

deterrnination exchange titration (charge A2) 

COOH + 6.01 t 0.1 1 - - 6.9 5: 0.7 5 +6 - 8,9 

acidic OH " 
COOH 3.72 t 0.28 4.10 t 0.10 - 4.74 t 0.05 1.5 - 5.7 

acidic OH " 2.30 I 0.36 - - 3.2 c, 0.7 2.1 - 5.7 

PEC - - 3.90 t 0.18 5.33 & 0.12 - 
" Acidic hydroxyl groups, e.g., substituted to five-membered heterocycles arid aromatks. 

PEC = Proton exchange capacity. 

In contrast to our synthesized humic acid of type Ml, which has only 1.02 k 0-06 meqlg 

carboxylic groups, the synthetic humic acid of type M42 shows a carboxylic group content 

which is comparable to most natwally occumng humic acids. With this results it is shown, 

that by varying the precursor substances different synthetic humic acids with variable 

functionality can be designed. 

Considering the precursos substances, the unexpectedly high quantity of functional p u p s  

determined by the radiometrk method, which are capable Sm- methylatfan and are not 

hydrolyzable, prabably results from H-acidic heterocyclic stnictures as weli as phenolic 

stnictural elements. Phenolic structural elemerits were determined by pyrolysis-gas 

chromatographyhs spectrmetry. 



Capillary electrophoresis 

Fig. 6.8 depicts the electropherogram of synthetic humic acid type M42. This synthetic 

product shows in comparison to synthetic humic acid type M1 (Fig. 6.2) a more 

heterogeneous charge-to-size-ratio distribution. The higher proton exchange copacity of this 

humic acid may be a potential reason for this observation. The humic acid carboxylic groups 

are deprotonated at the experimental conditions applied. A mutual repulsion of the 

deprotonated carboxylic groups can occur, which can cause an unfolding of the molecule and 

also a cleavage of smaller fragments due to the overcoming of van der Wads forces. 

Due to the higher carboxylic group content of synthetic humic acid type M42 in comparison 

to humic acid type M1 this humic acid shows a longer migration time. However, in 

comparison to Aldrich humic acid and other natural humic acids synthetic humic acid type 

M42 shows a smaller charge-to-size-ratio distribution. This indicates a greater homogeneity 

of the synthetic product regarding their molecule fiactions. 

Migration time / (min) 

Figure 6.8: Capillary electropherograms of synthetic humic acid type M42 (charge M81). 
Separation conditions: buffer - 0 4  (3 mM) - NaS4O7 (6 mM), pH 8.9; fuised silica 

capi1li.q 75 ym i.d. X 50 cm effective length, 57 cm total length; separation voltage 30 kV; 
temperature 30 "6; 15 s pressure injection; detection wavelength 214 nm, 



FTIR spectroscopy 

Fig. 6.9 compares the FTIR spectra of synthetic hurnic acid type M42 and type MI. These 

spectra confirm once rnore that synthetic humic acid type M42 shows a higher carboxylic 

group content than synthetic humic acid type MI. The IR absorption band at 1707 cm-' is 

more pronounced than in the spectrum of humic acid type MI. Furthermore, one can conclude 

that humic acid type M42 shows IR absorption bands which are characteristic for natural 

humic acids [9,16]. 

Wavenumber / (cm-') 

Figure 6.9: FTIR spectrum of synthetic humic acid type M42 (charge M81) in comparison to 
synthetic humic acid type MI. 

6.4 Synthesis of a nitrogen-free humic acid 

The ability of humic acids to complex meta1 ions is main1y due to their high concentration of 

oxygen-containing functional groups, especially carboxylic and phenolic OH gsoups. 

However, also other functional groups, such ;is nitrogen-containing grmps, may contribute as 

electron-donors to the cornplexation psöcess. Defined synthetic humtc acid model sntbstances, 

with or without nitrogen may help to elucidate the infiuence of nitrogen-colftai~ing ftxnctiond 

groups on the overaXI complex forination capabi1i$. Therefixe, we synthesized a non- 



nitrogenous humic acid according to our melanoidin concept. Reducing sugars, such as 

glucose and galactose, can undergo the "Nlaillard reaction" in hot alkaline solution in absence 

of arnino acids and form the so-cailed nitrogen-free "pseudo melanoidins" [19]. 

6.4.1 Synthesis 

A mixture of 12 g D(+)-glucose (Fluka), 0.2 g Na2C03 (p-a., Merck) and 18 mL water was 

refluxed for 15 days under nitrogen (Fig. 6.10). The starting pH was 8.9. In the initial phase 

of the reaction, the pH decreased to about pH 5 after 24 hours for about one week. Therefore, 

we adjusted the pH of the reaction mixture to pH 8 by addition of Na2C03 once a day for the 

first 8 days of the synthesis. The humic acid-like fraction of the reaction product was 

extracted with 2 M NaOH (Merck) and then precipitated with 2 M HCl (Merck). The resulting 

precipitate was washed, diaiyzed arid lyophilized. The synthesis yielded 996 mg of non- 

nitrogenous synthetic humic acid. 

Glucose 

OHH OHOH 
I I I I  

HOC-C-C-C-C-CH20H 
I I I I  
H OHH H 

Figure 6.10: Glucose - Precursor for the nitrogen-free humic acid. 

6.4.2 Characterization 

Elemeatal nnalysis 

Tab. 6.7 shows the ekmentai composition of the non-nitrogenous synthetic humic acid and a 

comparison to literature trahes for natural humic acids 1131. The synthetic product compares 

well with natural humic acids. 



Table 6.7: Elemental composition of the synthesized non-nitrogenous humic acid in 
comparison to natural humic acids 1131. 

Element " / (%) Non-nitrogenous synthetic humic acid Natural humic acids 1131 

C 57.55 I 0.03 50 - 60 

H 5.26 11: 0.01 4 - 6  

N - 2-6  

0 37.14 11: 0.03 30 - 35 

" Not corrected for ash and moisture content. 

Functional groups 

Tab. 6.8 surnrnarizes the functional group content of the non-nitrogenous synthetic product 

compared to natural humic acids [14]. It is remarkable that the non-nitrogenous synthetic 

humic acid prepared from glucose shows a higher carboxylic group content than other 

synthetic humic acids prepared from reducing Sugars and a-amino acids. For instance, the 

synthetic humic acid from type M1 that was discussed in paragraph 6.1, shows only a 

concentration of 1.0 meq/g carboxylic groups. We conclude from the radiometric 

determination of the functional groups that the non-nitrogenous product contains both 

phenolic OH and carboxylic groups. 

Table 6.8: Functional group content of the synthesized non-nitrogenous humic acid in 
comparison to natural humic acids [14], 

Functional Non-nitrogenous Aldrich humic Natural humic 

groups / synthetic humic acid acid acids E141 

(meq/g) Calcium acetate Radiometrie (charge A2) 

exchmge detemination 

COOH + phenolic - 7.23 + 0.81 6.9 0.7 5.6 - 8.9 

OH 

COOH 2.64 2 0.12 2.38 & 0-14 474 & 0.85 1.5 - 5.7 

phenolic OH - 4.86 ~i: 0.83 3 2  & Ö,? 2.1 - 5.7 



shows IR absorption bands which are characteristic for phenolic OH groups (deformation 

vibrations of phenolic OH groups, e.g., 1281 cm-I). 

Wavenumber 1 (cm-') 

Figure 6.11: FTIR spectrum of the non-nitrogenous synthetic humic acid. 

Additionally, the fact that this hurnic acid contains phenolic OH groups was confirmed by 

pyrolysis-gas chromatography/mass spectrometry. With this method we detected phenol and 

phenolic substitution products as thermolysis fragments. 

Capillary electrophoresis 

Capillary Zone electrophoresis showed that the non-nitrogenous humic acid has a more 

homogeneous charge-to-size ratio distribution than natural humic acids. Fig. 6.12 depicts an 

electropherograrn for the synthetic product. 

The results of the different characterization methods show that it is possible to synthesize 

non-nitrogenous humic acid model substances from glucose. 
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Figure 6.12: Capillary electropherograms of the non-nitrogenous synthetic humic acid. 
Separation conditions: buffer K m 0 4  (3rnM) - Na2B407 (6rnM), pH 8.9; fused silica 

capillary 75 ym i.d. X 50 crn effective length, 57 cm total length; separation voltage 30 kV; 
temperature 30 "C; 15 s pressure injection; detection wavelength 214 nm. 

6.5 Conclusions 

We have shown that the synthesis of melanoidins starting from reducing Sugars and a-amino 

acids results in humic acid-like substances. These can be used as humic acid model 

substances. The hurnic acid-like melanoidins show functional and structural properties which 

are comparable to natural humic acids. Nevertheless, they show a higher homogeneity 

regarding their molecule fracctions and a lower amount of inorganic constituents than their 

natural analogous. It was shoiwn experimentally that the amount of inorganic constituents can 

be decreased to the detection Iimit applying an "'high purity" ssynthesis method. "Ultra-pure"' 

synthetic humic acids can be used to study the infiuence of inorganic impunties and 

constituents on humic acid properties, for instance on the compkxation behavior. 

The functional and structural properties of synthetic humic acids can be va&d by varying the 

precursor substances. We have shown that the spthesis stanting from xylose, glycine arid 

phenylalanine resuIts in a synthetic humic acid type M1 haviag *i high axnouslt of mono- 

substituted aromatic structurnf elemenfs and only a lau-. number of c:~*box~lic ,mups. S t w n g  



from xylose and glutamic acid it is possible to synthesize a humic acid, which shows a 

carboxylic group content comparable to most natural humic acids. Besides the functional 

group content, the elemental composition of the synthetic humic acids can also be varied. A 

nitrogen-free synthetic humic acid model substance was synthesized from an aqueous glucose 

solution. 

7 Synthesis of modified humic acids with blocked phenolic hydroxyl 
groups 

We synthesized modified humic acids with blocked phenolic OH groups with regard to the 

investigation of the infiuence of phenolic OH groups on the complexation behavior of humic 

acids with metal ions. 

The modification process is comparable to the radiometric determination of functional groups 

(cf. paragraph 5) and comprised two steps (Fig. 7.1): a) the permethylation of carboxylic and 

phenolic OH groups with diazomethane resulting in methyl ester and methyl ether groups and 

b) the hydrolysis of the ester groups in alkaline solution. 

COOH 
I 

COOCH3 
I 

COOH 
I 

QOHz COOH @oCHaz COOCH3 QOcH3 COOH 

Figure 
groups. ( 

7.1: Reaction scheme for the synthesis of humic acids with blocked phenolic OH 
1) - unmodified humic acid, (2) - permethylated humic acid, (3) - humic acid with 

blocked phenolic OH groups. 

7.1 Synthesis 

We synthesized modified humic acids with blocked phenolic OH groups starting from the 

synthetic h u d c  acids type Mf and M42 and from Aldrich naturd huinic. 

First, the suspension of the original humic acid in methanol was reacted under stining for 

three hours at -5 to 5 "C with diazomethane, generated from IXazaldo (Sigma-Aldncfi). After 



three hours the solvent was distilled. The permethylation procedure was repeated for several 

times and stopped when the incorporation of diazomethane into the humic acid was 

completed. The solvent, that was distilled from the reaction mixture then showed the yellow 

color of the non-reacted excess of diazomethane. Then the permethylated sample was 

lyophilized. The functional group content of the permethylated humic acid, was determined 

radiometrically. 

For hydrolysis of the ester groups we applied two different pathways, (a) the hydrolysis with 

methanolic NaOH under reflux and (b) the hydrolysis with 2 M NaOH at room temperature. 

(a) The permethylated humic acid was refluxed under stirring for 8 hours with an excess of 

methanolic NaOH solution. Following, the methanol was removed by distillation. The 

distillation residue was taken up in water. The alkali non-soluble components were 

separated by centrifugation and the modified synthetic humic acid was precipitated from 

the aqueous solution by adding 1 M HCl. This method was exclusively used for the 

permethylated humic acid type MI. 

(b) The permethylated humic acid was stirred for 8 hours with 2 M NaOH in a nitrogen 

atmosphere. The alkali non-soluble residue was separated by centrifugation. Foillowing, 

the modified humic acid was precipitated by addition of 2 M HC1. This method was 

applied for all permethylated humic acids. 

In both cases the modified humic acid precipitate was centrifuged, washed, dialyzed using 

dialysis tubes ( ~ h o m a ~ o r ~ ,  exclusion lirnit MWCO < 1000), and then lyophilized. 

It is to consider that with this method also other H-acidic OH groups, e,g., OH groups 

substituted to five-membered heterocycles may be methylated with diazomethane, resulting in 

nonhydrolizable methyl ether groups. 

7.2 Characterization 

The permethylated humic acids as well as the humic acids with blocked phenolic OH groups 

were characterized for their functional group content using different methods. Tab. 7.1 

surnmarizes the results of these investigations. The humic acids were also investigated by 

FTIR spectroscopy. 

Fmm the results s u m a i z e d  in Tab. 7.1 one can conclude that &e phenolic OH gruups are 

only partlally modified during the derivatization prQcess, The 'humic acids wlth bfocked 

phenolic OH groups have 52 56 to 74 96 less phenolic OH goups compared to th~e original 



humic acids. In the permethylated humic acids we still determined by the radiometric method 

functional groups which are capable for methylation but are not hydrolyzable, i-e., these are 

no carboxylic groups. However, it is still not confirmed if these functional groups are 

unmodified phenolic OH or other unmodified H-acidic OH groups or functional groups which 

are produced during the derivatization of the humic acids and that are capable for methylation 

but not hydrolyzable. It is obvious that in some cases the number of functional groups that are 

capable for methylation and not hydrolyzable is increased during the saponification step. 

Table 7.1: Functional group content of the modified humic acids (HA) in comparison to the 
unmodified humic acids. 

H U ~ C  acid Modification Phenolic OH / COOH / PEC / 

Aldrich original 3.4 I 0.5 4.41 + 0.11 5.06 t 0.17 

(charge permethylated 0.6 I 0.3 <0.1 n.m. 

A2/97) blocked phenolic 1.1 0.4 3.25 -0.05 3.58 0.21 

OH groups 

Type M1 originai 2.3 I 0.1 1.02 + 0.06 1.36 -t 0.08 

(charge permethylated 0.3 < 0.1 n.m. 

R36195) blocked phenolic 1.1 10.2 1.91 r 0.07 1.94 i 0.13 

OH groups 

original HA 1.7 + 0.1 2.03 2 0.02 2.12 + 0.06 

saponified 

Type M1 original 2.4 t 0.1 1.34 + 0.05 1.69 + 0.10 

fcharge permethylated 0.3 <0.1 n.m. 

M100A) blocked phenolic 0.9 t 0.3 1.16 + 0.03 1.35 -t 0.23 

OH groups 

Type M42 original 2.3 + 0.4 4.10 0.10 3.90 t 0.18 

(charge M8 1 ) pennethylated 0.6 t 0.1 <0.1 n.m. 

blocked acidic 0.6 r 0.3 3.21 t 0.08 3.28 + 0.06 

OH groups 

" PEC: Proton Exchange Capacity, Radiometrically detennined. C n.m. : not rneasured. 
Hydrolysis method (3. Hydrolysis rnethod (b). ' cf. chapter 6.3. Blocked acidic OH 

groups, e-g., substituted to five-membered heterocycles and aromatics (cf. chapter 6.3). 



Applying method (a) for the hydroIysis of ester groups, the carboxylic group content of the 

humic acid was increased probable due toi the hydrolysis of ester groups of the original humic 

acid (see Tab. 7.1). Also hydrolysis of amide groups may occur under the applied conditions 

which also results in the formation of carboxylic groups. Therefore, an alkaline treatment of 

the original humic acid type M1 was performed in the Same manner as the saponification of 

the permethylated humic acid of type MI. The functional group analysis of the resulting 

humic acid (original humic acid saponified) is also shown in Tab. 7.1. The resulting humic 

acid has a carboxylic group content that is comparable with the modified synthetic humic acid 

with blocked phenolic OH groups but has a higher content of phenolic OH groups. The 

amount of phenolic OH groups is somewhat lower than in the original humic acid. This may 

be caused by condensation reactions during refluxing with methanolic NaOH. 

