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We present a numerical approach to obtain the Ferromagnetic Resonance (FMR) spectra of micrometer- and nano-sized magnetic
elements by micromagnetic simulations. Mimicking common experimental conditions, a static magnetic field is applied and a linearly
polarized oscillating magnetic field is used to excite magnetization dynamics. A continuous single-frequency excitation is utilized,
which permits to study the steady-state dynamics in space- and time-domain. This gives direct access to resonance fields, line widths
and relative amplitudes as observed in the experiments, which is not easily accessible in pulsed schemes and allows for a one-to-one
identification between simulation and experiment. Similar to numerical approaches using pulsed excitations the phases, ellipticity and
spatial mode profiles of the spin-wave resonances (SWR) may also be accessed. Using large excitation powers we then showcase that
one can additionally study nonlinear responses by this method such as the nonlinear shift of the resonance fields and the fold-over
of the absorption lines. Since the dynamic susceptibility is directly determined from standard outputs of common micromagnetic
codes, the presented method is robust, efficient and easy-to-use, adding to its practical importance.

Index Terms—Ferromagnetic resonance, micromagnetic simulations, line width, nonlinear, fold-over

I. INTRODUCTION

The detailed understanding of spin-wave resonances (SWR)
of magnetic micro- and nanostructures and their magnetization
dynamics has found increasing interest from both fundamental
and application points of view for example in spin caloritronics
and spin torque phenomena [1], [2], [3], [4], [5].

A powerful tool to measure spin-wave spectra with high
spectral resolution is the Ferromagnetic Resonance (FMR),
either detected directly in the frequency domain or in the
field-swept mode at constant excitation frequency [6], [7]. In
most cases the measured FMR-spectra are complex in nature,
featuring several – often overlapping – resonances and require
theoretical models of the nanostructured magnetic systems to
extract quantitative information. Micromagnetic simulations
of the FMR can be used to model such systems to provide
information on the observed magnetic excitations, such as their
character and dependence on magnetic parameters, geometries
or charge currents [8], [9]. The micromagnetic approach is es-
pecially advantageous for complex geometries or interactions
of nanoscale ferromagnets, when analytic approaches are not
available.

Here, we present a numerical method to calculate the
FMR of micrometer- and nano-sized magnetic elements by
micromagnetic simulations. To closely mimic the experimental
conditions of continuous-wave FMR detection, we use an
alternative approach to the common field-pulse excitation
scheme. In addition to a static magnetic field a single-
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frequency linearly-polarized oscillating magnetic field is used
to excite magnetization dynamics. The observed SWR can be
analyzed in the space- and time-domain. We show the relation
between the volume averaged magnetization dynamics and
the complex dynamic susceptibility tensor. With our approach
one obtains not only information about the resonance fields,
but also the otherwise difficult to obtain accurate line widths,
relative intensities, ellipticity of the magnetization precession
and phase relations of the excited SWR in the observed spec-
trum. These simulated parameters can be directly compared
to the experimental data in a straightforward manner. The
FMR spectra for large amplitude microwave fields with its
usual characteristics as the nonlinear frequency shift of the
resonance fields or the fold-over of the absorption curves can
also be calculated, which is not accessible with the commonly-
used field-pulse excitation method.

The spatially resolved magnetic response, plotted as a func-
tion of the external magnetic field and excitation frequency,
yields a direct and detailed visualization of the SWR and their
localization to different regions of the magnetic samples.

II. THEORETICAL BACKGROUND

In the continuum limit, the dynamics of the magnetization
M(r, t) in a ferromagnetic body is described by the Landau-
Lifshitz-Gilbert equation: [10],

1

γ

dM

dt
= − (M ×Heff) +

α

Ms

(
M × dM

dt

)
(1)

where Heff is the effective field comprising the exchange,
dipolar, anisotropy and external magnetic fields, Ms is the
saturation magnetization, γ is the gyromagnetic ratio of the
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electron and α is the Gilbert-damping parameter. When the
magnetization is deflected away from its equilibrium, e.g. by
an external magnetic field, a precession around the effective
field occurs. By separating the magnetization into a static and a
dynamic part M(r, t) =Meq(r)+m(r, t), one can linearize
Eq. (1) with respect to small-amplitude excitations m(r, t).
As a result, the high-frequency response of a magnetic system
to an external microwave (RF) field h̃RF can be expressed
using the Polder susceptibility tensor χ̂(ω) as

m̃(r, t) = χ̂(ω) · h̃RF(r, t) (2)

