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Abstract

During the COVID-19 pandemic, many organizations (e.g. businesses, com-
panies, government facilities, etc.) have attempted to reduce infection risk
by employing partial home office strategies. However, working from home
can also reduce productivity for certain types of work and particular em-
ployees. Over the long term, many organizations therefore face a need to
balance infection risk against productivity. Motivated by this trade-off, we
model this situation as a bi-objective optimization problem and propose a
practical approach to find trade-off (Pareto optimal) solutions. We present
a new probabilistic framework to compute the expected number of infected
employees as a function of key parameters including: the incidence level in
the neighborhood of the organization, the COVID-19 transmission rate, the
number of employees, the percentage of vaccinated employees, the testing
frequency, and the contact rate among employees. We implement the model
and the optimization algorithm and perform several numerical experiments
with different parameter settings. Furthermore, we provide an online appli-
cation based on the models and algorithms developed in this paper, which
can be used to identify the optimal workplace occupancy rate for real-world
organizations.
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1. Introduction

The COVID-19 pandemic has caused worldwide social and economic dis-
ruptions over the past two years. One consequence has been that companies,
organizations, and government facilities (hereafter “organizations”) have suf-
fered reductions in the quality and quantity of the services they provide
[1, 2, 3, 4, 5]. This decreased efficiency is a direct consequence of the need
to manage infection risk in the workplace. As COVID-19 spreads mostly
through direct/close contacts between individuals, the risk of infection tends
to increase with workplace occupancy rate. To manage infection risk, many
organizations have implemented a range of strategies including: (i) adopt-
ing recommended personal hygiene measures (e.g., wearing a mask, social
distancing, etc.), (ii) reducing the number of employees present in the work-
place via teleworking, (iii) screening employees via periodic testing, and (iv)
encouraging employees to get vaccinated [6, 7, 8]. Though these strategies
have worked quite well to manage workplace infection risk, they also come
with certain costs and limitations. For example, telework has the potential
to completely eliminate workplace infection risk, but it may also decrease
productivity for particular tasks or individuals, and may not possible at all
for certain types of work [1, 9]. It is therefore evident that a trade-off be-
tween productivity and infection risk exists, and an important question that
arises here is “what is the optimal presence rate in the workplace during the
pandemic?”.

Motivated by these circumstances, we develop a model of disease trans-
mission within organizations that allows us to balance the trade-off between
productivity and infection risk. Our model incorporates the local incidence
level and inherent transmission rate of COVID-19 as well as key within-
organization factors such as the testing frequency, rate of vaccination, and
contact rate among the employees. Additionally, our model accounts for
differences in efficiency between working remotely and being present in the
workplace. This factor varies from organization to organization depending
on the type of work they do and their inputs, processes and outputs. Here-
after, we refer to the ratio of efficiency at home to efficiency at office as the
productivity for simplicity.

3



We employ a probabilistic framework that accounts for the aforemen-
tioned influential factors and allows us to compute the expected number of
infected employees at any time after an infection is introduced into the facil-
ity. This framework has the advantages of being simple, fast, and practical,
while still being customizable for specific organizations. Moreover, our model
can be efficiently used for any organization size. Based on this model, we also
develop an optimization application to find Pareto optimal solutions of the
twin objectives of maximizing productivity and minimizing infection risk in
organizations. The application allows the user to adjust all input parameters
and immediately visualize the results of any change.

This paper is organized in five sections. In the second section, we review
related studies. In the third section, we introduce the core model parameters
and formally state the problem. In addition, we propose the probabilistic
model and an algorithm to compute infection risk and the Pareto optimal
solutions. In the fourth section, we perform several numerical experiments
and test the ability of the model and algorithm to identify Pareto optimal
solutions. In the fifth and final section, we draw conclusions and outline
future directions.