The hydrolysis method (b) represents a more sensitive method. However, comparing the 

arnount of carboxylic groups of the modified humic acids with the unmodified humic acids 

one can observe that the modified humic acids show a lower carboxylic group content than 

the original humic acids. Possible causes may be: 

- a decomposition of the humic acid molecules in acid-soluble components during the 

modification; 

- a leaching of smaller humic acid molecules with higher carboxylic group content from 

the humic acid mixture during reprocessing of the modified humic acids or 

- decarboxylation reactions during the derivatization process. 

The smallest differences in the carboxylic group content were observed for the modified 

synthetic humic acid type M1 (-13 %) and type M42 (-22 %) compared to the original humic 

acids. This points to the fact that both humic acid materials are more homogenous thm 

Aldrich humic acid. 

The modification process of phenolic OH groups was further investigated by FTIR 

spectroscopy, which allows the observation of the two different derivatization steps, i.e., first 

the formation of the permethylated humic acid and second the saponification of the 

permethylated product resulting in the humic acid with blocked phenolic 0s groups. 

IR absorption bands, which point to the formation of methyl ether groups, including 

phenylmethylethers, were identified especially in the finger-print region of the spectra of the 

modified humic acids with blocked phenolic OH. Howet~er~ due to the overlappinz of IR 

absorption bands of different humic acid functional p u p s  resulting in a few b r o d  IR 



absorption bands as well as due to strong interactions between different functional groups of 

the humic acid it is difficult to clearly establish these absorption bands in some cases. 

Fig. 7.2 shows the FTIR spectra of the unmodified and the modified humic acid type MI. An 

indication for the modification of phenolic OH groups is the absence of the absorption band at 

1292.8 cm-' in the spectrum of the modified .humic acid, which corresponds to these 

functional groups. The spectrum of the unmodified hurnic acid type M1 shows this band. The 

ether group absorption bands (1023.9 cm-l, 1097.4 cm-I and 1246.8 crn") present in the 

spectrum of the modified humic acid also confirm that phenolic OH groups are blocked. 

Additionally, the increase of the intensity of the absorption band at 2862.8 cm-' indicates the 

formation of methyl ethers. The increase of the intensity of the absorption band at 1453.5 cm-' 

(C-H deformation vibrations) results from the incorporation of CH3-groups into the molecule 

as a result of the methyl ether formation. Furthermore, the synthetic humic acid type MI-B 

has a significantly higher arnount of carboxylic groups (1712.2 cm-') than the original humic 

acid. 

Wavenumber / (cm-') 

Figure 7.2: ETIR spectra of the unmodified synthetic humic acid of type M1 and the 
synthetic humic acid with blocked phenolic OH groups (Type MI-B; hydrolysis (a)). 

Fmm the characterizatlon resulrs one can conciude that there is the possibility to synthesize 

humic acids with blocked phenolic 08 groups, With the modified humic acid type M1 we 



investigated for the first time the influence of phenolic OH groups on the complexation 

behavior of humic acids with ~ 0 2 %  ions. These investigations are described in paragraph 1 1. 

8 Synthesis of isotopically labelled humic acids 

Migration and sorption experiments are performed to predict the migration behavior of 

radionuclides in the presence of humic substances. One of the decisive questions, that has to 

be answered concerns the fate of humic acids during the interaction of humic-acid-metal- 

complexes with sediments. In order to study the migration and sorption behavior of actinides 

in the presence of humic acids, i.e., in laboratory batch and column experiments it is 

advantageous to label the humic material with radionuclides. Thus, it is possible to detect and 

to balance very precisely the fate of humic acids in the investigated System. 

Requirements on a radioactive labelling of humic acids are the use of long-living 

radionuclides, e.g., 14c, the irreversibility of the lab~elling, the preservation of the humic acid 

functionality and a high isotopic enrichment. The stability of the labelled material is essential 

for its successful use in experiments over long times. Decomposition of the labelled humic 

acid and loss of radioactivity during such experiments would lead to incorrect results and an 

incorrect interpretation of the processes under investigation. The incorporation of a 

radioactive label into humic materials must be accomplished by methods which do not change 

the characteristics of the hurnic material. 

There are some possibilities to introduce radioactive labels, e.g., 14c, 12'1, into the humic acid 

molecule. For instance, the chemical derivatization of functional groups using a radkactive 

reagent, e g ,  [14~]methylamine or the enzyrnatically mediated incorporation of ['klPhenol in 

the humic material [20,21]. However, this reactions may alter the hurnic acid, especially the 

functionality of humic acids Yoy derivatization of functional groups. Such derivatives often are 

not sufficiently stable for longtime experiments [20,22]. Furthermore, there is the posslbility 

to synthesize isotopically labelled humic acid model substances according to our melanoidin 

concept using isotopically labelled precursor substances, e.g„ a-amino acids. The greatest 

advantages of the synthesis iaf isotopically labelled melmoidins compared W 0 t h ~  labelling 

methods are the stable labelling of the humic acid in the backbone structure without m;in5' 

changes in the humic acid functionality md the possibility to synthesize humk acids with 

different functionalities as described in rihapter 6.1.to 6.4 



Within the scope of this project, we investigated the synthesis of %-labelled humic acid 

model substances with different functionalities starting from 14c-labelled a-amino acids. The 

aim of this work was the selection of the optimal labelling position of the amino acid to obtain 

humic acids with high specific radioactivity [23]. 

8.1 Synthesis and results 

We synthesized '4~-labe11ed humic acids of type M1 and type M42 according to the synthesis 

procedures described in 6.1 and 6.3, respectively. The 14c-labelled u-arnino acids used are 

depicted in Fig. 8.1 

3 2 1 

*cH~-*CH -*COOH 
*0*\ / 

[U-1 4Clphenylalanine !or I 
-\*/* NH2 

5 4 3 2 1 
[I -1 4Clglutarnic acid HOOC-CH2-CH2-CH-*COOH 

I 

5 4 3 2 1 

[U-1 4C]glutamic acid HOO*C-%H2-*CH2-*CH-*COOH 
I 

Figure 8.1: 'k-labelled amino acids used for the synthesis of 14c-labelled synthetic humic 
acids type M1 and type M42. 

Tab. 8.1 sumrnarizes the starting materials, the specific activities of the amino acids and the 

activity yiefds of the synthesized humic acids. 

The radiochemical yield depends on the experimental conditions and is limited by the 

fomation of insoluble humin-like substances. The yiefds as we11 as the specific activity of 



CO? which is eliminated during the reaction allow conclusions with regard to the reaction 

Course. The nitrogen content of the hurnic acid molecule corresponds to the amount of 

incorporated arnino acid. In all cases, the C-1 carboxylic group of the amino acid is eliminated 

during the melanoidin formation. This elirnination is a precondition for the incorporation of 

the arnino acid in the melanoidin molecule. Therefore, [l-14~]-labelled amino acids, e.g., [l- 

14~]glutamic acid, are not suitable for the synthesis of 14c-labelled humic acids. However, the 

CO2 which is released during the reaction originates not only from the amino acid because the 

specific activity of the eliminated CO:! is smaller than the specific activity of the amino acid 

related to the labelling position. C02 from xylose is also eliminated during the reaction. 

Table 8.1: Starting materials and activity yields for the synthesis of different humic acids. 
Xylose was the Sugar component used in all cases. 

The highest activity yields for humic acid type M1 are reached using [2-14~]glycine as 

precursor substance. Calculations have shown that the maximal specific activity of humic acid 

type MI, that can be reached starting from [2-'4~]glycine with a maximal specific activity of 

1.85 GBq/mmol, amounts to 4.8 GBq/g. With this specific activity 100 ng of I4c-labelled 

humic acid can exactly be detected. That means, that about 1 pg 14c-labelled humic acid per 

liter can be detected. This detection limit allows the use of this "C-labelled humic acid in 

batch and migration experiments. 

Furthermore, using [U-"~]~lutarnic acid, synthetic humic acid type M42 can be synthesized 

with a comparable high specific activity (like h e c  acid type M1 starting h r n  @- 
14 14 Clglycine). This fact enables us to synthesize C-labelled humic acids with a high 

carboxylic group content comparable to most natural humic acids. However, the yield of 14c 
of this synthesis is smaller compared to the synthesis of humic acid Srpe Ml. 

Humic acid 

Yield 

Humic acid type 

M1 

M1 

M42 

M42 

Precursors 

Amino acids 

[ ~ - ' ~ ~ ] ~ h e n ~ l a l a n i n e ,  glycine 

[2-14~]glycine, phenylalanine 

[l-14~]glutamic acid 

[~- '~~]g lu tamic  acid 

(MBq/mmol) 

40 

40 

40 

40 

(% 14c) 

12 

30 

0 

5 

(MBq/g) 

36 

104 

0 

1 02 



9 StabiIity of synthetic and natural humic acid stock solutions 

Natural humic acids are subjected to permanent alteration reactions. Nevertheless, comparable 

chemical properties are necessary for all comparative investigations with humic acids. 

Mterations of humic acids are especially possible in solutions with extreme pH conditions 

after long storage periods. 

The stability of stock solutions from synthetic and natural humic acids were investigated 

regarding their temperature and light sensitivity under different pH conditions. 

9.1 Experimental 

Alkaline conditions 

Stock solutions of synthetic humic acid type M1 and type M42 as well as Aldrich humic acid 

were prepared under aerobic conditions with a humic acid concentration of 1 g/L and a NaOH 

concentration of 1 0 ~ ~  mol/L. Three samples of each stock solution were stored under the 

following conditions: 

a) at room temperature md daylight, 

b) at room temperature iunder exclusion of daylight and 

C) at 5 "C under exclusion of daylight. 

Periodically the absorption of the humic acid solutions at 465 nm were measured with a 

spectrophotometer (Spekol 11, VEB Carl Zeiss Jena, Germany). Furthermore, the pH values 

of the solutions were determined. 

Acid conditions 

A stock solution of synthetic hurnic acid type M1 (0.5 g HAL) was investigated at pH 6. 

Furthermore, stock solutions of synthetic humic acid type M42 and AIdrich humic acid (1 g 

HALL) were investigated at pH 4. 

The storage conditions and the absotption measurements of the solutions were the Same as in 

the investigations under alkaline conditions. 



9.2 Results 

Alkaline conditions 

Fig. 9.1 shows the absorption intensities at 465 nm for stock solutions of synthetic humic acid 

type M1 stored under different conditions versus storage time. For all stock solutions a 

decrease in the absorption intensities was observed with increasing storage time. The highest 

decrease was determined for solutions which were stored at room temperature and daylight. 

I daylight I room temperature I 
I 0 darkness I room temperature / 

0.4 I I I 

0 10 20 70 80 
/U 

Storage time / (d) 

Figure 9.1: Absorption of stock solutions of synthetic humic acid type MI at 465 nm at 
different storage conditions versus storage time ([HA]: 1 g b ,  [NaOH]: 10?- M). 

Comparable trends were determined for synthetic humic acid type M42 and Aldrich humic 

acid. Fig. 9.2 depicts a cornparison of the absorption trend for the investigated humlc acid 

stock solutions stored at room temperature and daylight. For aU humic acid solutions a 

decrease of the absorption at 465 nm with increasing storage time was obserwed. The b t ~ t  

percentage decrease in dependence on the storage conditions and storage time was observed 

for Aldrich humic acid. 

Significant changes in the pH values of the solutions of Aldrich hurnic acid md synthetic 

humic acid type MI were not observed. Tfhe solutions of synthetic humk acid type M42 ~hovv 

a permanent decrease of their pH values, 



0 20 40 60 80 

Storage time 1 (d) 

Figure 9.2: Absorption of humic acid stock solutions at 465 nm versus storage time ([HA]: 
1 g/L,; [NaOH]: 1 0 - ~  M; storage at room temperature and daylight). 

The decrease in the absorption intensities points to the fact that the stock solutions are 

subjected to alterations under the applied conditions. The alterations may be caused by a 

hydrolytic decomposition of the humic acids, e.g., due to the hydrolysis of ester groups, 

because of the high pH values. The alterations of the solutions can be retarded by storing the 

solutions under cooling and exclusion of daylight. 

Acid conditiom 

Under acid pH conditions all solutions show only an insignificant decrease in the absorption 

intensities at 465 nm, which Iies in the range of the experimental error, Fig. 9.3 shows the 

trend of the absorption at 465 nm for the humic acid solutions stored at room temperature and 

daylight versus storage time. 

Significant chariges in the pH vaiues were not observed for the solutions of synthetic humic 

acid type MI. SoIutions of humic acid type M42 and Aldrich hurnic acid only show a 

negligible increase in their pH values. 

In contract to the storage at alkaline conditions no significant dependency between the storage 

conditions and the stability of the soIutlon was ubserved. 
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Storage time 1 (d) 

Figure 9.3: Absorption of humic acid solutions at 465 nm versus storage time ([HA]: 1 g/L 
for Aldrich HA and HA type M42; 0.5 g1L for HA type MI; pH 4 for Aldrich HA and HA 

type M42; pH 6 for HA type MI; storage at room temperature and daylight). 

From that one can conclude, that humic acid stock solutions show a higher stability under acid 

conditions. However, instabilities of the solutions are expected with increasing storage time, 

which may be caused by chemical reactions andlor by the growth of fungi, 

9.3 Conclusions 

Aqueous stock solutions of synthetic and natural humic acids show comparabk stabilities 

under similar storage conditions. They show alterations during the Storage over lang periods 

of time, whereby acid solutions show higher stabilities than alkdine solutims. Fm allraline 

solutions we observed a strong dependency between the storage conditions and rhe stability of 

the solutions. 

Freshly prepared stock solutions of synthetic md natural humic acids shoukl be used to ensure 

comparable experimental conditions for the investigations of burnic acids in sohtion. 



10 Interaction of synthetic and natural humic acids with uranium(V1) 

10.1 EXAFS investigations for the determination of structural parameters of 

uranyl(V1) humates [24] 

Extended X-ray gbsorption fine gructure analysis (EXAFS) is an useful tool for analyzing the 

complexation behavior of humic substances on a molecular level. EXAFS is a standard 

technique, providing molecular-level information on the nearest neighbor stmcture of a 

chosen absorbing atom [25], which also allows the investigation of amorphous materials and 

liquid substances. 

The objective of the EXAFS investigations was to obtain information about the structure of 

uranyl-hurnic acid complexes, in particular about the binding of the ~02 f  ion onto hurnic 

acid. The EXAFS investigations performed included the following focal points: 

- comparison of the interaction between the purified natural humic acid from Fluka and 

the synthetic humic acid type M1 with ~ 0 2 ~ '  ions, 

- comparison of uranyl humates with different uranyl loadings, 

- comparison of uranyl humates prepared under different conditions and 

comparison of uranyl humates that were measured in the wet or dry form. 

10.1.1 Experimental 

Sample preparation 

We studied uranyl humate complexes prepared under different conditions. The humic acid 

was either dissolved in aqueous solution or prepared as an aqueous suspension of solid humic 

acid. These were then reacted with solutions containing varying uoZ2+ amounts. After 

isolation and purification of the uranyl humates the sarnples were lyophilized. One sample 

was not dried completely, but measured in the form of a wet Paste. 

A list of the samples investigated, the concentration of uranyl ions per weight humic acid in 

the reaction solution during the preparation, the uranyl loadings of the samples regarding their 

carboxylic group contents and the general preparation method are given in Tab. 10.1. A 

detailed description of the sample preparation is given in [24]. 



Table 10.1: Sample preparation and UO? loadings of the uranyl humate complexes 
investigated. 

Sample Sample preparation 

mg Ulg HA in 

reaction solution 

540 

Method of sarnple preparation 

reaction of U O ~  with 

dissolved Fluka-HA; pH = 3.5 

sorption of UO?, onto an 

aqueous suspension of Fluka- 

HA; pH < 1 

reaction of U O ~  with 

dissolved Fluka-HA; pH = 4.0 

reaction of ~ 0 2  with 

dissolved Fluka-HA; pH = 4.0 

reaction of ~ 0 2  with 

dissolved synthetic HA type 

MI; pH=4.0 

Uranyl humate 

UO? loading 

(% COOH) 

I 

" The ~ 0 2 ~  loadings of the samples were determined using ICP-MS following digestion of 
the uranyl humates in HN03. The average values from two ICP-MS determinations are 
shown. 