Here, we use the complex-amplitude notation such that the
real parts m = <(m̃) and hRF = <(h̃RF) correspond
to the respective physical observables. The Polder tensor χ̂,
also referred to as dynamic susceptibility or high-frequency
magnetic susceptibility, is a superposition of susceptibilities
of the individual SWR and describes their linear response to
the RF field, i.e. their resonance frequencies and line widths.
The susceptibility may be split into a real and an imaginary
part, χ̂ = χ̂′ + iχ̂′′. For a spatially homogeneous microwave
field, the average power P absorbed by the magnetic system
is proportional to the imaginary part of the Polder tensor [11],

P (ω) ∝ 〈h̃∗RF · χ̂′′(ω) · h̃RF〉 (3)

Here, 〈...〉 denotes the spatial average in the sample volume
and the asterisk denotes the complex conjugate. As the signal
measured in a conventional cavity-based FMR experiment
is proportional to the average absorbed microwave power,
simulating a FMR spectrum comes down to obtaining the
imaginary part of the dynamic susceptibility χ̂′′. In typical
FMR experiments, the frequency of the microwave field is kept
constant and the static external field, hence the resonance fre-
quencies, are varied. We may therefore consider the absorbed
power as a function of static external field, P (H).

III. METHOD

In micromagnetic simulations, which rely on numerically
solving a discretized version of the equation of motion Eq. (1),
the modus operandi to calculate the SWR susceptible to a
microwave field with a certain spatial profile is a pulsed
excitation scheme. A short magnetic field pulse of sinc(ωct) =
sin(ωct)/(ωct) time dependence is applied followed by a
Fourier transform of the magnetization dynamics. The latter
can be done on the average magnetization components or
individually on all discretization cells. Although this method
allows to quickly obtain the linear resonance frequencies and
spatial profiles of the excitable SWR below a certain cut-off
frequency ωc, it does not provide correct line widths, phases or
relative amplitudes, as measured in FMR experiments. More-
over, the simultaneous and short-timed excitation of different
Fourier components does not lead to steady-state dynamics
and prohibits to study equilibrium nonlinear dynamics and
related energy flow. The method presented here is free of these
shortcomings.

Generally speaking, our approach is much better adapted to
replicate the conditions of conventional FMR experiments. A
homogeneous microwave field is applied and set to a fixed

frequency and an additional static external field is slowly
varied step-wise. For each field step, the microwave absorp-
tion is calculated based on Eq. (3), as will be explained in
the following example. Whenever the field-dependent SWR
frequencies match the frequency of the external microwave
field, a local maximum in the power absorption, i.e. in the
imaginary part of the dynamic susceptibility, is observed.

As an example, we consider a thin magnetic element,
oriented in the xy-plane (see Fig. 1a). The static field is set
to a chosen maximum value Hmax and oriented along the x
direction. The static equilibrium magnetization Meq is then
found either by minimizing the torque given by Eq. (1) or by
minimizing the total magnetic energy. To excite magnetization
dynamics the direction of the spatially homogeneous linearly
polarized microwave h0 sin(ωt) at fixed angular frequency
ω is chosen along the out-of-plane (z) direction. Following
Eq. (3) the absorbed microwave power is in this case propor-
tional to the imaginary part of the diagonal matrix element
χ′′zz .

Fig. 1. The time dependent dynamic magnetization driven by an external RF
field hRF for an infinite thin film magnetized in the xy-plane, as sketched
in (a). The static field H is oriented in the film plane (x-direction) and is
chosen to match the resonance condition. (b) The ellipticity of the SWR
can be determined from the dynamic components of the magnetization. The
normalized components (solid and dashed black lines) in the yz-plane are
shown together with the amplitude of the RF field hRF (red line) along one
period of excitation for the off-resonance (c) and resonance (d) cases. As
marked in (d), the imaginary part of the susceptibility χ′′zz is proportional to
the averaged out-of-plane component of the magnetization at the point when
the RF field is crossing the zero value.