2. Related Work

Managing infection risk within organizations has been recognized as a key
theme in responding to and living with the pandemic. Consequently, many
mathematical models have been developed specifically to investigate several
aspects of transmission mechanisms and control strategies for COVID-19 in
organizations [10, 11, 12, 13, 14]. In addition, several quantitative studies
have also been carried out to gain insight on the outcomes of strategies pro-
posed for different organization types[15, 16, 17, 18]. Most of these studies
focused on implementing strategies for organizations like hospitals, health
care facilities, nursing homes, offices, and schools. For example, [19, 20]
have focused on identifying the optimal frequency of testing in healthcare
environments and nursing homes, while others have demonstrated that im-
mediate testing of symptomatic individuals and quarantining of their pri-
mary contacts via contact tracing can potentially reduce disease transmission
among health workers and other high risk groups [21]. Still other surveillance-
focused studies have explored the performance of non-adaptive combinatorial
group testing [22], and the importance of self-isolation and contact tracing
measures [23]. Finally, [24] proposed an optimal testing strategy to mini-
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mize the presence of pre-symptomatic and asymptomatic employees in the
workplace.

Some studies have investigated how scheduling personnel in the workplace
can minimize the consequences of infection. In this context, a desynchro-
nization strategy has been proposed in which the workers in the healthcare
system are divided into two non-overlapping teams who will be working in
alternating weeks [25]. Similarly, [26] studied the effectiveness of regular
testing and a desynchronization protocol in preventing COVID-19 infection
in hospitals while accounting for both internal and external sources of infec-
tion. The effect of a cyclic 4-day work and 10-day lockdown strategy in the
workplace has been investigated by [27]. In nursing homes and long-term
care facilities, [28] constructed a mathematical model based on bipartite net-
works consisting of health care workers and facility residents to investigate
how restructuring interactions via the concept of shied immunity can change
outbreak dynamics. Specifically, shield immunity refers to the practice of
proportionally increasing the interactions between recovered and susceptible
individuals to protect the susceptible from infection. Additionally, [29] devel-
oped a decision support system for different employment sectors like agricul-
ture, manufacturing, construction, and human health in Italy and measured
the occupational risk of infection in workplace for each sector based on type
of work-activity, involvement of third parties in the work processes, and risk
of social aggregation.

Several recommendations based on mathematical models have been pro-
posed in reopening different activities in workplaces. For instance, some
studies have explored how enhanced levels of testing, contact-tracing, adop-
tion of facial masks, and home quarantine can facilitate relaxation of social
distancing interventions [30, 31]. Similarly, [32] studied how designing an
optimal employee screening strategy can reduce workplace infections, as well
as how such a strategy affects the feasibility of return to work policies.

From the above discussion, it is clear that most of these studies have fo-
cused on modeling the impact of implementing different infection reduction
measures in the workplace. Additionally, some studies have recommended
strategies for personnel scheduling and reopening different activities. How-
ever, no study to date has modeled the basic mechanics of workplace disease
transmission while accounting for testing frequency, the contact rate, the
vaccination rate, and the differing efficiencies of home vs office work.
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3. Modeling and Solution Approach for the Workplace Presence
Problem

While teleworking has advantages and disadvantages [33, 34], the COVID-
19 pandemic has forced many organizations to massively increase the amount
of remote work they allow. The realized productivity of employees working
from home depends strongly on the type of tasks they perform [35]. However,
for many job types (e.g., hospitality, banking, information technology) pro-
ductivity increases with the physical presence of employees in the workplace
[36]. So, while working from home clearly reduces infection risk, we con-
clude that it will also decrease productivity for many types of work [37, 38].
Therefore, a trade-off, mediated by workplace presence rate, will often exist
between productivity and infection risk.

In this section, we formulate this trade-off as a bi-objective optimization
problem to find the optimal rate of workplace presence while also considering
the risk of infection at the facility. Notably, if the employee productivity ratio
of some organization is not decreased by telework (e.g., due to a 100% digital
workflow), then clearly no trade-off between workplace infection risk and
productivity exists and the optimal (trivial) strategy is minimum workplace
occupancy. While some chance of infection for employees working from home
still exists, organizations do not have direct control over this, and there is
no disease spread in the workplace. Thus, in this paper, we only consider
organizations for which total productivity increases with increasing workplace
occupancy.