U O ~  loadings expressed in percent of carboxylic group capacity calculated assuming 
charge neutralization. The humic acid carboxylic group content was determined by the 
calcium acetate method. 

Although similar amounts of uranyl ions per weight hurnic acid were used in the preparation 

of sarnples 1 and 2, their uranyl loadings differ significantly due to the different pH conditions 

during sample preparation. 

EXAFS measurements 

Uranium LrIredge EXAFS transmissioni spectra were measured at room temperature at the 

Hamburger Synchrotronstrahlungslabor HASYLAB, experimental station RÖMO 11, 

beamline Xl.1, using a Si(3ll) double-crystal monochromator detuned - 50 % of the 

maximum incident flux. Fig. 10.1 shows schematically the experimental set-up. 



I - ionization charnber 
S - sample 
RS - reference sample 

Figure 10.1: Experimental Set-up of the EXAFS measurements. 

The samples were dispersed in Teflon and pressed as 1.3 cm diameter pellets. The amount of 

sample corresponding to 18-30 mg U, calculated from the experimentally detemined uranyl 

loadings given in Tab. 10.1, was introduced into the pellets. The jump over the U LIIredge for 

these samples averaged 0.8. Sample 4 was measured as a wet Paste, loaded into a 

polyethylene sample holder having thin windows in the direction of the Synchrotron beam. 

The edge jump for this sarnple was only 0.2 so that the signal-to-noise ratio limited the upper 

range of the spectrum to - 17900 eV. To calibrate the energy of the sample spectra, a 

spectrum from a 0.2 M UO2C12 solution which was placed behind the sample, was recorded 

simultaneously. The energy of the first inflection point in the reference spectrum was defined 

as 17166 eV. Three spectra were recorded for each sample and then averaged. The ionization 

energy for the U L111 electron (Eo) was arbitrarily defined as 17185 eV for all averaged sample 

spectra. 

Data reduction and analysis were performed using the suite of programs EXAFSPAK [26]. 

Scattering amplitude and phase-shift functions were calculated using the theoretical EXAFS 

modeling code FEFF6 [27]. A more detailed description of the data analysis is given in [24]. 

IR spectroscupy 

IR spectra of the dried uranyl humate sarnples as well as the untreated humic acids were 

measured. Spectra from B r  pellets contairiing equal amounts of sample were recorded at 

room temperature between 200 and 4000 cm-'. 



10.1.2 Results and discussion 

IR Spectroscopy 

All IR spectra of the uranyl humate complexes show, in comparison to the uncomplexed 

humic acids, a decrease in the absorption bands characteristic for C=O and C-0 vibrations of 

carboxylic groups at 1720 cm-' and 1200 cm-l, resbectively. At the Same time the intensity of 

bands associated with asyrnmetric and symmetric stretching vibrations of COO* groups, found 

between 1560 cml  and 1520 cm-' and at 1380 cm-I, increases. As exarnple, the IR spectra of 

the untreated Fluka humic acid and sample 1 are depicted in Fig. 10.2. For some samples the 

observed changes were not as great due to the low uranyl loadings. However, the combined 

decrease in carbonyl band intensity and increase in COO- band intensity indicate the 

conversion of humic acid carboxylic groups to carboxylate ions through the loss of Protons 

upon reaction with uranyl ions. This strongly suggests a direct interaction/complexation of the 

humic acids with the uranyl ions. Furthermore, the results from IR spectroscopy point to a 

monodentate coordination of the COO- group onto the UO? ion 1241. 

W+--% Fluka HA 

Figure 10.2: IR Spectra of the untreated, purified Huka humic acid and sampk 1, Fhh HA 
following complexation wiui urmyl ions, 



EXAFS results 

The EXAFS oscillations were isolated fiom the raw, averaged data by removal of the pre- 

edge background, followed by po-removal via spline fitting techniques and normalization 

using a Victoreen falloff [25]. As example, Fig. 10.3 shows the U LIII absorption spectrum of 

sample 5, which is already energy calibrated, and corrected relative to the pre-edge 

background. 
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Figure 10.3: U LIII-edge absorption spectra of sarnple 5. 

The k3-weighted EXAFS oscillation of all investigated uranyl humate samples of Fluka humic 

acid and synthetic humic acid type M1 are depicted in Fig. 10.4. 

The contribution of the different coordination shells to the EXAFS oscillation can be 

separated by Fourier transformation. Fig. 10.5 shows the corresponding Fourier transforms 

(FT's). The FT's represent pseudo-radial distribution functions of atoms surrounding the 

central, absorbing uranium atorn. The intensity of the peaks corresponds to the coordination 

number. The peak position gives infomation about the distances of the atoms. The FT's are 

not corrected for EXAFS phase-shifts causing peaks to appear at shorter distances (R -F A) 

relative to the true near-neighbor distances R. 



Figure 10.4: k3-weighted U Llir-edge EXAFS for samples 1 - 5 (Tab. 10.1). The solid lines 
are the experimental spectra, the dashed lines result from the fit described in the text. For 

clarity, the spectra have been shifted along the y-axis. 

Figure 10.5: Fourier transforms of the EXAFS depicted in Fig. 10.4. The tsansformation in 
the k-region shown was performed using a rectangular window. The solid lines are the 

experimental spectra, the dashed lines results from their fit, Fm cimity, the spectra have been 
shifted along the y-axis. 

The EXAFS oscillations in Fig. 10.4 show no significmt differentes except for SE@ 

variations in the stnicture of the shoulder centered at about 7 A". TWO coordadation sheXI~ are 

evident in the FT's in Fig. 1 0 5  All samples inves~gated show comparable WS whkh ar% 

dominated by a peak at approxirnately 1 3  A. nlis p& coaesponds to the axial oxygen atam 



(0,) of the uranyl unit. The next peak represents the equatorial oxygen atoms (0,) 

coordinated to uranium. The weak peak in the FT's at about 2.9 A is not from a true 

coordination shell. It results from multiple scattering along the uranyl unit [28,29]. No peaks 

with significant intensity indicative of scattering on a strong backscatterer, e.g., a U-U 

interaction are evident in the spectra. 

The EXAFS oscillations were fitted to the EXAFS equation using a structural model with the 

two coordination shells observed in the FT's, containing oxygen atoms as backscatterer. In 

addition, multiple scattering involving both axial oxygen atoms of the uranyl unit was 

included in the fit. The k-range of the fits was 2.8 - 15 A-'. For sample 4 the k-range was 

limited to 2.8 - 12.5 A-'. The coordination number for the axial oxygen atoms (N,) was held 

constant at 2. The shift in threshold energy (AEo) was varied as single value for all paths. A 

more detailed description of the evaluation of the experimental data including a test of the 

accuracy of the EXAFS analysis and an exemplary deconvoluted fit of an uranyl humate 

spectrum is given in [24]. 

The stmctural parameters obtained from the fits of the EXAFS oscillations are given in Tab. 

10.2. 

Table 10.2: Fit parameters for U LIII-edge EXAFS data for samples 1-5 (cf. Tab. 10.1) using 
the model described in the text (Nax = 2). Errors in bond length (R) and coordination numbers 
(N) are r 0.02 A and -20 %, respectively. (&: shift in threshold energy, o2 : EXAFS-Debye- 
Waller factor). 

Sarnple U-0, U-0, E o  

(cf. Tab. 10.1) R (A) C? (2) N R o2 (A2) (ev) 

1 1.78 0.002 5.0 2.38 0.013 - 7.5 

2 1.77 0.002 5.4 2.39 0.013 - 8.3 

3 1.78 0.003 5.2 2.37 0.013 - 8.5 

4 1.78 0.002 5.0 2.37 0.010 - 7.9 

5 1.78 0.002 5.1 2.37 0.014 - 8.5 

The axial U-0% distances in all samples investigated were determined to be 1.77 - 1.78 A, 

equatorial WO„, distances amount to 2.37 - 2.39 A. Within the experimental error there are no 

differences in the U-0 bond distances between the samples with large loadings (sample 1 and 

2) compared to tbse with relatlvely low loadings (sample 3 and 4). Furthermore, the 

stmcrural pa~ameters obtained for the sampie prepared by sorption of ~ 0 2 ~ '  onto a suspension 

of natural humic acid (smple 2) are the Same as those for the samples prepared from humic 



acid in solution. The sarnple measured as a wet paste (sarnple 4) shows the Same results as the 

samples measured in the dned form. This indicates that the presence of excess water does not 

change the average equatorial bond distance surrounding uranium in the uranyl humate 

complexes. The comparison of the fit results obtained for the samples prepared from Fluka 

humic acid and the uranyl humate prepared from synthetic humic acid type M1 shows that the 

synthetic humic acid behaves similarly towards the binding of ~ 0 7  ions as the natural 

humic acid. This was already found in former studies of the interaction of U 0 2  ions with the 

Same synthetic humic acid and Fluka humic acid with higher ~02- load ings  [10]. 

The high Debye-Waller-factors are attributed to a high disorder in the arrangement of atoms 

in the equatorial shell which is caused by the high variety of binding sites of the hurnic acids. 

Additional measurements at low temperatures are necessary to distinguish between static 

disorder, such as the presence of two U-0, distances close in proximity and thermal disorder. 

Assuming that carboxylic groups are the most important functional groups of the humic acid 

for the complexation of metal ions at pH 4, essentially three important bonding modes of 

carboxylate ions to metal ions are possible, as depicted in Fig. 10.6. 

monodentate bidentate bridging 

Figure 10.6: Schematic representation of the possible coordination modes of the carboxylate 
ion onto the U O ~  unit. 

Nineteen crystalline uranyl carboxylate complexes with known structures, having ligands that 

may serve as models for humic acid structurd elements, were considered regading their axial 

and equatorial U-0 bond distances [24]. The averaged bond distances are 1.76 I: 0,013 A for 

U-0% 2.48 r 0.05 A for U-0, (bidentate carboxylate oxygen atoms), 2.39 +. 0.05 A for U- 

0, (monodentate carboxylate oxygen atoms) and 2.36 t 0.05 A for U-0, @ridging 

carboxylate oxygen atoms). 

The observed binding distances for the axial oxygen atoms of the urmyl unit fix smpk 1 - 5 

are comparable to the averaged bond distance observed for the crystdfane uranyl carboxylate 

complexes [24]. Furthermore, the U-0, distances in the uranyl humtes Ge ~foser to the 

averaged values typical for monodentate or bridging carboxylate gtougt;, &an to the averaged 

value for bidentate coordination. So we concluicte t a t  th% nurriber of monodentat@ mdbor 
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bridging carboxylate ligands must be greater than the number of bidentate ligands. Othenvise 

the average U-Oeq distance would exceed the measured value of 2.37 -F 0.02 A. Nevertheless, 

this result is in contrast to IR results published by Koglin et al. [30], who interpreted a 

bidentate coordination of hurnic acid carboxylic groups onto uranium. 

The EXAFS fits of the uranyl humate spectra show the presence of five oxygen atoms in the 

equatorial sphere around the uranyl unit. Assurning charge neutralization two negative 

charged complexing groups are required to neutralize the charge of the uranyl unit. If two 

monodentate carboxylate groups are considered as the bonding partners three neutral ligands 

are necessary to fulfill the coordination requirement of five equatorial atoms. The binding of 

two bidentate carboxylate anions or four bridging groups would also attain charge 

neutralization. In both cases, four equatorial oxygen atoms are contributed by the carboxylate 

ligands md  the coordination number of five is still not reached. However, in the case of 

bidentate ligation the resulting average bond distance would be much longer. This is of Course 

assuming that the bond length between any neutral ligands and uranium is not extremely 

short. As example, the average U-O„ bond distance for water ligands in the crystalline 

complexes considered in [24] is 2.43 A. If water is considered as the neutral ligands then the 

average U-0, bond length from a neutral complex involving bidentate carboxylate groups is 

exceedingly longer than the distances observed for sarnples 1-5. 

If not only carboxylate ligands but also acidic hydroxyl groups, e.g., phenolic OH or hydroxyl 

groups in a-position to a carboxyl group, are included as possible ligands for charge 

neutralization several neutral ligands must be present to obtain a coordination number of five. 

Which kind of neutral ligands contribute to the coordination is not known. However, it is 

possible that protonated phenolic OH groups contribute to the complexation process. 

The possibility of any coordination involving bridging of two uranyl ions via a single 

carboxylate oxygen atom (F-0x0-bridging) was excluded because no typical U-U distance for 

such coordination was observed. However, fi-om our analysis the presence of bridging 

carboxylate groups cannot be excluded [24]. 



10.2 Determination of uranyl complexation constants with natural and synthetic 

humic acids at pH 4 

Laser-induced fluorescence spectroscopy offers a very good possibility to investigate the 

complexation behavior of metal ions with humic acids. This method renders the possibility for 

a direct quantification and characterization of the investigated System with very low detection 

limits. In contrast to other methods like ultrafiltration, ion exchange or solvent extraction, a 

further advantage of this method represents the possibility for a direct determination of the 

metal ion speciation without any disturbance of the thermodynarnic equilibrium. 

The objective of the investigation was to determine the ability of synthetic hurnic acid type 

M42, which has a carboxylic group content comparable to most natural humic acids, to rnimic 

the complexation behavior of natural humic acids with UO? ions. 

10.2.1 Experimental 

Preparation of uranyl humate solutions 

To characterize the interaction of the ~ 0 2 ~ '  ion with synthetic and natural humic acids, we 

measured the fluorescence signal of the UO? ion as a function of the total uranyl 

concentration at a constant humic acid concentration. All experiments were perfomed in air 

at 20 -F 1 "C in 0.1 M NaCl04 at pH 3.98 +_ 0.01 for synthetic hurnic acid type M42 (charge 

M81) and pH 3.96 0.03 for Aldrich hurnic acid. The humic acid concentration was kept 

constant at 5 mg/L. The uranyl concentration was varied from 1.0 10*~  to 9.7 * 10'~ M for 

synthetic humic acid type M42 and 6.5 10~' to 8.3 10-~ M for Aldrich humic acid, The 

sample solutions were prepared from stock solutions of humic acid and UOz(C104)2. The 

concentration of ~ 0 2 %  in the solutions was determined with ICP-MS analysis. The ionic 

strength was adjusted to 0.1 M with 1 M NaC104 (p.a., Merck), Calibration of the relative 

fluorescence s i p a l  as a function of the UO? concentration was done with solutions that 

were identical to the solutions of the complexation experiments but did not contain any hufnjic 

acid. The pH values were adjusted with NaOH (Merck) and HClQ4 (Merck). 

The uranyl species distribution from pH 3 to 9 ( [uo~J:  1 10-' M, pC02: 101~.' a tm 0.1 M 

NaC104) was calculated with the EQ3/6 program [3 11 based on complex formatlon constmts 

compiled by Grenthe et al. 1321 (NEA data base). Under these conditions, the fmt ~mfl;)tl 



hydrolysis species, U020H?, occurs besides the free ~ 0 2  ion at pH 4 with a relative 

concentration of 2.7 %. Thus, the uranyl hydroxo species concentrations in the experiments 

performed are lower than the experimental error and were therefore not considered for 

calculating the complexation constants. 

Lasefluorescence spectroscopic measurements 

A detailed description of the laser instrumentation is given in 1331. The spectroscopic light 

source was a Nd:YAG laser, pulsed with a repetition rate of 10 Hz (GCR 230, Spectra 

Physics, Mountain View, CA, USA). The fourth harmonic oscillation of the Nd:YAG laser 

(266 nm) at laser energies below 700 pJ was applied to excite the uranyl fluorescence. At 

these energies, no significant photolytic decomposition of the humic acid occurs [33]. The 

emission signal was focused into the spectrograph (Model 1235 Acton Research, Acton, M . ,  

USA) by a fiber optic cable. For fluorescence detection, we used a time controlled photodiode 

array detector (Model 1455 EG&G Instruments, Princeton Applied Research, Princeton, NJ, 

USA), cooled to - 30 'C. Using a delay generator (Model 9650, EG&G Instruments), the time 

gate of fluorescence detection was Set to Open at 200 ns after the excitation pulse for an 

interval of 1000 ns. Time resolved measurements allow the discrimination of uranyl 

fluorescence signal against excitation pulse and short humic acid fluorescence emission 

(fluorescence lifetime 10 ns [10]). The fiuorescence signal was measured from 408 to 634 

nm. Ten spectra of each sarnple were collected over 100 laser pulses in each case. The spectra 

were standardized relative to the pulse energy. An average spectrum was calculated from 10 

emission spectra. 