After an initial transient time, the torque exerted by the
microwave field on the magnetization compensates the natural
magnetic damping mechanisms and leads to stable oscillations
in the dynamical components my and mz at the angular
frequency ω. Typically, in thin in-plane magnetized elements
the magnetic precession trajectory is elliptical due to the
dipolar interaction, as seen in Fig. 1b. To account for the
initial transient phase, the magnetization is allowed to evolve
for an integer number of time periods, tn = 2π · n/ω,
where n is chosen to provide a constant precession amplitude
between consecutive oscillation cycles of the magnetization
with a deviation of less than 0.02%. n typically depends
on the magnetic parameters (e.g. damping constant α) and
the micromagnetic solver at hand. Fig. 1c,d shows such a
precession of the dynamical magnetization together with the
RF field for the off-resonant and resonant cases. At resonance,
the component parallel to the microwave field, mz , has a phase
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shift of π/2 with respect to the field, i.e. it has a local mininum
when the field crosses zero at tn. By inserting the sampling
time tn (periods of the RF field) into Eq. (2), taking the real
part and averaging for the sample volume the microwave-
absorption power reads as

P ∝ 〈χ′′zz〉 = −
〈mz(tn)〉

h0
(4)

with h0 = |h0| being the modulus of the RF amplitude.
Hence, by monitoring the average dynamical component 〈mz〉
parallel to the RF field hRF an absorption proportional to the
FMR-signal can be obtained numerically, without further post
processing. By a similar logic, the real part of the average
susceptibility 〈χ′zz〉 - and therefore the complete 〈χzz〉 - can be
retrieved by extracting 〈mz〉 at the maximum of the microwave
field, i.e. at tn+1/4. This makes the method extremely efficient
and practical, especially since the averaged magnetization is
provided by default by most micromagnetic codes.

The field-dependent absorption curve P (H) is obtained by
step-wise decreasing the static external field H and repeating
the described procedure for each field step.

Fig. 2. (a) Micromagnetic simulation of the imaginary part, phase and
magnitude of the average Polder susceptibility for an infinite thin film of
10nm thickness. A microwave frequency of 22GHz is applied, while the
static magnetic field is swept step wise downwards. The material parameters
are typical parameters for thin-film cobalt with Ms = 1230 kAm−1,
γ/2π = 29.8GHzT−1 and a slightly increased damping α = 0.016 to
account for material inhomogeneities. The magnetic resonance exhibits the
classical hallmarks of a driven oscillator, where the magnitude has positive
skew with respect to the external field. The imaginary part is a Lorentzian
curve proportional to the experimentally detected FMR signal shown in (b).
The resonance field of the experiment is different to the simulation, since
in the numerics the value of the saturation magnetization is only an effective
value as obtained by fitting the well-known Kittel formula to the experimental
data, neglecting crystal anisotropy [10].

As seen in Fig. 2a, the magnetic response (represented by
the average matrix element 〈χ′′zz〉), shows the typical hallmarks
of a driven oscillator in respect to phase and magnitude.
The imaginary part is a perfect Lorentzian absorption curve
[22]. This allows to determine the resonance positions, their
line width and relative signal strength. The results to an
experimentally measured absorption curve for a 10 nm thick
Co film in Fig. 2b, shows an excellent agreement with the
simulation. The experimental curve was obtained using a
coplanar waveguide (CPW)-FMR setup [16].

In case of multiple superimposed resonances a decompo-
sition of the resultant spectra (experiment or simulation) into

Lorentzian absorption lines is needed. The simulated spectra
can be directly compared to complex experimental results as
for example for the case of micrometer-sized magnetic stripes
[14], [15], [18].

Next to these spectra, one may extract the spatial profile of
the resonant SWR by considering the magnetization M(r, tn)
of each cell. Moreover, in most cases, the average precession
ellipticity is obtained by sampling the average dynamical
components (〈my,z〉) for a large number of points within an
additional period [tn, tn+1].

IV. APPLICATIONS

To showcase this method we use a custom version of
the GPU-accelerated micromagnetic code MuMax3 [25], [26]
which solves Eq. (1) on a cuboid grid. However, the method
presented here is completely independent of the micromag-
netic code at hand. Alternatives include OOMMF [12], Tetra-
Mag [27], NMAG-FinMag-Finimag [28] and LLG Micromag-
netic Simulator [29], among others. Of course, this method
could also be used for simple macro-spin simulations.

1) Characterizing the linear excitations in a magnetic
element

As a first example, we characterize the magnetic excitations
observable in FMR experiments in a 5.1 µm×1.1 µm×50 nm
stripe made of permalloy (Ni80Fe20). For the material proper-
ties we adopt typical values of the exchange constant Aex =
13pJm−1, saturation magnetization Ms = 790 kAm−1,
reduced gyromagnetic ratio γ/2π = 29.67GHzT−1 and
Gilbert-damping parameter α = 0.006. To mimic experimen-
tal conditions, the static external field is slightly tilted in-plane
by a 0.5° angle towards the short axis of the stripe. The number
of periods n before sampling is set to 130. For codes based on
double precision, e.g. OOMMF, this number can be smaller.
The numerical microwave absorption together with the stripe
geometry and field orientations are shown in Fig. 3a.