Table 1 defines the model’s key parameters, variables, and assumptions.
Parameters, Variables, and Assumptions of Model

• n: The total number of employees who regularly work in the facility

• nv: The number of employees who are (fully) vaccinated with one of
the available COVID-19 vaccines. We count partially vaccinated indi-
viduals (e.g., those who have only had one dose) as non-vaccinated.

• nI : The expected number of infected employees that can spread the
disease in the facility. As soon as they test positive or the disease’s
symptoms appear, they are quarantined and no longer counted as an
active employee.

• βu and βv: The per contact probability of virus transmission from one
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Table 1: The parameters and variables used in the proposed model.

Notation Definition
n The total number of employees
nv The number of vaccinated employees
nI The number of infected employees
βu The COVID-19 transmission rate for unvaccinated individuals
βv The COVID-19 transmission rate for vaccinated individuals
prod (home) Productivity ratio
τ The average interval between tests of the same employee
ρ Probability of an infection arriving at the facility
κ The average number of contacts per employee per day
occup The workplace occupancy rate

infected individual to one unvaccinated (βu) or one vaccinated (βv)
individual.

• prod: The productivity ratio is the productivity of working at home
compared to working at the office. This factor varies from facility to
facility and from employee to employee, based on their mission and
the type of services they provide. Managers can determine this fac-
tor based on their experience in working under the COVID-19 pan-
demic and comparing it with normal situations. Precisely, prod =
Productivity of working from Home
Productivity of working at Office

. So, prod = 1 means that there is no dif-
ference between productivity for working at home and workplace, and
prod = 0 means the employees has no productivity when they work
from home.

• τ : The time interval between two sequential tests of the same employee,
averaged over all employees. As the symptoms of COVID-19 appear
within two weeks [39, 40], we assume τ varies from one day to 14
days (incubation period). In order to keep the model as simple and
parameter sparse as possible, we assume perfect tests with no false
positives or negatives. This would not qualitatively change the results,
and we could easily incorporate the testing error as a coefficient in
computing the expected time to detect the infection.

• ρ: The per day probability that an infection arrives at the facility.
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This can be computed by considering the number of employees in
the facility and the incidence level in the neighborhood of the facil-
ity. Specifically, we estimate this probability based on the reported
number of infections over the last 7 days in the focal region (e.g., see
https://www.coronavirus.sachsen.de).

• κ: The average number of contacts per employee per day. We assume
the employees and clients mostly wear masks and keep a distance of at
least 1.5 meters.

• occup: The rate (percentage) of employees present in the workplace.
This is the only decision variable of the model, and should be deter-
mined optimally.

As previously mentioned, all variables and parameters are given except
the decision variable occup, which is the output of the model. Furthermore,
we divide the employees into three groups: (i) those who work at the facil-
ity, (ii) those who work from home, and (iii) those who are infected. The
productivity ratio of the first group is one, and those of second and third
groups are prod and zero, respectively. So, n − nI is the number of healthy
and active employees and of them occup percent are at the workplace with
full productivity, and the remaining 1− occup percent work from home with
productivity prod. Therefore, the total productivity of an organization can
be determined by the following formula1

Total Productivity = occup× (n−E(nI))+ prod× (1− occup)× (n−E(nI))
(1)

Therefore, one objective function of the model is maximizing the total
productivity, and the other one is minimizing the expected number
of infections, E(nI). There is a clear conflict between these two objectives.
Note that, prod is the productivity ratio determined by the decision-maker.
Without loss of generality, we consider prod ∈ [0, 1). Note that, for prod ≥ 1,
there is a trivial optimal solution occup = 0, that is working from home is
strictly preferred to working at the office, and it results in minimizing the
number of infected employees. The most important part of the objective

1It is possible to customize this formula and define it based on the outcomes in a
company if a clear definition is available. In this paper, we skip such details and only
focus on this basic and general definition of the total productivity.
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functions is computing the expected number of infected employees, E(nI),
after the arrival of an infection. Indeed, we must compute it as a function
of time and of the influential parameters mentioned in Table 1, which are
explained in detail below.