10.2.2 Results and discussion 

The measured fluorescence spectra represent the sum of the free ~ 0 2 ' +  ion fluorescence, the 

fluorescence of the Erst hydrolytic uranyl species (Uo20H> and a residue of scattered laser 

light of the excitation pulse (second order) at 532 nm produced in the spectrograph. The 

spectra were deconvoluted by a non-linear least Square method using spectra from earlier 

measmements E333 to cdculate the contribution of the free ~0~~ ion to the fluorescence 

signal. The spectrum of U 0 2 0 p  was included in the peak deconvolution because of the 

stmng fluorescenee ykld of UO2OH* in comparison to the free ~022f ion. The amount of 



uo20H+ (< 2.7 %) that was present in the experiment was neglected in the stability constant 

calculations because its concentration was below the experimental error for the U O ~  

concentration determination. For all cases no emission of the uranyl humate complex was 

directly observed. Furthermore, we did not observe any quenching effects of the UO? ion by 

self quenching or quenching by the humic acid in the investigated concentration range. 

The uranyl fluorescence intensity for each sarnple was integrated between 465 and 570 nm. 

Equivalent results from the solutions without humic acid were used to determine the free 

~ 0 ~ ~ '  concentration when uranyl humate is present. 

The evaluation of the experimental data was performed based upon the metal ion charge 

neutralization model 11341, which considers the complexation reaction of a given metal ion 

with hurnic acid as a metal ion charge neutralization process. According to this model, the 

U O ~  ion occupies two proton exchanging sites of the humic acid molecule [Eq. (19. I)]: 

where HA(I1) represents the humic acid ligand and U02HA(II) stands for the uranyl humate 

complex. 

ß - complexation constant; [UOzHA(II)] - uranyl humate concentration; [ ~ 0 2 ~ + ] r ~  - free 

uranyl ion concentration; [HA(II)]f, - free humic acid concentration 

The model was chosen because it offers the possibility to detennine complexation constants 

which are independent of the humic acid origin, the metal ion concentration, and the pH 

value. Based on this concept, stability constants of uranyl complexes with natural humic acids 

and their synthetic analogues are expected to be similar. 

Because not all complexing sites of the humic acid are available for the U O ~  ion binding the 

loading capacity (LC), which represents the mole fraction of maximal availabk complexing 

sites of the humic acid, is introduced by this model. The LC represents a humk acid specific 

value which depends on the experimental conditions- 

The LC and the cornplexation constants were detetmined graphically by linear regression of 

the experimental data after rearranging Eq. (10.3) fm the free UD? ion ~oncentration [34: 



where ß represents the complexation constant, [U02HA(II)] the uranyl humate concentration, 

[ ~ 0 2 ~ ] f „  the free uranyl ion concentration, [HA(II)ltOtal the total molar humic acid 

concentration [34] and LC stands for the loading capacity. 

Fig. 10.7 shows the analysis for synthetic humic acid type M42. 

Considering the graphically determined LC, we computed a complexation constant for each 

experimental point. The results of these calculations, the analytical data of the starting 

concentrations and the data derived from the spectroscopic measurements are summarized in 

Tab. 10.3. Tab. 10.4 gives the graphically determined complexation constants and the LC in 

comparison to the values published by Czenvinski et al. 1351 obtained by using a natural 

humic acid from the Gorleben site. 

Fiere 10.7: Craphically detemiination of the loading capacity (LC) and the complexation 
constant for the complexation of synthetic humic acid type M42 with the U O ~  ion by linear 

regression of experimental data. 



Table 10.3: Analytical data of the starting concentrations, the spectroscopically determined 
data of each component, and log ß for the complexation of synthetic humic acid of type M42 
and Aldrich humic acid. 

[HA(II)ltotai [~oz;?+ltotai [~02~l f ree  [U02HA(IDI [HA(II)IfEe 1% ß 
( y m o W  (IJmolW (clm0W (ym0W (Y m o w  

Synthetic humic acid type M42 (charge M81) 

(PECa: 3.90 I 0.18 meqlg; pH 3.98 ir 0.01; 1: 0.1 M NaC104; LC: 0.203 rr 0.010) 

9.8 1.00 0.54 0.46 1.53 5.74 

9.8 1.47 0.51 0.97 1.02 6.27 

9.8 1.97 0.97 1 .OO 0.99 6.02 

9.8 2.42 1.34 1.08 0.90 5.95 

9.8 2.88 1.45 1.43 0.56 6.25 

9.8 4.44 2.89 1.55 0.43 6.09 

9.8 4.90 3.30 1.60 0.38 6.10 

9.8 6.76 5.23 1.54 0.45 5-82 

9.8 7.71 5.93 1 .78 0.21 6.16 

9.8 8.70 6.86 1.83 0.15 6.24 

9.8 9.66 7.89 1.77 0.21 6.03 

Aldrich humic acid (charge A2) 

(PEC: 5.33 r 0.12 meqlg; pH 3.96 +. 0.03; I: 0.1 M NaC104; LC: 0.217 -t 0.022) 

13.3 0.65 0.27 0.38 2.5 1 5.76 

13.3 1 .24 0.48 0.77 2.12 5.88 

13.3 2.42 1.23 1.19 1.70 576 

13.3 2.96 1.45 1.51 1.38 5.88 

13.3 4.80 2.87 1.93 0.96 584 

13.3 6.07 3.58 2.49 0.40 6.24 

13.3 6.99 4.95 2.04 0.85 5.68 

13.3 8.27 5.79 2.48 0.4 1 5.01 

" PEC: Proton exchange capacity. 

Value was not considered for validation. 



Table 10.4: Complexation constants and loading capacities of synthetic humic acid type M42 
and purified natural humic acid from Aldrich in comparison to a Gorleben humic acid. 

Synthetic humic acid type Aldrich humic GoHy humic acid 

M42 (charge M8 1) acid 
(charge A2) GoHy-537 [35] 

Complexation constants log ß " 
Graphical 6.04 t 0.24 5.86 i- 0.28 - 
Calculated C 6.06 I 0.35 5.88 -r 0.35 6.16 t 0.13 

Loading capacities (LC) [%] " 
Graphical 20+2 22 ir4 18.5 I 0.3 

" Deviations = 2 o. 
Calculated by linear regression of experimental data. 
Mean vdues from Tab. 10.3. 

Within the experimental errors we found a remarkable agreement between the LC and 

complexation constants of the synthetic humic acid type M42 and Aldrich humic acid, which 

indicates a similar complexation behavior for both investigated Systems. This fact was already 

observed comparing the complexation behavior of the natural humic acids from Fluka and 

Aldrich with a previous sample of synthetic humic acid type M42 published in [36]. 

For validation of the postulated cornplexation reaction [Eq. (10.1)], Eq. (10.2) was rearranged 

The slope of the linear regression function of Eq. (10.5) represents the metal ion to ligand 

ratio and will result of unity, when Eq. (10.1) is valid. The determined values are 0.92 I 0.17 

for synthetic humic acid and 0.81 * 0.16 for Aldrich humic acid. These results verify the 

postulated complexation reaction. 

Although there are several literature values for the uranyl humic acid complexation, a äirect 

comparison of our complexation data is only possible with data published by Czerwinski et al. 

[35] given in Tab. 10.4, because these were also treated with the metal ion charge 

neiltralization model. The complexation constants of our synthetic humic acid and Gorleben 

humic acid agreee very well within the experimental errors. There are small differences in the 

Ioading capacity of our product and of Gorleben humic acid which may be due to their 

different origin. 



From these results we conclude that the synthetic humic acid type M42 appropriately 

simulates the functionality of natural humic acids although there are differences in their 

elemental composition and structural elements 

10.3 Structure of uranyl(V1) humate complexes of synthetic and natural humic acids 

studied by FTIR spectroscopy 

IR spectroscopy is a useful tool for the characterization of humic acids regarding their 

functionality. Functional and structural changes of humic acids are reflected by changes in the 

intensity, position or occurrence of characteristic absorption bands. In addition, IR 

spectroscopy offers the possibility to investigate functional variations of hurnic acids due to 

complex formation processes with metal ions [24]. 

The objective of this work was to proof the similar coordination of ~ 0 ~ ' '  ions onto synthetic 

and natural humic acids and to confirm previous results obtained by EXAFS and laser- 

induced fluorescence spectroscopy. For the first time uranyl humate complexes were 

investigated in the far infrared range (FIR) beside the middle infrared range (MIR) [37]. 

10.3.1 Experimental 

Preparation of uranyl humates 

For the preparation of the uranyl humate complexes synthetic humic acid type M1 and type 

M42 as well as natural humic acid from Aldrich were suspended in water. On the basis of 

their carboxylic group contents uranyl acetate (type MI, Aldrich) or uranyl perchlosate (type 

M42) solutions were added to the aqueous humic acid suspensions for the complex formatlon. 

The pH values were adjusted to pH 4 for synthetic hurnic acid type M1 arid Aldrich humic 

acid and to pH 2 for humic acid type M42, The uranyl humate complexes were isolated by 

centrifugation, purified and lyophilized, The uranyl loadfngs of &e comflexes were 

determined by ICP-MS after digestion of the complexes with HH03. A s s d n g  &arge 

neutralization, the uranyl humates of humic acid type MT, type M42 and A1drich show 

regarding their carboxyl group contents uranyl loadings uf 128. %> 29 % md 129 %, 

respectively. The low uranyl loading of humic acid type M42 c m p a e d  to h u d c  acid type 

M1 and humic acid Aldrich results from the different pH values &ring smpk pteparati~n~ 



FTIR measurements 

FTIR measurements were carried out with the spectrometer mod. SPECTRUM 2000 (Perkin 

Elmer, Nieuwerke, NL). The humic acids as well as their uranyl complexes were measured in 

the solid form as KBr pellets (MIR range) and PE pellets (FIR range). 

10.3.2 Results and discussion 

Fig. 10.8 shows a comparison of the FTIR spectra of the humic acids investigated in the range 

between 4000 cm" and 50 cm-' (MIR-FE). 

Figure 10.8: F T E  spectra (MIR and F'IR) of synthetic humic acid type M1 and type M42 and 
Aldrich humic acid. 

The humic acids show comparabk IR absorption bands. However, some differentes occur in 

the M E .  Synthetic humic acid type M1 exhibits cear @C-H) out of plane vibrations at 702.1 

cm-' and 754.1 cml which corresponds to mono-substituted aromatic structures caused by the 

use of phenylalanine as precursor substance. In contrast to synthetic humic acid type MI, 

synthetic humic acid type M42 and Aldrich humic acid show more pronounced C=O 

stretching vibrations at 1706.4 cm-' (3442) and 1609.6 cm', 1719.3 cm-I (Aldrich) due to their 

higber carboxylic group contents. All humic acids show absorption bands which correspond 



to aliphatic structural elements. As expected, in the FIR the humic acids exhibit no 

characteristic absorption bands. 

Fig. 10.9 depicts the FTIR spectra of the solid uranyl humate complexes. The FTIR spectra of 

all uranyl humates show in comparison to the untreated hurnic acids comparable variations 

due to the complex formation. All FTIR spectra.of the uranyl humate complexes show in 

consequence of the complexation reaction a decrease of the absorption bands characteristic 

for C=O and C-0 vibrations of non-dissociated carboxylic groups at about 1720 cm-' and 

Figure 10.9: FTlR spectra of uranyl humate complexes of synthetic humic acid type M1, 
type M42 and Aldrich humic acid. 

For all complexes the asymmetric IJ0zf Stretching vibsation was obsemd in the MIR T a n g e  

(923.1 cm-' (Mi), 928.3 cm-I (M42) and 933.1 c ~ '  (Aldrich)). The position of this band is 

shifted significantly to higher wavenumbers with decreasing aromatic character of the 

complexing hurnic acid. Furthermore, characteristic ~ 0 2 ~ ~  bending frequencies were firsf 

detected in the FIR range at 265.1 cm-' (MI), 262.0 cm-l ( ~ 4 2 )  arid 958.4 cmml (Aldrkh). 

These bands show a significant shift to bwer wavenumbers with decreasiag aromatic 

character of the humic acid. 

From the results obtained one can conclude that the U O ~  eoosd!na~on oato h d  acids k 

comparable for the investigated synthetic and natural hudc  ;icids, The obsemd r;hrfts of the 

absorption bands of the UO? unit in the MIR 5~1d FR rmge may be expl~uiled by differentes 



in the aromaticity of the humic acids. However, these differences do not indicate significant 

differences in the ~ 0 2 "  coordination. 

The FTIR spectroscopic results agree with our previous investigations by EXAFS and laser- 

induced fluorescence spectroscopy and show once more that the synthetic humic acids mimic 

the functionality of natural humic acids very well. , 

11 Influence of phenolic hydroxyl groups on the complexation behavior 

of humic acids with uranium(V1) 

The infiuence of phenolic OH groups on the complexation behavior of humic acids under acid 

and neutral conditions is not known up to now. Often it is assumed that only hurnic acid 

carboxylic groups act as complexing groups in the complexation process with metal ions at 

pH values lower pH 9 because of the high pK, values of phenolic OH groups [38]. 

Nevertheless, phenolic OH groups may contribute to the complexation process as chelating 

agents. Beyond it they are able to form hydrogen bonds, e-g., with oxygen atoms coordinated 

to the complexing metal ion. 

For the first time, we investigated the influence of phenolic OH groups on the complexation 

behavior of humic acids with u0z2+ ions using a modified synthetic humic acid type M1 with 

blocked phenolic OH groups as well as a additional alkali treated synthetic humic acid of type 

M1 (see paragraph 7; type MI, charge R36/95). The investigations were performed at pH 4 by 

laser-induced fluorescence spectroscopy. 

11.1 Experimental 

The preparation of the uranyl humates corresponds to the procedure described in paragraph 

10.2.1. The composition of the investigated uranyl humate solutions as well as the main 

characteristics of the humic acids applied are shown in Tab. 1 1.1. 

The calibration of the relative fluorescence signal as a function of the U O ~ ~ +  concentration 

was done with solutions that were identical to the solutions of the complexation experiments 

but did not contain any humic acid. 



Table 11.1: Characteristics of the applied humic acids and composition of the investigated 
uranyl humate solutions. 

I 

Type MI-V " TypeM1-B 

phenolic OH 1 (meqlg) 1.7 rt 0.1 1.1 + 0.2 

PEC C / (meqlg) 2.12 t 0.06 1.94 rr 0.13 

COOH 1 (meqlg) 2.03 I 0.02 1.91 + 0.07 

" Type MI-V: humic acid type M1 directly saponified. Type Mi-B: humic acid type M1 
with blocked phenolic OH groups. C PEC: Proton exchange capacity. 

The experimental conditions of the spectroscopic measurements were the Same as described 

in paragraph 10.2.1. 

11.2 Results and discussion 

The experimental data were evaluated applying the charge neutralization model by Kim and 

Czerwinski [34]. This model was chosen because it renders, due to the introduction of the 

loading capacity as normalizing term, the possibility for the description of the complexation 

behavior of humic acids independent of the experimental conditions and of the origin of the 

humic acids. Applying this complexation model comparable complexation constants will be 

determined for different humic acids. That means, in contrast to other themodynamic 

complexation models, differences in the complexation behavior of humic acids will not be 

reflected in different stability constants. However, differences in the complexation behavior of 

humic acids will result in different loading capacities, which depend on the humic x i d  and 

the experimental conditions, 

A significant lower loading capacity for the humic acid with blocked phenolic OH groups 

should result, if the blocking of the phenolic OH groups shows an influence on the 

complexation behavior of humic acids with U O ~  ions. 