In such a confined system multiple SWR (in this case 3,
labeled from 1 to 3) with differing resonance field positions,
line widths and intensities occur [23]. The spatial distribution
of the out-of-plane component of the dynamic magnetization,
mz(tn) is shown for the two most intense resonances in
Fig. 3c,d. As discussed in Sec. III, these mode profiles are the
natural outcomes of this continuous-wave excitation method.
In Fig. 3b, we compare the numerical absorption curve to an
experimental resonance line obtained from a real sample with
the same dimensions and parameters, using a microresonator
cavity. In contrast to the CPW-FMR technique, a single ferro-
magnetic object can be measured with a microresonator [14],
[15], [17]. Since, experimentally, the microwave absorption
was measured using a lock-in technique the derivative of
both curves with respect to external field is shown. The
experimental resonance fields are slightly different from the
simulations which is likely due to fact that the saturation
magnetization Ms and gyromagnetic ratio γ of the sample
are not precisely known, as they were obtained from the
FMR measurements. For better clarity, in Fig. 3b, we only
show the simulation data for the resonances observed in the
experiments.
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Fig. 3. (a) Micromagnetic simulation of the susceptibility χ′′zz for a
5.1 µm×1.1 µm×50nm permalloy stripe and a fixed RF frequency of
14GHz. Multiple SWR are observed (labeled from 1 to 4). The derivative of
the absorption curve is compared with an experimental curve in (b). The peaks
are shifted probably due to a slightly different value of Ms in the simulations.
For clarity, the simulation data is only shown for the experimentally observed
resonances. (c,d) show the spatial profiles (out-of-plane component of the
dynamic magnetization, mz , at tn) of the two lowest-order modes together
with line scans of mz taken the along the dashed lines.

In the numerical FMR spectra Fig. 3a the mode 1 is
strongest in the center of the stripe and will here be referred
to as a localized quasi-uniform mode. A different character
can be observed for the less intense mode 2. Its out-of-plane
component shows a change in sign across the stripe, two nodal
lines and a wave-like varying dependence along the width of
the stripe. Both modes can be very well approximated by a
sinusoidal function as shown in Fig. 3c and d and resemble the
expected mode profile of a standing SWR with wavelengths
2704 nm and 840 nm for the mode 1 and 2, respectively. These
wavelengths differ from the expected values for simply closed
or open pinning conditions and are a result of the dipolar
pinning at the edges of the stripe [24]. The resonances 3 and 4
can be assigned to higher-order standing spin waves across the
width of the stripe, with decreasing wavelengths for smaller
resonance fields.

By such a spatial analysis one can for example explore the
dependence of the microwave absorption spectra and magnetic
excitations on the magnetic parameters as well as on the exact
geometry of the magnetic systems. This information can be
crucial for planning experiments and deeper understanding of
the possibly large number of resonances in measured spectra,

e.g. as also performed in [30]. This method can also be used
to study traveling modes [5], dynamics in complex structures,
as shown for magnetic nanotubes [31], or (by also varying
the microwave frequency) to obtain the full field-frequency-
dependent microwave absorption of a given sample.

2) Nonlinear ferromagnetic resonance
As a second example, we employ the method to qualitatively

study weakly nonlinear dynamics, i.e. the nonlinear ferromag-
netic resonance. As first observed in [33], [34] and described
in [35], magnetic resonances become unstable above a certain
amplitude of the microwave field hRF. Such phenomena are
historically referred to as Suhl instabilities and are typically
related to three- or four-wave scattering processes. They result
in a RF-power-dependent nonlinear shift of the resonance
frequencies, a line width broadening and, ultimately, in a fold-
over of the absorption curves. This example is a perturbative
extension of the earlier analysis-showcase towards large driv-
ing amplitudes. Strictly speaking, the Polder susceptibility has
been introduced for the linear regime. At very large driving
powers e.g. higher-harmonic contributions may appear and
oscillations in the dynamical component parallel to the static
external field have to be taken into account. However, at
intermediate powers in the nonlinear dynamic equilibrium, the
oscillations remain often well-described as being proportional
to exp(−iωNLt) (with ωNL being power-dependent) and the
same arguments as in Sec. III can be made in an approximate
manner to derive the microwave absorption.

Fig. 4. Micromagnetic simulation of the field dependent FMR of a
200nm×200nm×5nm element made of permalloy for different amplitudes
of the RF field. For better visualization, the curves are plotted with individ-
ual baselines (dotted). For the largest amplitude a nonlinear fold-over and
hysteresis in the FMR when sweeping the static field in opposite directions
(arrows) is seen. A dashed curve schematically indicates the theoretical shape
of the fold-over.