3.1. Probabilistic framework for computing the number of infected employees

We start with a full contact network of unvaccinated employees to ex-
plain our approach. We then extend it to accommodate both vaccinated and
unvaccinated employees. All possible pairs of employees are equally likely to
contact each other, but the average number of contacts per employee per day
is bounded by κ. Suppose an infection arrives at the facility at time (day)
t = 0. We then compute the probability of an arbitrary individual being
infected after ∆t days, PI(∆t, n, βu, κ), when the disease transmission rate is
βu and the number of contacts per day is κ. This probability function allows
one to easily compute the expected number of infected individuals as

E [(nI(∆t, n, βu, κ)] = 1 + (n− 1)× PI(∆t, n, βu, κ). (2)

For simplicity, we hereafter use PI(∆t) to refer to the probability function
PI(∆t, n, βu, κ) for known values of n and κ. Thus, computing the probability
of infection per employee leads directly to the expected number of infected
employees. Let us denote the source of infection at t = 0 by s, and let u be
an employee who stays healthy until ∆t− 1. There are then two ways u can
be infected on day ∆t; via some direct contact with s, or via contact with one
of the n − 2 other employees. The transmission probability for each of the
contacts is βu, and the probability of infection for the source is one, while
the probability of infection for the other employees is PI(∆t − 1) (Figure
1). This means that the probability that an arbitrary employee like u stays
healthy after c contacts with s is (1 − 1 × βu)

c. Similarly, the probability
that u remains healthy after c contacts with the other n − 2 employees on
day ∆t is (1−PI(∆t−1)×βu)

c. These relationships imply that the infection
probability can be calculated as a recursive function. Since we assume κ
contacts for each employee per day and all of them have an equal chance to
occur, this function can be written as

PI(∆t) = 1−(1−PI(∆t−1))×
[
(1− βu)

κ 1
n−1 × (1− PI(∆t− 1)βu)

κ(1− 1
n−1

)
]
,

(3)

9



Figure 1: Possible infection pathways in n employees of which one of them (s) is infected.

where κ 1
n−1

is the expected number of contacts between employee u and

the infected source employee s, and κ(1 − 1
n−1

) is the expected number of
contacts between employee u and the other employees except s. Note that,
(1−PI(∆t− 1)) is the probability that the employee stays healthy until day
∆t− 1.

Eq. 3 computes the probability that an arbitrary employee gets infected
after t = ∆t days when the employees have κ contacts per day with full
workplace occupancy (i.e., occup = 1). For 0 ≤ occup ≤ 1, all employees
(including s) stay at home (and healthy) with probability 1− occup. So the
probability of one contact between u and s occurring is occup2. Therefore,
the infection probability formula for known n, κ and occup can be extended
as follows

(4)

PI(∆t)

= 1− (1− PI(∆t− 1))
[
(1− βu)

occup2×κ 1
n−1

× (1− PI(∆t− 1)βu)
occup×κ(1− 1

n−1
)
]
.

Also, we set PI(0) = 0 without loss of generality as the scenario we assume
here. After computing the probability of infection, the expected number of
infected employees can be straightforwardly computed by applying Eq. 2.

Now, let us extend the above computation to two different groups, namely
vaccinated and unvaccinated employees. We assume the disease transmission
probability for the vaccinated group is βv (βv ≪ βu). Without loss of gener-
ality, we consider the source of infection s as an unvaccinated employee and
compute the probability of infection in two cases: (i) for an unvaccinated
employee u, and (ii) for a vaccinated employee v (see Fig. 2). There are
three ways of infecting u: (i) via a direct contact with s, (ii) via contact
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Figure 2: Infection possibilities of n employees of which one of them (s) is infected and
there are two groups of vaccinated and unvaccinated employees. The left subfigure shows
the scenario for an unvaccinated employee u and the right one shows the scenario for a
vaccinated employee v.

with one of the nv vaccinated employees, or (iii) via contact with one of the
n − nv − 2 unvaccinated employees. The transmission probability for each
of these contacts is βu because u is an unvaccinated employee, however, the
transmission probability for the vaccinated group is βv. Let P

u
I (∆t− 1) and

P v
I (∆t− 1) be the probability of infection for an unvaccinated employee and

a vaccinated employee, respectively. Thus, the recursive equations for each
group can be written as