Tab. 11.2 shows the analytical data of the starting concentxations, the spectroscopicdly 

determined data for each component and the complexation constmts which were detemined 

for each measurement. The loading capacities (LC, Eq, (1 1.1)) for both humic aci& were 



detennined graphically as described in paragraph 10.2.2. An illustration of the LC (Eq. (1 1.1)) 

for both humic acids with ~ 0 2 %  ions, which represents the mole fraction of maximal 

available complexing sites of the humic acids under the applied experimental conditions, is 

given in Fig. 11.1. 

[U02HA(II)]„ represents the maximal concentration of humic acid complex which can be 

forrned under the applied experimental conditions and [HA(II)ltOt stands for the total molar 

humic acid concentration. 

-- 

Figure 11.1: Loading capacities for humic acid MI-V and MI-B. 

Tab. 11.3 surnmarizes the LC and the calculated complexation constants for humic acid MI-V 

and MI-B. 



Table 11.2: Analytical data of the starting concentrations, the spectroscopically determined 
data of each component, and log ß for the complexation of the alkali treated synthetic humic 
acid type M1 (MI-V) and the modified synthetic hurnic acid type M1 with blocked phenolic 
OH groups (M 1-B). 

[HA(n)l total [uoPltota~ [ ~ ~ P l f r e e  [UOZ.HA(QI [HA(n)lfree 1% P 
(Y mol/L) ( ~ m o l W  (pmol/L) TvmoW ( ~ m o l m  

Type M1 -V (unmodified phenolic OH) 

(PEC": 2.12 + 0.06 meqlg; pH 3.96 rr 0.04; I: 0.1 M NaC104; LC: 0.34 _+ 0.03) 

10.6 1 .07 0.16 0.91 2.69 6.32 

10.6 1.56 0.53 1 .03 2.56 5.88 

10.6 2.10 0.52 1.59 2.01 6.18 

10.6 2.63 0.61 2.03 1.57 6.33 

10.6 3.17 1.39 1.78 1.81 5.85 

10.6 3.70 1.50 2.21 1.39 6.03 

10.6 4.54 2.07 2.47 1.13 6.02 

10.6 5.25 2.47 2.78 0.82 6.14 

10.6 8.23 4.96 3 .27 0+32 6.3 1 

10.6 9.16 6.07 3 .09 0.5 1 6.00 

10.0 10.29 6.98 3.32 0.28 6.23 

Type M1-B (modified phenolic OH groups) 

(PEC: 1.94 + 0.13 meqlg; pH 3.94 rr 0.05; I: 0.1 M NaC104; LC: 0,18 ri 0.02) 

9.7 1 .07 0.13 0.94 0.86 6.94 

9.7 1.56 0.42 1.14 0.65 6.62 

9.7 2.10 1.09 1.02 0.78 6.08 

9.7 2.63 1.12 1.52 0.28 6.69 

9.7 3.17 1.54 1.62 0.17 6.78 

9.7 3.70 2.36 1.35 0.45 6.1 l 

9.7 6.18 4.74 1.44 0.36 5.93 

9.7 9.16 7.50 L66 0.14 6.20 

9.7 " 10.29 8.34 1.96 - - 

" Value was not considered for determination of log P and vdidation. 



Table 11.3: Complexation constants and loading capacities of the synthetic humic acid with 
unrnodified phenolic OH groups (MI-V) and with blocked phenolic OH groups (MI-B). 

Synthetic humic acid Synthetic humic acid 

Complexation constants log ß " 
Calculated 6.1 1 -i- 0.34 6.38 + 0.74 

Loading capacities (LC) [%] " 

Graphical C . 34 +- 3 18 -i-2 

" Deviations = 2 G. 
Mean values from Tab. 9.2. 

C Determined by linear regression of experimental data. 

Within their experimental errors both humic acids show comparable complexation constants. 

Nevertheless, humic acid MI-B shows a significant lower LC at pH 4 than humic acid MI-V. 

This indicates that the blocking of the phenolic OH groups changes the complexation 

behavior of the humic acid. From these results one can conclude that phenolic OH groups 

may be involved in the complexation process with ~ 0 2 "  ions under the applied conditions. 

At pH 4, the humic acid phenolic OH groups are likely protonated due to their high pKa 

values. We assume that intermolecular hydrogen bonds between the hydrogen atoms of the 

unmodified phenolic OH groups and the oxygen atoms of the UO? ions contribute to the 

complex formation. However, also steric effects, i.e., steric hindrances, may contribute to the 

change of the complexation behavior of the humic acid after blocking the phenolic OH 

groups. Currently we are investigating the influence of phenolic OH groups on the 

complexation behavior of humic acids using other modified synthetic and natural humic acids. 

Furthermore, EXAFS investigations are planned to con fm this result. 

I2 Complexation behavior of uraniuim(V1) with humic acids at pH 7 

Predicting the environmental behavior of uranium in aquifer systems requires knowledge 

about the complexation behavior of uranium in the presence of humic substances at 

environmental relevant pH values, i.e., in the neutral pH range. Up to now the uranium 

complexation with humic substances has been mostly studied under conditions where 

competing reactions such as carbonate complexation and hydrolysis are excluded. The 

investigations were caried out at pH 54. However, it is known, that in the environmental 



relevant pH range the uranium speciation is determined by carbonate complexation and 

hydrolysis. Thus, mixed ligand complexes consisting of uranium, humic acid and a secondary 

ligand, e.g., carbonate or hydroxide can be formed. From that the requirement for the 

investigation of the complexation behavior of uranium in the presence of humic acids at pH 

values greater than pH 4 results. 

There are only few studies describing the formation of ternary uranium complexes in the 

presence of humic acids. Zeh et al. 13'' described a temary complex of uranyl hydroxo humate 

(U02(OH)HA, log ß = 14.7 I 0.5). Glaus et al. [40] reported a U02C03HA complex with a 

stability constant of log ß = 5. 

Within this project we investigated the complexation behavior of uranium in the presence of 

humic acids at pH 7 by means of time-resolved laser-induced fluorescence spectroscopy. The 

experiments were performed under exclusion of CO2 to prevent the formation of carbonate 

complexes. 

1 . 1  Experimental 

Sample preparation 

We investigated the complexation behavior of uranium with the purified natural humic acid 

from Aldrich at pH 7.00 + 0.04 in 0.1 M NaC104 solution. The fluorescence signal of the 

uranium species as a function of the total uranium concentration was measured at a constant 

humic acid concentration (5 mg/L). The uranium concentration was varied from 4.8 * 10-~ to 

1.8 10" mol/L. The calibration of the relative fluorescence signal as a function of the 

uranium concentration was done on solutions that were identical to the solutions of the 

complexation experiments but did not contain any humic acid. 

To exclude the formation of carbonate complexes the sample preparation was performed 

using CO2 free water as well as carbonate-free chemicals in a glove box under inert gas 

conditions (N2). The uranium concentration of the solutions was determined by IiCP-MS 

analysis. 

Laserspectroscopic measurements 

The spectroscopic investigations were performed in a glove box under inert gas conditions 

(N2). For fluorescence excitation we used a excitation wavelength of 410 nrn produced in ari 

optical parametric oscillator (MOPO-730-10, Spectra Physics, USA), which was pumped with 



the third harmonic (355 nm) of a Nd:YAG laser. The laser light was transferred into the glove 

box applying a fiber optic cable. The laser energies for fluorescence excitation only reached 

arnounts of about 150 yJ because of an energy loss in the fiber optic cable. The fiuorescence 

signal was focused into the spectrograph (Model 1235 Acton Research, Acton, MA, USA) by 

a fiber optic cable. For the detectioin we used a time controlled photodiode array detector 

(model 1455 EG&G Instruments, Princeton Applied Research, Princeton, NJ, USA), cooled 

to -30 "C. The time gate of fluorescence detection was Set to Open at 200 ns after the 

excitation pulse for an interval of 2 ys. The fluorescence signal was measured from 408 to 

634 nm. Ten spectra of each sample were collected over 100 laser pulses in each case. The 

spectra were standardized relative to the pulse energy. An average spectrum was calculated 

from 10 emission spectra. Because oif the excitation wavelength of 410 nm and the low laser 

energies used for the excitation we only observed a weak fluorescence signal. The errors of 

the fluorescence measurements arnounted to about 10 %. 

Uranium species distributioa 

The uraniurn species distribution from pH 2 to 12 ([UO?]: 1. lo-' molk, I: 0.1 M NaC104) in 

absence of humic acid and CO2 was calculated (Fig. 12.1) with the EQ316 program [3 11 based 

on complexation constants compiled by Grenthe et al. (NEA data base) [32]. 

Figure 22.1: Uranium(V1) species distribution in aqueous Solution in the absence of CO2 and 
humic acid ( [uo~J :  1*10*' mola; I: 0.1 M NaCl04). 
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In absence of CO2 and humic acid, the uranium speciation in the neutral and alkaline pH range 

is dominated by uranyl hydroxo complexes. At pH 7 uranium occurs to 89.6 % as 
I 

U02(OH)z(aq), 6.4 % as (U02)3(OH)5+, 1.5 % as U020H+, and 1.4 9% as UOz(OH)<. 

12.2 Results and discussion 

The measured uranyl fluorescence intensities of the solutions with humic acid as well as 

without humic acid were integrated between 450 and 570 nm. Fig. 12.2 shows the results of 

this integration in dependence on the total uranium concentration. 

Figure 12.2: Integral fluorescence intensities of U(VI) of the investigated solutions with and 
without humic acid in dependence on the total uranium concentration. 

Due to the camplex formation between humic acid and uranium species af pR 7 a strong 

decrease in the fluorescence intensities of the solutions containing humic acid compared .Ir, the 

fluorescence intensities of the solutions without humic acid was obtained, 

Under consideration of the uranium speciation at pH 7 we assume that thc: compkx formation 

with humic acid starts from the aqueous U02(0W)2 compkx, t b t  seacts with the hudc  acid 



under ligand exchange to a ternary uranyl hydroxo humate complex. The strong decrease in 

the fluorescence intensities of the solutions with humic acid compared to the solutions without 

humic acid confirms the assumption that the aqueous U02(0H)2 complex basically 

contributes to the complex formation between uranium(V1) and humic acid at pH 7. 

Nevertheless, it is not known to which extent other uranium species, that are also present in 

the solution (with about 10 %) besides the main species U02(OH)2, contribute to the complex 

formation with humic acid. However, in our evaluation we did not consider these additional 

complex formation possibilities because the arnounts of these species are lower than the 

experimental errors of the fluorescence measurements used for the determination of the 

concentration of non-complexed uranium as well as for the determination of the total uranium 

concentration. 

For the individual complexation reaction we assumed, comparable to Zeh et al. [39], that 

UO~OH+ reacts with the humic acid under charge neutralization [Eq. (12. I)]. 

The complex stability constant for the postulated complex formation can be defined as 

follows: 

where [U02(0H)HA(I)] represents the concentration of the postulated ternary uranyl hydroxo 

humate complex, [ U O Z O P ] ~  stands for the free uranium hydroxide concentration in 

solution and [HA(I)-]fi„ represents the concentration of the free humic acid ligand in solution. 

The concentration of U02(0H)HA(I) can be derived according to Eq. (12.3). 

[~0~0H+l~„  represents the total uranium concentration in solution determined by ICP-MS. 

The concentration of fsee uranium hydroxide, [ U O ~ O H ~ ] ~ ~ ~ ,  was calculated from the 

fluorescence intensities of the solutions without and with humic acid (Fig. 12.2). 

The total humic acid concentration [HA(I)I, in mol/L was determined according to the 

definition in the metal ion charge neutraiization model [34]: 



[HA] PEC 
[HA(I)I„ = , 

where [HA] is the concentration of humic acid in g/L, 

(1 2.4) 

PEC is the Proton exchange capacity 

of the hurnic acid in eq/g and 1 stands for the charge of the postulated complexing uranium 

species, U020H+. Introducing the loading capacity (LC) according to Eq.(12,5), whereby 

[U02(0H)HA(I)]„ represents the maximal concentration of the uranyl hydroxo humate 

complex which can be formed under the applied conditions, the free hurnic acid concentration 

in solution can be defined according to Eq. (12.6). 

The combination of Eqs. (12.2) and (12.6) results in: 

[U02 (OH)HA(I)I 
P = [UO2OH+Ifm ([HA(/)], LC - [UO, (OH) HA(/)]) (12.7) 

As already shown in paragraph 10.2.2 the LC as well as the complexation constant can be 

determined graphically by rearranging Eq. (12.6) for the free [U020H'] concentration in 

solution (Fig. 12.3). 

Applying the graphically determined LC we calculated for each experimental point a 

complexation constant according Eq. (12.7). The results of these calculations are suma ized  

in Tab. 12.1 together with the analytical data of the initial concentrarions as well as the data 

derived from the laserspectroscopic measurements. 



Figure 12.3: Graphical determination of the loading capacity (LC) and the complexation 
constant for the complexation of Aldrich humic acid with U(V1) at pH 7 by linear regression 

of experimental data. 

Table 12.1: Analyticd data of the initial concentrations, the spectroscopically determineld 
data of each component, and log ß for the complexation of Aldrich hurnic acid with U(VI) at 
pH 7. 

t ymol/L) (pmol/L) (pmoE) ( ~ m o l u  (pmom) 

Aldrich humic acid (charge A2197) 

P E  5.06 sr 0.17 meqlg; pH 7.00 i10.04; I: 0.1 M NaC104; LC: 0.91 +. 0.14 

25.4 4.83 0.40 4.43 18.67 5.77 

25.4" 18.32 2.55 15.77 7.33 5.93 

" Valae was not consldered for validation. 



The results of the evaluation of the experimental data applying the metal ion charge 

neutralization model are summarized in Tab. 12.2. 

Table 12.2: Results of the laserspectroscopic investigation of the complexation between 
U(V1) and Aldrich humic acid at pH 7, I: 0.1 M NaC104. 

Complexation data Aldrich humic acid (t 2 o) 

Loading capacity (LC) 0.91 1 0.28 

log ß - calculateda 5.83 1 0.14 

log ß - graphicalb 5.83 rr 0.25 

" Mean value from Tab. 12.1. 
Calculated by linear regression of experimental data. 

The graphical as well as the calculated complex formation constants agree very well. For 

validation of the postulated complexation reaction, Eq. (12.2) was reananged to: 

The slope of the linear regression function of Eq. (12.8) for our experimental data was 

determined with 0.9. The deviation of this value from the ideal value of one and also the 

relatively high standard deviations obtained for log ß (graphical) and for LC are mainly due to 

the propagation of experimental errors, which were described above. Nevertheless, the result 

of the validation verifies the postulated complexation reaction. 

In addition to the described evaluation of the experimental data applying the metal ion charge 

neutralization model, we determined a conventional complex stability constant without the 

introduction of the loading capacity. With this method we determined a complex stability 

constant of log ß = 5.76 + 0.28 (5 2 o). This result agrees very well with the complexation 

constants summarized in Tab. 12.2. 

A direct comparison of our complexation constant with the complexation constant published 

by Zeh et al. [39] is not possible because the stability constant determined by Zeh et al. was 

calculated using other presumptions, 

The total reaction for the complexation of U02(OH)2 with humic acid can be divided into 

different partial reactions [Eq. (12.9)-(12.13)j. Under ~onsiders~ti~ff of the complex stability 

constants of the partial reactions as well as the dissociation constant of the Bumic acid the 



stability constant of the total reaction can be derived. Therefore, the complexation constants 

for the hydrolysis of uranium [32] were converted for an ionic strength of 0.1 M applying the 

Davies equation [41]. The dissociation constant pKa (I: 0.1 M) of Aldrich humic acid was 

determined from the direct titration of the humic acid (cf. paragraph A.2.4) at half 

deprotonation and amounts to 4.58 -+ 0.03. 