To showcase this, we consider a 200 nm×200 nm×5 nm
element made of permalloy with exchange constant Aex =
13pJm−1, saturation magnetization Ms = 810 kAm−1,
reduced gyromagnetic ratio γ/2π = 29.81GHzT−1 and
Gilbert-damping parameter α = 0.007. Fig. 4 shows the
numerical absorption curves for different amplitudes of the
RF field. As expected for thin in-plane magnetized elements
[36], we observe a positive nonlinear shift of the resonance
field and a fold-over which leads to a region of bistability, i.e.
a hysteresis in the absorption curves. Hence, the curves are
shown for decreasing and increasing static external field. Note,
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that the simulation of a field-step takes only half a minute
(using MuMax3 on a TITAN Xp GPU) and can be readily
parallelized. A direct comparison with experimental data is
cumbersome in this case and would go beyond the scope of
this paper, as it requires sufficient knowledge of the microwave
power arriving at the microwave antenna at hand. Note that
this method can also be extended to parallel-pumping FMR
[37].

V. CONCLUSION

We presented a numerical method to calculate FMR spec-
tra using micromagnetic simulations. The method uses a
single-frequency continuous-wave magnetic field for excita-
tion, which allows to study the steady-state equilibrium and
extract the full field-dependent dynamical susceptibility in
a straight-forward manner. In contrast to common pulsed
schemes, our method yields line widths and relative inten-
sities of SWR directly comparable to those measured in
FMR experiments. This eases the direct cross-identification
of observed resonances, in particular for complex scenarios of
nano-sized magnetic elements. The steady-state FMR spectra
and magnetic excitations are directly visualized based on
the default outputs of common micromagnetic codes, which
renders this method easy-to-use, efficient and robust in post-
processing. In addition, we showed that the nonlinear magnetic
response for large driving amplitudes, such as the nonlinear
frequency shift of the resonance fields or the fold-over of the
absorption curves, can be studied.

This method may further be extended to analyze the tran-
sient phase prior to a dynamic equilibrium and standing wave
formation processes. Such dynamic processes may become
of particular interest for magnetic samples in which simple
standing spin-wave formation is modified by chiral symmetry
breaking and interpretation of FMR spectra requires the aid of
accurate modelling. We believe, that with the recent develop-
ment of high-performance micromagnetic codes, the presented
method can be used as a powerful numerical method to corrob-
orate FMR experiments and help interpret the experimentally
obtained results.
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F. B. Mancoff, M. A. Yar and J. Åkerman, Nature Nanotechnology 6,
635-638 (2011)

[4] G. E. W. Bauer, E. Saitoh, B. J. van Wees, Nature Materials 11, 391-399
(2012)

[5] S. Pile, T. Feggeler, T. Schaffers, R. Meckenstock, M. Buchner, D.
Spoddig, B. Zingsem, V. Ney, M. Farle, H. Wende, H. Ohldag, A. Ney,
and K. Ollefs, Applied Physics Letters 116, 072401 (2020)

[6] M.Farle, T. Silva and G. Woltersdorf, eds H. Zabel and M. Farle, Springer
Tracts in Modern Physics 246, 437 (2013)

[7] J. Lindner and M. Farle, Springer Tracts in Modern Physics 227, 45-96
(2008)

[8] R. D. McMichael and B. B. Maranville, Phys. Rev. B 74, 024424 (2006)
[9] G. Venkat, D. Kumar, M. Franchin, O. Dmytriiev, M. Mruczkiewicz, H.

Fangohr, A. Barman, M. Krawczyk and A. Prabhakar, Magnetics, IEEE
Transactions on 49, 524-529 (2013)

[10] A. G. Gurevich and G. A. Melkov, (1996). Magnetization oscillations
and waves. Retrieved from https://www.crcpress.com/Magnetization-
Oscillations-and-Waves/Gurevich-Melkov/p/book/9780849394607

[11] S. V. Vonsovskij, Ferromagnetic Resonance, Pergamon Press, (1966)
[12] Code and documentation available at: http://math.nist.gov/oommf/
[13] M. J. Donahue and D. G. Porter, OOMMF user’s guide, version 1.2a3,

National Institute of Standards and Technology, Gaithersburg, Md, USA,
2010

[14] A. Banholzer, R. Narkowicz, C. Hassel, R. Meckenstock, S. Stienen, O.
Posth, D. Suter, M. Farle and J. Lindner, Nanotechnology 22, 295713
(2011)
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