(5)

P u
I (∆t)

= 1− (1− P u
I (∆t− 1))

[
(1− βu)

occup2×κ 1
n−1

× (1− P u
I (∆t− 1)βu)

occup×n−nv−1
n−1

×κ(1− 1
n−1

)

× (1− P v
I (∆t− 1)βv)

occup× nv
n−1

×κ(1− 1
n−1

)
]
,

and

(6)

P v
I (∆t)

= 1− (1− P v
I (∆t− 1))

[
(1− βv)

occup2×κ 1
n−1

× (1− P u
I (∆t− 1)βv)

occup×n−nv−1
n−1

×κ(1− 1
n−1

)

× (1− P v
I (∆t− 1)βv)

occup× nv
n−1

×κ(1− 1
n−1

)
]
,

where P u
I (0) = P v

I (0) = 0. One advantage of these recursive formulas
is that P u

I (∆t) and P v
I (∆t) can be efficiently computed in linear time to ∆t
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using a simple bottom-up approach. Finally, the expected number of infected
employees ∆t days after an infection is introduced can be computed as

E [nI(∆t, n, nv, βu, βv, κ, occup)] = 1+(n−nv−1)×P u
I (∆t)+nv×P v

I (∆t). (7)

Thus, Eq. 7 provides a recursive formula to compute the number of
infections over time. An implementation of this equation and comparison
with simulation results is presented in the Appendix.

3.2. Computing optimal presence rate

As explained, the expected number of infected employees ∆t days after an
infection arrives at the facility can be computed using Eq.7. For simplicity, we
denote this expected number by E [nI(∆t)]. Let ρ be the per day probability
that an infection arrives at the facility. This probability can be determined
using two straightforward approaches. First, using the (recent) historical
data of incidence in the company, and second, using the local incidences and
applying the ratio of the vaccination rate in the neighborhood of the facility
to the vaccination rate in the company. Therefore, the cumulative number
of infected employees for a time interval T days can be computed as follows

E(nI) = AccumI(T, ρ) = ρ× Z(T ), (8)

where Z(T ) is defined

(9)Z(T ) =

{
E [nI(0)] + E [nI(1)]− E[nI(1)]×E[nI(0)]

n
, if T = 1

E [nI(T )] + Z(T − 1)− E[nI(1)]×Z(T−1)
n

, if T ≥ 2

Note that Z(T ) is a linear recursive formula to compute the cumulative
number of infections for t = 0, 1, . . . , T by removing the expected overlapping
infected employees over time.

Eq. 8 computes the total number of infected employees over a time in-
terval T days. If employees are tested every τ days on average, and they
uniformly distribute in the test interval (having k = n

τ
tests per day on

average), the expected time to detect the infection can be computed as

(10)

τ

=
[
1− (1− Pr(t))k

]
+

τ∑
t=2

[
t× (1− (1− Pr(t))k)×

t−1∏
t′=1

(1− Pr(t′))
k

]
,
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where Pr(t) = E[nI(t)]
n

is the probability of infection per employee t days

after an infection arrives at the facility, so, 1− (1− Pr(t))k is the probability
of detecting at least one infected employee by testing a subgroup of k after t
days. For detecting the infection t > 1 days after of arrival, we must compute
the probability that it has been not detected in the days before t, i.e. t′ < t,
which is computed using

∏t−1
t′=1 (1− Pr(t′))k.

τ in Eq.10 is the expected time to detect an infection if the employees are
tested every τ days on average. Therefore, the expected number of infected
employees before detecting an infection is obtained by E [nI(τ, n, nv, βu, βv, κ, occup)].
So, the total productivity (see Eq.1) of a facility can be determined for any
given occup in [0, 1], and as a function of the other parameters.

3.3. A practical multi-objective solution approach

As previously described, the optimal workplace presence strategy is for-
mulated in the framework of a bi-objective optimization problem as follows

Minimize E(nI),

Maximize Total Productivity,

Subject to :

occup ≥ An Occupancy Threshold.