Reaction log Po. 7 M 

U02(0H)2 + 2 V - L U O ~  + 2 H20 10.08 (12.9) 

UO,~" + H20 - U020H' + H+ -4.98 (12.10) 

HHA(1) = + HA(/] -4.58 r 0.03 (12.1 1) 

U020H' + HA(/)- s UO2(OH)HA(l) 5.83 I 0.14 (12.12) 

From the partial reactions above we derived a complex stability constant for the total 

complexation reaction of U02(0H)2 with Aldrich humic acid of log ß 0 . 1 ~  = 6.35. 

However, to verify these first results and to determine the contribution of the other uranium 

species present in the solution to the complexation process at pH 7 it is necessary to continue 

these investigations with additional laserspectroscopic measurements above and below pH 7. 

Furthermore, EXAFS investigations should be performed to validate the formation of the 

UOz(OH)HA(I) complex. 

13 Migration behavior of uranium in an aquifer system rich in humic 

Laboratory flow through column experiments contribute essential knowledge to assess the 

infiuence of humic substances on the migration behavior of actinide ions. There is the 

possibility to investigate the migration behavior of actinides depending on different 

parameters, e.g, groundwater flow velocity and column length. 

There are some publications which describe flow through column experiments for the 

investigation of the migration behavior of radionuclides in geological forrnations, for instance 

investigations regarding the migration behavior of Am(IIr) [42f, Eu(m), Np(TV)/(V) and 

Thk wsrk was performed in cooperation. with Dr. R. ALtinger (m, Forschungszentntm Karfsruhe). 



Pa(IV)/(V) [43]. Up to now, the migration behavior of uranium was studied by Kim et al. by 

means of colurnn experiments [44,45]. Migration experiments with a sedimentlgroundwater 

(GoHy-2227) system from the Gorleben site (Germany) were performed. The investigations 

were carried out under inert gas conditions (Ar + 1 % CO2) with colurnns of 25 cm length 

and 5 cm inner diarneter. 

The present study focuses on flow through column experiments to investigate the migration 

behavior of uranium in a sandy humic colloid-rich aquifer system, i.e., in the system 

sediment/groundwater GoHy-532 from Gorleben. We investigated the uranium migration 

behavior as a function of uraniudgroundwater equilibration time before injection into the 

column, groundwater flow velocity and colurnn length. Ultrafiltration experiments were used 

for the determination of the uranium size distribution. 

13.1 Experimental 

Experimental set-up 

The experiments were performed in a glove box under inert gas conditions (Ar + 1 % COa 22 

-t- 2 "C). The columns were tightly packed with sand and equilibrated with groundwater 

(GoHy-532) from the Gorleben site over several months. The sediment and groundwater 

characterization was described by Artinger [42,46]. The groundwater has a dissolved organic 

carbon content (DOC) of about 30 mg CL,  a pH value of 7.2 =r 0.1 and a Eh value of - 220 

mV. The monitoring of the experiments and the recording of the experimental data was 

performed on-line by a personal computer. The experimental set-up is shown in Fig. 13.1. 

experimental 
column 

injection 
of 2 3 2 ~  spiked I 

glove box 
A r + l  %CO, 

raction collector 

I 6 

Figure 13.1: Experimental set-up of the column experiments. 



Tracers 

The uranium isotope Uranium-232 (ti12 = 72 years) in form of 2 3 2 ~ 0 2 ~ 1 2  (Isotopendienst M. 

Blaseg GmbH, Waldburg, Germany) was applied because of its high specific activity. The 

2 3 2 ~  stock solution showed a specific activity of 841 kBq/rnL which corresponds to an 

uranium concentration of 4.6 10-~ molL  Furthe~ore,  tritiated water (HTO) was used as a 

conservative tracer to determine the hydraulic properties of the columns. 

Procedure 

The column experiments were performed in dependence on: 

- 232~/groundwater pre-equilibration time before the injection into the column, 

- groundwater flow velocity and 

- colurnn length. 

Prior to the experiments aliquots of the 2 3 2 ~  stock solution were reacted with the groundwater 

corresponding to the studied pre-equilibration time. Different pre-equilibration times from 1 

hour to 82 days were investigated. The groundwater flow velocity was varied from 0.04 m/d 

to 2.03 mld. The column length was varied between 25 cm and 75 Cm. The experimental 

parameters and the hydraulic properties of the individual rnigration experiments are 

summarized in Tab. 13.1. 

For all experiments 1 mL of the 2 3 2 ~  spiked initial solution and 200 yL HTO were 

simultaneously injected into the column. The eluted water was collected in a polypropylene 

flask. In addition to this, fractions of the eluate were collected by a fraction collector at ceriain 

times during the experirnent. The eluate, the eluate fractions and the initial solutions were 

analyzed for their 2 3 2 ~  an~d HTO concentrations by liquid scintillation counting. Additionally, 

alpha-spectroscopy was applied to determine the concentration of 2 3 2 ~  daughter nuclides. 

Thus, it was possible to ccorrect the alpha-activities determined by liquid scintillation counting 

with regard to the alpha-activity contributed by the daughter nuclides. The breakthrough 

curves for HTO and " 2 ~  result from the 2 3 2 ~  and HTO concentration in the eluate fractions. 

Furthemre, investigations regarding the size distribution of uranium in the initial solutions 

and in different eluate fractions were performed by ~Itrafiltration. Ultrafilters with molecular 

weight cutoffs of 1 kD tio 1000 kD (MICROSEP, Filtron, Northborough, MA, USA) were 

applied. 



Table 13.1: Experimental conditions for the column experiments. 

Experiment U / groundwater Column length Uranium Darcy velocity Pore water flow Effective Longitudinal dispersion 

number equilibration time concentration VD velocity V porosity E coefficient DL 

(d) (Cm) (mol/L) ( d d )  (cm2/s) 

1 0.04 25 5.1 10-~ 0.321 0.970 0.33 1 8.64 I O - ~  

2 0.63 25 4.5 I O - ~  0.314 0.949 0.33 1 3.73 I O - ~  

3 11 25 4.9 10 -~  0.3 12 0.943 0.33 1 3.70 I O - ~  

4 82 25 4.2 * I O - ~  0.310 0.934 0.332 3.34 10 -~  

5 5 25 4.4 10-~  2.030 6.078 0.334 2.14 I O - ~  

U 6 25 4.7. 10‘~ 0.038 0.114 0.333 1.58 I O - ~  

7 5 50 4.1 I O - ~  0.24 1 0.724 0.333 2.55 10 -~  

8 5 75 4.3 I O - ~  0.239 0.697 0.343 . 3 .24810~ 



2 3 2 ~  species distribution 

Species calculations for the groundwater GoHy-532 ([u0z2+]: 5 1oh7 mom, pH 7.2 - 0.1, 1 

% CO2) were performed to determine the distribution of uranium species in the investigated 

groundwater/sediment System. The calculations based an complex formation constants 

compiled by Grenthe et al. [32] (NEA data base) and stability constants for the complex 

formation of ~ 0 2 ~ '  with humic acids published by Czerwinski et al. (U02HA(II)) [35] and 

Zeh et al. (U020HHA(I)) [39]. Two calculations were performed at Eh = 800 mV and Eh = 

-220 mV, respectively. Uranium(V1) occurs at Eh = 800 mV and pH 7.2 to about 72 % as 

UO~(CO~):-, 21 % as U O ~ ( C O ~ ) ~ ~ - ,  2 5% as U02(OH)s,> and only to about 3 % as 

U020HHA(I) complex. Considering the experimental determined redox potential of the 

groundwater of -220 mV and assuming thermodynamic equilibration uranium shows a totally 

different species distribution. The initially added U(V1) shoiuld be present in reduced form as 

U(IV) in form of the U(OH)4(aql complex. Possibly occurring U(IV) humate complexes were 

not considered in the calculation because there are no reliable thermodynamic data. Generally 

it is known from literature that tetravalent actinides like Th(1V) [I] interact stronger with 

humic substances than hexavalent uranium. 

In contrast to the calculated species distribution, ultrafiltration experiments of the 2 3 2 ~  

labelled groundwaters showed for uranium roughly the size distribution of the humilc 

substances in the groundwater [46]. Fig. 13.2 shows the 2 3 2 ~  size distribution in different 

initial solutions (alpha-activity contribution by daughter nuclides 2 10 %). From this one can 

conclude that 2 3 2 ~  is mainly associated with humic colloids. Approximately 85 - 90 % of 2 3 2 ~  

are associated with colloids greater than 1000 D and about 20 - 30 % occur in form of ionic 

species, probable carbonato complexes. 

Up to now it can not definitely be stated whether and to what extend the humic colloid-bound 

uranium is present in the reduced tetravalent state. From neptunium experiments performed 

recerntly [47] it is known that the oxidation state has an essential influence on the neptunium 

size distribution. The reduction of Np(V) causes a decrease, of ionic Np02+ species in 

solution. Np(N) is aImost quantitatively associated to humic colloids. From that one may 

expect that the reduction of UW.) to U(m) also influences the uranium size distribution. 

However, no significant changes in the 2 3 2 ~  size distribution were observed Therefore, it can 

be conclrrded that there is no significant uranium reduction in the initial solutions. 
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Figure 13.2: 2 3 2 ~  size distribution in the initial solutions (GoHy-532, 1 % CO2, [U]: 4.1*10*~- 
5.1.1 ~ - ~ m o l / ~ ,  activity contribution of daughter nuclides 5 10 %). 

13.2 Results and discussion 

13.2.1 Comparison of 2 3 2 ~  and HTO breakthrough curves 

From the breakthrough curves of 2 3 2 ~  and HTO one can conclude how far the 2 3 2 ~  migration 

differs from the groundwater flow. 

The migration behavior is characterized by the retardation factor, Rf [Eq. (13.1)], where V 

represents the volume of the eluate and Vp stands for the effective Pore volume of the column. 

Rf > 1 indicates a delayed transport of an injected meta1 ion trough the column compared to 

that of the conservative tracer with a retardation factor of one, whereas Rf C I means an 

accelerated migration. 

For example, the 2 3 2 ~  and HTO breakthrough curves of experiment No. 7 ate depkted in Fig. 

13.3. These curves are typical for the experiments carried out under varied experimental 

conditions. In addition, a 2 4 1 ~  breakthrough curve is shown in Fig. 13.3 that was maswed 

under comparable conditions [42]. 



Figure 13.3: '-"U and HTO breakthrough curves in comparison to an 2 4 1 ~ m  breakthrough 
curve determined under comparable conditions 1421. 

Fig. 13.3 shows that a fraction of "'U is eluted with the retardation factor Rf = 0.96 meaning 

that this part of uranium is transported slightly faster through the column than the 

conservative tracer. This accelerated transport is attributed to the association of uranium with 

humiic colloids, which move faster than the conservative water-tracer due to size exclusion 

procesces. 

The humic colloid-borne transport is confirmed by ultrafiltration experiments. Fig. 13.4 

shows exemplary for experiment No. 7 the size distribution of uranium in fraction 13, eluted 

at Rf = 0.92. XEI this fraction 2 3 2 ~  shows roughly the size distribution of the DOC in the 

groundwater [46]. No significant fraction of ionic uranium species was obtained. 

In addition, the humic colloid-borne 2 3 2 ~  transport is confirmed by the Rf value of 0.96 I 0.01 

which is dso found in '"h rnigratition experiments. 
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Figure 13.4: Size distribution of 2 3 2 ~  in fraction 13, experiment No. 7. 

Furthermore, the 2 3 2 ~  breakthugh curves show the elution of a smaller fraction of 2 3 2 ~  at Rf 

= 0.84 I 0.01 and a different strong pronounced tailing after the breakthrough maximum (Fig. 

13.3). The early eluted uranium fraction at Rf = 0.84 I 0.01 is attributed to the association of 

uranium with much larger colloids, that was shown by filtration experiments. For exmple, in 

experiment No. 4 about 50 % of 2 3 2 ~  and its daughter nuclides, eluted from Rf = 0.78 to Rf = 
0.88, are bound to colloids > 450 nm. Merely 20 % of the nuclides are associated with 

colloids smaller than 106 Dalton, which is typical for humic colloids. Whether this transport is 

mediated by enlarged coagulated humic substances, inorganic colloids, or eventual 

microorganisms, is not known up to now. 

There are some indications that the uranium transport with larger colloids is related to a 

reduction of U(V1) to U(IV). An example for this is the enhancement of the 2 " ~ ~ 2 3 ? U  isötope 

ratio in the early eluted fraction at Rf = 0.84 t 0.01. Breakthrough curves of 7^?8Th, which was 

formed during the experiments with concentrations between 10.'' and 10-~ molL from the 

radioactive decay of were determined for two experirnents by dpha-specitromeQ. AS 

illustrated in Fig. 13.5 the maximum of the 2 "8~h  breakthrough c w e s  occurs at a Rf value of 

about 0.9. This thorium fraction migrates distinctly faster through the columrr tban the humic 

colloid-bound non-retarded 2 3 2 ~  fraction at Rf = 0.96 =r 0.01, Thls points to :ob fact tha% t k  

tetravalent 2 2 8 ~ h  migrates with larger colloids. 
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Figure 13.5: 2 2 8 ~ h  breakthrough curves determined by alpha-spectrometry. 

Experiment No. 4 with the highest 232~lgroundwater pre-equilibration time of 82 days gives 

another indication for the possible accelerated transport of U(1V). Here, the uranium fraction 

with Rf = 0.84 is especidly pronounced (cf. Fig. 13.7), which points to a faster migration of 

2 3 2 ~  associated to larger molecules. 

13.2.2 Determination of the 2 3 2 ~  recovery 

As mentioned before, colloid-borne 2 3 2 ~  is not only eluted witb Rf = 0.96 + 0.01 (mean value 

for alt experiments) but also earlier at Rf = 0.84 0.01. Beyond it, a different strong 

pronounced td ing  is observed after the breakthrough maximum. To be able to compare the 

recovery of humic coloid-borne uranium with Rf = 0.96 + 0.01 for all experiments, a 

Gaussian distribution with Rf= 0.96 -t- 0.01 as center, and a dispersion derived from the HTO 

migration was taken as a basis. As second component a Gaussian distribution with Rf = 0.84 + 
0.01 (exception eqeriment No. 8: Rf = 0.88) as center was fitted. For exarnple, Fig. 13.6 

shuws the analysis of the breakthrough curves regading the recovery of humic colloid-borne 

2 " ~  for experiment Ne). 4. 



Figure 13.6: Determination of the humic colloid-borne 2 3 2 ~  fraction. 

Furthemore, we determined the total recovery of 2 3 2 ~  after about 5 Pore volumes, which 

includes the recovery of colloid-borne uranium fractions with Rf values of 0.84 t 0.01 and 

0.96 rr 0.01 as well as the recovery of retarded 2 3 2 ~  in the tailing. It is calculated according to 

Eq. (13.2): 

(13.2) 
ß=- U e h t d  . 100% 

4*c red  

where Uetuted represents the eluted uranium after about 5 Pore volumes and Uinjeeted stands for 

the injected uranium. 

The total recoveries (Rtot) and the recoveries of humic collaid-borne (b), whicfi 

includes only the fraction eluted at Rf = 0.96 t 0.01 are summarized in Tab. 13.2 for aTI 

experirnents. As mentioned before, the attachment of the 2 3 2 ~  fraction with Rf= 0.96 I 0.01 to 

the humic colloid-borne fraction was confirmed by 2 4 ' ~ ~  experiments [42]. 



Experiment Pre-equilibration Darcy Column length Total 2 3 2 ~  recovery Humic colloid-borne 2 3 2 ~  Retardation of humic 

number time velocity VD Rt~t recovery RHA colloid-borne 2 3 2 ~  

Variation of pre-equilibration time 

1 0.04 0.32 1 25 2.0 _+ 0.5 0.4 +. 0.1 0.97 

2 0.63 0.314 25 3.5 4 0.9 1.4 rr 0.3 0.97 

3 11 0.312 25 5.2 rr 1.3 3.3 rt 0.8 0.96 

4 82 0.3 10 25 14.2 -r 3.6 7.6 rt 1.9 0.96 

Variation of Darcy velocity 

5 5 2.030 25 9.1 t 2.3 6.5 +. 1.6 0.95 

3 11 0.312 25 5.2 21.3 3.3 i: 0.8 , 0.96 

6 6 0.038 25 6.0 t 1.5 1.5 i: 0.4 0.97 

Variation of column length 

3 11 0.312 25 5.2 -: 1.3 3.3 rt 0.8 0.96 

7 5 0.241 50 3.5 r 0.9 2.4 +- 0.6 0.96 



13.2.3 Influence of the pre-equilibration time on the migration behavior of uranium 

Fig. 13.7 depicts the 2 3 2 ~  breakthrough curves for the experiments applying different 

232~/groundwater pre-equilibration times before injection into the column. The 2 3 2 ~  

recoveries are summarized in Tab. 13.2. 

Fig. 13.7 shows that a significant increase of the humic colloid-bound 2 3 2 ~  fraction occurs 

with increasing 232~/groundwater pre-equilibration. This observation is confirmed by the 

recoveries summarized in Tab.13.2. The comparison of the recovery of colloid-borne uranium 

and the total recovery after about 5 Pore volumes as a function of the pre-equilibration time 

(Tab. 13.2) shows that both recoveries increase with increasing pre-equilibration time. This 

fact suggests that uranium binding onto the humic colloids becomes stronger with increasing 

equilibration time. Consequently, uranium becomes less available for an interaction with the 

sediment surface during the migration through the column. Comparable results were found for 

americium [42]. In addition, Rao et al. [48] studied the interaction between Eu(III) and hurnic 

acids using cation exchange. They described a time-dependent stronger binding of trivalent 

meta1 ions with humic substances. However, the cause of this phenomenon is not known up to 

now 
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Figure 13.7: 2 3 2 ~  breakthrough curves in dependence on the 232~/groundwater equilibration 
time before injection into the column. 



The relatively large fraction of 2 3 2 ~  eluted at Rf = 0.84 after a equilibration time of 82 days 

(experiment No. 4) can possibly be attributed to the reduction of uraniurn(V1) to uraniurn(1V). 

The fact that the breakthrough curve of the tetravalent uranium daughter nuclide thorium 

shows a maximum at Rf - 0.9 (cf. paragraph 13.2.1) represents a possible reference for that. 

Nevertheless, an experimental proof for a reduction of uranium(V1) does not exist. 

13.2.4 Influence of the groundwater flow velocity and the column length on the 

migration behavior of uranium 

Variations in the groundwater flow velocity arid the column length cause variations in the 

residence time of the colloid-bound uranium in the column. Fig. 13.8 shows the 2 3 2 ~  

breakthrough curves obtained with different groundwater flow velocities. Increasing the 

groundwater flow velocity from 0.04 m/d to 2.03 m/d, an increase of the recovery of colloid- 

bound 2 3 2 ~  from 1.5 % to 6.5 % was obtained (Tab. 13.2). This tendency was also found for 

0.9 1.0 1.1 1.2 1.3 1.4 ' 
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Figure 13.8: 2 3 2 ~  breakthrough curves in dependence on the groundwater flow velocity. 



Furthermore, a decrease in the recovery of colloid-borne uranium was observed with 

increasing column length (Tab. 13.2). 

Fig. 13.9 depicts the recovery of non-retarded colloid-borne 2 3 2 ~  as a function of the 

residence time in the column. The results consists of the results obtained by varying the 

groundwater flow velocity and the column length. The recovery of non-retarded colloid- 

bound transported uranium decreases continuously with increasing residence time in the 

colurnn, which points to a time-dependent stronger interaction of uranium with the sediment 

surface. This dependence may be explained by a time-dependent dissociation of uranium from 

the colloids followed by an interaction with the sediment surface. 

1 10 100 

Residence time in column / (h) 

Figure 13.9: Recovery of humic colloid-borne 2 3 2 ~  (Rf = 0.96 f 0.01) in dependence on the 
residence time in the column. The pre-equilibration time is constant. 

In contrast to this fact, the total recovery of eluted 2 3 2 ~  shows no distinct trend depending on 

the migration period (Tab. 13.2). This may be due to the different strong tailing and the 

varying arnount of the colloid-borne uranium fraction at Rf = 0.84 -i- 0.01. From data in Fig. 

13.8 one can derive that the tailing of the breakthrough curves increases with increasing 

migration time. That means the interaction of uranium with the sediment shows an increasing 

influence on the uranium migration. 



13.3 Conclusions 

The results of the migration experiments in a sandy humic colloid rich groundwaterlsediment 

system show that depending on the experimental conditions a portion of 0.4 up to 7.6 % of the 

injected uranium migrates non-retarded and colloid bound. Due to size exclusion effects, the 

migration velocity of the humic colloid-borne uranium is found to be up to 5 % faster than the 

groundwater flow velocity. 

The migration behavior of uranium is strongly influenced by kinetically controlled processes. 

The recovery of humic colloid-borne uranium depends on the uranium/groundwater 

equilibration time prior to the injection into the column. The recovery increases with 

increasing pre-equilibration time, which is attributed to a time-dependent binding of uranium 

onto the humic colloids with different strength. Furthermore, the recovery of uranium depends 

on the residence time of humic colloid-borne uranium in the colurnn, determined by the 

groundwater flow velocity and the column length. With increasing residence time a 

decreasing recovery of humic colloid-borne uranium was observed. These observations are 

due to a time-dependent dissociation of uranium from the hurnic colloids followed by an 

interaction of uranium with the sediment. Up to now it is not known to what extent U(V1) is 

reduced to U(IV) during the experiments. First indications point to the reduction of uraniurn 

and a colloid-borne transport of U(IV). 

2 2 8 ~ h ,  which was formed frorn '"U by radioactive decay during the rnigration experiments, 

also rnigmtes colloid-bound through the groundwaterlsedirnent system. The mean migration 

velocity of the colloid-borne thorium fraction is about 10 % higher than the groundwater flow 

velocity. 

The column experiments reveal important kinetic effects controlling the hurnic colloid-bome 

migration of uranium. These kinetic effects are comparable to those found for instance for th~e 

migration behavior of Am(m). Consequenfly one can conclude that the KD concept, which is 

based on thermodynamic equilibrium, is not suitable to describe the humic colloid-borne 

uranium migration. Therefore, the uranium migration experiments provide a first basis t~o 

describe and to predict the subsurface migration of colloidal uranium in natural aquifers. 

Additional experiments are necessary to further improve the understanding of the basic 

pracesses. contro1ling uranium migration, especially experiments investigating the influence of 

the uranium reduction to ffie tetravaienf; oxidation state on the migration behavior of uranium. 



14 Effect of humic acid on the uranium(V1) sorption onto phyllite 

For the safety assessment of uranium mining areas and for the far field of nuclear waste 

repositories it is crucial to understand the interaction of uranium with site-specific rock 

material and furthermore, to know all processes and substances that may influence this 

interaction. Such processes are, for instance, possible chemical reactions inside a rock pile. 

Organic materials, such as humic and fulvic acids, may interact with dissolved inorganic 

contaminants and may affect the sorption behavior of such contaminants on geological 

materials. Due to complex formation reactions between radionuclides and humic substances 

the solubility of contarninants can be enhanced. The sorption of the formed species can be 

either stronger or weaker than the sorption of the uncomplexed species. Thus, the uranium 

migration in aquifers is affected. Consequently, it is necessary to quantify the influence of 

humic material on radionuclide sorption. 

Phyllite was chosen as a site-specific rock material because it is quite cornrnon in the Western 

Erzgebirge in Saxony, Germany, and because it is closely associated with the uranium 

deposits of the uranium mining areas in East Germany. Phyllite is a low-grade metamorphic 

reck that is mainly composed of the minerals quartz, muscovite, chlorite, and albite. 

Batch experiments were conducted in order to determine the effect of humic acid on the 

uranium(V1) sorption onto phyllite in the pH range of 3.5 to 9.5. A site-specific natural humic 

acid (Kranichsee humic acid), isolated from the bog 'Kleiner Kranichsee' [49], and a I4c- 
labelled synthetic humic acid type M1 (14c-~1)  were used for the experiments. Both humic 

acids were compared with regard to their sorption behavior on phyllite and their influence on 

the uranium sorption onto phyllite. 

The effect of humic substances of different origin on the uranium(ViC) sosption onto various 

reck materials and minerals, e.g., clay, hematite, silica and ferrihydrite, has been described in 

the literature [50-551. 

14.1 Experimental 

Materials 

The light-colored phyllite, used for the sorption experiments, was obtained from the tnsmium 

mine 'Schlema-Alberoda' near Aue in Western Saxony (Germany). It was colkcted at a depth 

of 540 m. The phyllite is composed of 48 ~01.96 of quartz, 25 vol.% of ~hlorite, SO voI.8 of 

muscovite, 5 vol.% of albite, and 2 ~01.9% of brownish opaqueoils material, identified as Ti- 
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and Fe-oxides [56]. The 63 to 200 ym grain sizc fraction of the phyllite was used for batch 

sorption experiments. Its specific surface area, determined by means of the BET method, is 

4.0 m2/g. 

The natural humic acid (Kranichsee humic acid) used for the sorption experiments was 

isolated from surface water of the mountain bog ,'Kleiner Kranichsee' that is located in the 

vicinity of uranium mining sites at Johanngeorgeaistadt in Western Saxony (Gerrnany) [49]. 

The 14c-labelled synthetic humic acid type M1 ( I 4 c - ~ 1 )  was synthesized as described in 

paragraph 8. 

Sorption experiments 

The sorption experiments were conducted under atmospheric conditions. 20 mL of a 0.1 M 

NaC104 (Merck) solution were added to 500 mg of the rock material (63 to 200 ym fraction) 

in 50 rnL polypropylene centrifuge tubes (Cellstar). Then, the samples were aged for 24 h. 

After that, additional 18 mL of 0.1 M NaC104 solution were added. The desired pH was 

adjusted by addition of dilute HC104 (Merck) or NaOH (Merck). For studies at pH values 

higher than 7, a calculated amount of NaHC03 was added to accelerate the equilibration 

process with atmospheric COz. In the following days the pH was readjusted until the pH was 

stable. Then 2 mL of a humic acid stock solution (100 mg humic acid/L, 0.1 M NaC104) was 

added to reach the final volume of 40 mL and a hurnic acid concentration of 5 mg/L. The 

humic acidhnineral contact time was 14 days. The pH was checked and adjusted every day. 

Then, the experiment was started by adding 84 pL of a 4.8-104 M uranyl perchlorate stock 

solution, prepared in 5-10-~ M HC1O4, to obtain a uranyl concentration of 1-10-~ M. The pH 

was readjusted immediately after the addition af the perchlorate solution. Then, the samples 

were rotated end-over-end at room temperature for about 60 hours. After this time, the final 

pH values were determined. Subsequently, the samples were centrifuged at 10000 rpm for 30 

minutes. The supernatant was filtered using Minisart N membranes (Sartorius) with a Pore 

size of 450 nm. To avoid contamination caused by canservation agents in the filter 

membranes the membranes were washed five times with 20 mL of Milli-Q water (Milli- 

ROMilIi-Q-System, Millipore). 

The supernatant (non-filtered solution) and the 450 nm filtrate were analyzed for the final 

uranium and humic acid concentration. It could be shown that there was no significant 

difference between the concentrations determined for the supernatant and the 450 nm filtrate. 

The uraniurn concentration was determined by IQ-MS (hductive Coupled Plasma-Mass 



Spectrometry, Mod. ELAN 5000, Perkin Elmer). The concentration of the natural humic acid 

was determined by UVNis spectrophotometry (Mod. 8452A, Hewlett Packard) at 254 nm. 

The concentration of the 14c-labelled synthetic humic acid was determined both by UVNis 

spectrophotometry and by Liquid Scintillation Counting (LSC, Beckrnan Instruments) after 

combustion of the material with a sample oxidizer (Mod. P 307, Canberra-Packard). 

In addition, the uranium sorption onto the wall of the centrifuge tubes was determined. The 

effect was about 2-3 % at pH 5 to 7.7. In the acid and alkaline pH range, the via1 wall sorption 

was 0.2-1 %. 

The amount of uranium adsorbed to the mineral surface was calculated as the difference 

between the initial U(V1) concentration (1.10-~ M) and the surn of the final uranium 

concentration in the 450 nm filtrates and the amount of uranium adsorbed onto the wall of the 

experimental vials. 

The difference between the initial humic acid concentration (5 mg/L) and the sum of the 

corresponding final concentration in the 450 nm filtrates and the amount of humic acid sorbed 

onto the centrifuge tube walls was attributed to humic acid sorption onto the mineral. In case 

of the I4c-labelled synthetic humic acid the amount of humic acid sorbed onto the phyllite 

was additionally determined by LSC. 

14.2 Results and discussion 

In Fig. 14.1 and 14.2 the results of the uranium sorption experiments carried out in the 

presence of 5 mg/L hurnic acid are depicted. For the 14c-labelled synthetic humic acid (14c- 

MI) the hurnic acid uptake was determined by UVNis spectrophotometry of the solution anti 

by LSC measurements both of the solution and of the phyllite. The results of both methods 

agree well (relative standard deviation: 5 % (20)). 

Fig. 14.1 shows the humic acid uptake by phyllite for Kranichsee humic acid and for 14c-~1 

as a function of pH. Both humic acids are strongly taken up over the entire pH range. From 

pH 3.6 to 7.7: 86 to 94 % of the Kranichsee humic acid are adsorbed. Above pH 8, the humic 

acid sorption decreases to 78 % at pH 9.4. The sorption of the synthetic %-MI IS in the '$3 

range from 3.6 to 7.7 somewhat lower (4 to 6 %) than the sorption of the Kranichsee hu& 

acid and above pH 8 higher (2 to 5 %) than the sorption of the Mranichsee humlc acid. 



Figure 14.1: Humic acid uptake by phyllite in experiments conducted in the presence of 5 mg 
HA.L.(Kranichsee humic acid: determined by UVNis spectrophotometry; 14c-~1: 

determined by LSC). 

This high humic acid sorption onto phyllite cannot only be attributed to the specific surface 

area of phyllite of 4.0 m2/g which was determined by the BET method. Instead of that, we 

believe that ferrihydrite is responsible for the high humic acid adsorption onto phyllite. 

Fenihydrite (Fe203 ~1.8 HzO) as secondary mineral phase is formed in the Course of the 

sorption experiments (proved by Arnold et al. [57]) and is visible as precipitate with a slight 

reddish-brownish color. It has a high specific surface area of 600 m21g and thus, it is expected 

to offer a significant sorption potential both to uranium and to humic acid. This assumption is 

supported by results found by Payne et al. [53] who investigated the uranium adsorption an 

ferrihydrite in the presence of humic acid. They found that the hurnic acid uptake by 

ferrihydrite as a function of pH was generally strong (approx. 82 to 90 % between pH 3.5 to 

9) and decreased only at pH values higher than pH 9. 

When discussing the results of the sorption experiments further, it has to be taken into account 

that the rock materid had already been contacted with humic acid for 14 days before 

uranium(VI) was added. That means, the rnineral surfaces are likely to be coated with humic 

acid at the beginning of the sorption experirnents. Thus, sorption sites of the solids may either 

be bloeked by adsorbed humic acid from other aqueous species or the humic acid may provide 

additional sorption sites due to its complexing abiiity. 



The uranyl sorption onto phyllite in the presence of humic acid was compared to the uranyl 

sorption found by previously conducted experiments where the sorption of U(V1) onto 

phyllite was studied in the absence of humic material [57], The experimental conditions of 

these experiments were the Same as described in paragraph 14.1.2. Fig. 14.2 shows the pH- 

dependent U(V1) uptake onto phyllite in the absence and in the presence of the natural and the 

synthetic hurnic acid. 

Figure 14.2: Uranium uptake by phyllite in experiments conducted in the presence of 
5 mg HIVL. Data for uranium uptake in the absence of humic acid 1571 are also shown. 

The pH-dependent uranium adsorption on phyllite in the presence of the natural and the 

synthetic humic acid is similar to the uranium adsorption on phyllite in experiments 

conducted in the absence of hurnic acid. The strong uranyl sorption on phyllite (95 - 97 % in 

the absence of humic acid) is not significantly changed by humic acid in the pH r a g e  from 6 

to 7.5. This very strong uranium adsorption on phyllite can also be attributed to the 

component ferrihydrite. Oxidic iron present in solution is known to form coatings on the 

surface of other minerals and to adsorb uranium well in coqosite minerds [58]. The small 

amount of dissolved humic acid (6-7 % of the total humic acid content) is not able to decrease 

the uranyl uptake on the solid by forming aqueous uranyl humate complexes. Con~eguently~ 

the maximum of the uranium sorption on phyllite is not shifted to lower pH values, as knom 

for the rnineralogical constituents of the phyllite (muscovite, albite and quartz] 1593, but 

remains unchanged in the pH range from 6 to 7.5 when humic aeid is present at 5 mgk. On 
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the other hand, the large arnount of humic acid sorbed onto the mineral surface can only 

induce a very mal l  enhancement of the uranium sorption. That means, the influence of humic 

acid on the uranium sorption is suppressed in the near neutral pH range. 

In the pH range from 3.6 to 6, the uranium uptake on phyllite is somewhat higher when humic 

acid is present. This may be attributed to the fact that humic acid is sorbed on the mineral 

surface thereby providing additional sorption sites due to their complexing ability andlor due 

to adsorption of uranyl humate complexes on the mineral surface. The enhancement of the 

uranium uptake is almost the same for Kranichsee humic acid and for 14C-~1. However, 

above pH 7.5, the influence of the two humic acids on the uranyl uptake by phyllite is 

different. The Kranichsee humic acid slightly reduces the uranyl sorption on phyllite whereas 

the synthetic humic acid, 14C-~1 ,  increases the uranyl sorption on phyllite compared to 

experiments carried out in the absence of humic acid. According to the speciation calculation 

considerable amounts of SC@,- are available to form complexes with uranyl ions 

( U O ~ ( C O ~ ) ~ ~ - ,  uo2(co3)2-). The inorganic carbonates have a higher complexing ability 

towards uranyl ions than hurnic acid. Nevertheless, the weakly sorbing uranyl carbonate 

complexes [60,61] are not able to predominate the influence of humic acid. Although the 

uptake of 14c-Ml on phyllite at aLkaline pH values is somewhat higher than the uptake of 

Kranichsee humic acid, there should be additional reasons for their different influence on the 

uranium sorption. 

We conclude that the inffuence of humic acid on the uranium sorption depends on the pH of 

the solutions and on the humic acid in question. We conclude further that the 14c-labelled 

synthetic humic acid ( I 4 c - ~ 1 )  is suitable for future experiments studying the kinetics and 

reversibility of the uranium and humic acid sorption onto minerals. 



15 Conclusions 

Within this project four different humic acid model substances with different functionality 

were developed according the melanoidin concept: a synthetic humic acid with a high content 

of aromatic structural elements and a low number of carboxylic groups (type MI), a synthetic 

humic acid type M1 of high purity, a synthetic humic acid with a carboxylic group content 

comparable to most natural occurring humic acids (type M42), and a nitrogen-free synthetic 

humic acid. 

All synthesized humic acid model substances were characterized for their functional and 

structural properties and compared to purified cornmercially available natural humic acid 

from Aldrich. A radiometric method for determination of functional groups was applied 

beside conventionally direct and indirect potentiometric titration methods. 

The synthetic model substances show structural and functional properties which are 

comparable to natural humic acids. The functional and structural properties of the synthetic 

humic acids can be varied by varying the precursor substances. One great advantage of the 

humic acid model substances represents their low up to not detectable content of inorganic 

impurities, especially iron, compared to natural humic acids. Furthermore, the synthetic humic 

acids show a more homogenous distribution of their charge-to-size ratios indicating a higher 

homogeneity. 

Modified humic acids with blocked phenolic hydroxyl groups were also synthesized. They 

can be used to study the influence of phenolic hydroxyl groups on the complexation behavior 

of humic acids. 

14c-labelled humic acids were synthesized according to the melanoidin concept. They show a 

stable isotopic labelling in their molecular structure. Applying this synthetic pathway, it is 

possible to obtain humic acid model substances with specific activity levels, that enables their 

use in migration and sorption experiments under environmentally relevant conditions. 

Synthetic humic acid type M1 and synthetic humic acid type M1 with blocked phenolic 

hydroxyl groups were distributed to the project Partners for comparative studies. 

Comparative studies for the interaction of synthetic and natural humic acids with uranium(V1) 

at pH 54 were performed by extended X-ray absorption fine structure spectroscopy (EXAFS), 

laser-induced fluorescence spectroscopy, and FTIR spectroscopy. 

The analysis of U LIIr-edge EXAFS data of different uranyl humates using Fluka h'umic acid 

and synthetic humic acid type M1 yielded axial U-0 distances of 1.77 - 1.78 A and five 



equatorial oxygen atoms at distances of 2.37 - 2.39 A. The equatorial U-0 distances for the 

uranyl humates indicate predominately monodentate coordination of the humic acid 

carb~oxylic groups with the uranium. Assuming charge neutralization for the complexation of 

uranyl ions with humic acid, neutral ligands cmtribute to the coordination number of five. 

Similar structural Parameters were determined synthetic humic acid type M1 and Fluka 

humic acid which indicate a similar complexation behavior. In addition, FTIR spectroscopy 

showed a comparable coordination of ions with Aldrich hurnic acid and the synthetic 

humic acids type M1 and type M42. 

Applying laser-induced fluorescence spectroscopy, we determined a sirnilar complexation 

behavior for synthetic hurnic acid type M42 and Aldrich humic acid. We determined 

corresponding loading capacities and complexation constants for the complexation with 

~ 0 ~ ~ '  ions at pH 4. 

The spectroscopic methods showed that the synthetic humic acid model substances simulate. 

very well the functionality of natural humic acids. This allows their application in model 

investigations to improve the knowledge about tloe complexation process between humic acids 

and metal ions. 

For the first time, we investigated the influence of phenolic hydroxyl groups on the 

complexation behavior of humic acids with u0z2+ ions. We used the modified humic acid 

type: M1 with blocked phenolic hydroxyl groups as well as the unmodified synthetic humie 

acid type MI. Applying the charge neutralization model, both humic acids showed 

comparable complexation constants. Nowever, significant differences exist in their loading 

capacities with uranyl ions at pH 4. From this we conclude that the blocking of the phenolic 

hydroxyl groups changes the humic acid complexation behavior with U O ~ ~ +  ions. 

First laserspectroscopic studies were performed to investigate the complexation behavior of 

uranium(VQ with humic acid in the absence of COz at pH 7. The complexation experiments 

showed that uranium(V1) reacts with humic acids under formation of a ternary uranyl hydroxo 

humate complex. We assumed that U02(OH)2 reacts under ligand exchange with the h u d c  

acid. For the totd complexation reaction, we determined a complexation constant of log 

= 6-35. For the charge neutralization reaction of U020Hf with hurnic acid at pH 7 in 0-1 M 

NaC104, we detennined a loading capacity for the humic acid with UOzOE+ of 0.91 I 0.28 

and a cornplexation constant of log Po.~M= 5.83 k 0.14. However, to ver* these first resullts 

additional measurements are recommended. 



The migration behavior of uranium in a sandy aquifer System rich in humic substances 

(Pleistocene quartz sand, groundwater GoHy-532 from Gorleben site, Germany) was studied 

in laboratory column experiments. A part of the injected uranium migrates non-retarded, 

slightly faster than the groundwater. This migration behavior can be attributed to the 

association of uranium with humic colloids, which move faster due to size exclusion 

processes. The migration behavior of uranium is strongly influenced by the kinetically- 

controlled interaction processes of uranium with humic colloids. The recovery of non-retarded 

uranium increases with increasing uranium/groundwater contact time before injection into the 

column. Furthermore, the recovery of humic colloid-borne uranium decreases with decreasing 

groundwater flow velocity and increasing column length which corresponds to an increasing 

residence time of uranium in the column. 

Batch experiment were performed to investigate the influence of humic acids on the sorption 

behavior of uranium onto phyllite, a rock material from the uranium mine 'Schlema- 

Alberoda' in Western Saxony (Germany). The batch experiments were conducted applying a 

natural site-specific humic acid (Kranichsee humic acid) as well as a I4c-labelled synthetic 

humic acid type MI. The natural humic acid and the synthetic humic acid have a similar 

sorption behavior on phyllite. Their influence on the uranyl sorption is also comparable, 

especially in the acidic and neutral pH range. In the pH range from 3.6 to 6, the uranium 

uptake on phyllite is somewhat increased when humic acid is present. In the neutral pH range, 

the uranium adsorption on phyllite in the presence of humic acids is similar to the uranium 

adsorption in the absence of humic acids. In the pH range between 7.7 and 9.7, the synthetic 

humic acid increases the uranyl sorption whereas the natural humic acid decrease the uranyl 

sorption compared to experiments conducted in the absence of humic acid. 

We conclude from the batch experiments that the influence of humic acids on the uranium 

sorption mainly depends on the pH of the solutions. Furthermore, we conclude that it is useful 

to use 14Glabelled synthetic humic acid model substances for sorption experiments. 

The results of these studies improve the knowledge of the complexation behavior of humic 

acids with uranium(V1) under aerobic conditions. Nevertheless, in future it will be necessary 

to investigate the complexation behavior of uranium and other actinides, e,g„ thorium and 

neptunium with humic acids under anaerobic, i.e., reducing conditions, This includes studyhg 

the complexation behavior of these actinides in the tetravalent oxidation state with hum,ic 

materials as well as studying their soqtion and migration behavior in the presence of hurnic 



materials. Furthermore, the knowledge about the redox properties of humic substances 

requires improvement. 

Our study also showed the necessity to study kinetic processes controlling the migration 

behavior of uranium and other actinides in the presence of humic substances. Furthermore, it 

is necessary to include complexation models of humic acids with actinides in existing 

modeling codes for geochemical transport. A more detailed knowledge is needed of the 

interaction of humic acids with actinide ions other than uranium. This knowledge can be 

obtained using unmodified and modified synthetic and natural humic acids, for instance 

humic acid with blocked phenolic hydroxyl groups. 

This increased knowledge will lead to a better modeling of the geochemical interaction oif 

actinides and to an significantly improved risk assessment for the long-term Storage of nuclear 

waste in underground repositories. 
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A Appendix - Analytical methods used for the characterization of humic 

acids 

A.1 Elemental analysis 

The determination of the carbon, hydrogen and nitrogen content of the humic acids was 

performed with an elemental analyzer (model CHNS-932, Leco, St. Joseph, MI, USA). 

Ash and moisture contents of the humic acids were determined thermoanalytically with the 

CH-analyzer RC 412 (Leco, St. Joseph, MI, USA) and the thermoanalyzer STA 92 (Setaram, 

Lyon, France). The samples were heated in a stream of oxygen. The arnount of water, which 

was released up to about 150 "C, was measured for the estimation of the moisture content. 

The ash content conesponds to the ignition residue after heating the sample to 700 'C. 

The inorganic constituents of the hurnic acids were determined by ICP-MS analyses after 

digestion of the humic acids with HN03 in a microwave. 

A.2 Functional groups 

A.2.1 Radiornetric determination of functional groups 1121 

['4~]diazomethane with a known specific activity was used for the radiornetric determination 

of humic acid carboxylic and phenolic OH groups. It was produced from diazald-N-methyl- 

[I4c] with a specific activity of 1.9 GBq/mmol (Sigma, Aldrich) that was diluted with inactive 

~iazald@ (Aldrich). The methylation of the hurnic acid was carried out under reduced 

pressure at -10 to 0 'C  in a vacuurn apparatus. The specific activity of the humic acids after 

methylation was determined by liquid scintillation counting (Beckrnan Instruments, Fullerton, 

CA, USA) after combustion of the substances with a sarnple oxidizer (model P307, Canberra- 

Packard, Warrenville, IL, USA). 

The saponification of the permethylated humic acids was done by stirring the humic acid with 

methanolic NaOH at 70 OC for 4 hours. The activity of the methanol which was released 

during the saponification was also determined by liquid scintillation counting. 



A.2.2 Calcium acetate method 

The carboxylic group content of the hurnic acids was determined with the calcium acetate 

method according the method described in [62], which allows the humic acid to react with an 

excess of 1 N Ca(CH3C00)2. Humic acids liberate acetic acid during the reaction with 

calcium acetate. The released acetic acid is then titrated with NaOH solution. 

2 R  - COOH + Ca(CH,COO), + ( R -  COO), Ca + 2CH,COOH 

R: Humic acid molecule 

For sample preparation and preparation of the calcium acetate solution CO2-free water was 

used. The sarnples were prepared and titrated under inert gas. For titration, we used the 

automatic titration system TPC 2000 (Schott, Hofheim, Germany) applying the titration 

software TR 600, version 5.02. 

A.2.3 Barium hydroxide method 

The total proton exchange capacity was determined by the barium hydroxide method 

described in [62], which allows humic acid to react with an excess of Ba(OH)2, followed by 

titration of the unused base with 0.1 M HCl: 

Ba(OH), + 2HA + Ba& + 2H20 
HA: Humic acid 

Sample preparation as well as titration were done under inert gas. CO2-free water was used. 

For titration, we used the automatic titration system TPC 2000 applying the titration software 

TR 600, version 5.02. 

The difference between the total proton exchange capacity determined by barium hydroxide 

method and the carboxylic group content determined by calcium acetate exchange 

corresponds to the number of phenolic OH groups of the humic acid. 



A.2.4 Direct titration 

The determination of the humic acid proton exchange capacity was performed by acid-base 

titration of h u d c  acid which was previously dissolved in alkaline solution. 

A stock solution of humic acid was made by dissolving humic acid in a known volume of 0.1 

M NaOH and diluting this solution with 0.1 M NaC104 under inert gas conditions. An aliquot 

of this solution was then titrated against 0.1 M HC104 under inert gas to determine the excess 

of NaOH which was not used for dissolving, i.e., deprotonation of the humic acid. 

A.3 Capillary electrophoresis 

Capillary electrophoretic investigations were performed using the capillary electrophoresis 

system PfACE 2050 (Beckman Instruments, Palo Alto, CA, USA) with a variable separation 

voltage of 1 to 30 kV and an UV photometer detector. Before sample loading, the capillary 

was conditioned for 2 min with 0.1 M NaOH and then for 2 min with buffer solution. As 

electrolyte system we used a potassiumdihydrogenphosphate-sodiumtetraborate buffer (3 rnM 

KH2P04, 6 mM NazB407) with pH 8.9. The sample was injected into the column by pressure 

injecttion for 15 s. The separation was carried out at 30 OC with a voltage of 30 kV. Detection 

was done on-line at the catodic site of the capillary at 214 nm. The humic acids were 

dissolved in 10" M NaOH with a concentration of 400 mg/L. The solutions were used directly 

for injection. No filtration or other special sample treatment was necessary. 

A.4 Structural characterization 

A.4.1 FTIR spectroscopy 

FTR measurements were carried out with the spectrometer model SPECTRUM 2000 (Perkin 

E h e r  Europe B.V., Nieuwerke, NL). Spectra were recorded in the MIR range as KBr pellets 

and in the FXR range as polyethylene pellets with a diameter of 13 mm and optimized sample 

amounts. 



A.4.2 1 3 ~ - ~ ~ / M A ~ - ~ ~ ~  spectroscopy 

1 3 ~ - ~ ~ / ~ ~ ~ - ~ ~ ~  measurements were performed by a Bruker MSL 200 spectrometer 

(Bruker, Rheinstetten, Germany). Magic-angle spinning was executed at rates of 10000 Hz. 

The spectra were recorded using 90" pulse length of 4.4 ys, contact time of 1 ms, and delay 

time of 1 s. 

A.4.3 Pyrolysis-Gas chromatography/Mass spectrometry (Py-GCM) 

The filament pyrolysis System Pyroprobe (model 2000, CDS Analytical Inc., Oxford, PA, 

USA) on-line coupled with a gas chromatograph (model HP 5890, Hewlett Packard, 

Waldbronn, Germany) with a mass selective detector (mass range 20-450 atomar mass units; 

model HP 5871a) was used. Pyrolysis and separation were done in a helium atmosphere as 

described in [3]. 
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