(11)

The first objective is minimizing the expected number of infected employ-
ees in Eq. (8), and the second objective is maximizing the total productivity
of the organization via Eq. (1). The only constraint that we considered in
the model is related to the minimum possible workplace occupancy, the Oc-
cupancy Threshold, which is the minimum number of employees that must be
present at the facility to perform tasks for which physical presence is required.
It is also possible to include additional lower or upper bound constraints on
the occupancy variable. The model has two conflicting objectives. Clearly, by
increasing workplace occupancy, the expected number of infected employees
will increase as well. This is, however, not the case for the second objective,
because by increasing occupancy, the number of infected employees also in-
creases, but total productivity will eventually decrease as the productivity of
infected employees is zero. Figure 3 shows the effect of occupancy on the first
and second objective separately for the scenarios of one test per week (blue
curve) and one test per two weeks (red curve). As expected, the number
of infections is a strictly increasing function of occupancy rate, while, the
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Figure 3: Effect of occupancy on the expected number of infections (left panel) and on the
total productivity (right panel) for one test per week and one test per two weeks. In these
simulations, we assumed an organization with 100 employees of which half are vaccinated,
with 15% contact rate, and the home productivity ratio 0.90.

productivity function is increasing for the low occupancy, and after reaching
the maximum productivity (e.g., for occup ≈ 88% in the first scenario and
for occup ≈ 65% in the second one), then becomes a decreasing function of
occupancy.

The outcome of the optimization problem presented in 11 is a set of trade-
off, or Pareto optimal solutions, which are defined as solutions that are not
improved for an objective unless it sacrifices the other objective [41]. There
are different approaches to solve multi-objective optimization problems, such
as the weighted-sum method [42], the lexicographic method [43], the ϵ −
constraint approach [44], goal programming [45], or evolutionary algorithms
[46, 41]. All of these approaches have their advantages and disadvantages.
Some of them have high time complexity, others work only for differentiable
functions or convex models, while some provide no guarantee of finding all
the Pareto-optimal solutions. We therefore propose a quick and practical
method to compute all Pareto optimal solutions of the model 11 efficiently.

The method utilizes some observations to solve the model. First, occup
is a continuous variable, but in reality, there are at most n possible choices
for the number of employees present in the facility. So initially, for any
occup ∈ {0, 1

n
, 2
n
, . . . , n

n
} which satisfy the occupancy threshold, we compute

the expected detection time based on Eq. (10), and the expected number
of infected employees and its corresponding total productivity based on Eq.
(7) and Eq.(1), respectively. All of these steps can be handled in O(nτ) time
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using the presented linear recursive equations. We denote this solution set
by S. Now, we can find the non-dominated solutions of S and report them
as the Pareto-optimal solutions of the problem. A solution s̄ ∈ S is a non-
dominated solution if there is no other solution in S such that it is better
than s̄ in both objectives, i.e., its expected number of infections is less than
the expected number of infections of s̄, and simultaneously, its productivity
is more than the productivity of s̄. Since the solutions of S are constructed
one by one, from the minimum expected infections to the maximum one,
the Pareto-optimal solutions of the problem can be computed in linear time
using a sweep-line approach [47]. The pseudocode of the proposed algorithm
is presented as follows.

Algorithm 1 Computing Pareto Optimal Workplace Presence Strategies

Input: Organizations’s Parameters (the notation mentioned in Table 1)
Output: All Pareto Optimal Strategies

max prod← −1
i← 0
while i ≤ n do
occup← i

n

if occup ≥ Occupancy Threshold then
Compute τ using Eq. (8)
Compute expected number of infections using Eq. (7)
Compute the total productivity using Eq. (1) and denote it by TP
if TP > max prod then
Report the current strategy as a Pareto optimal strategy
max prod← TP

end if
end if
i← i+ 1

end while

4. Simulation Results and Discussions

In this section, we show some numerical results from the proposed model
and method for computing Pareto optimal solutions that minimize the ex-
pected number of infections while maximizing productivity. Since there are
several influential input parameters in the proposed model, there are too
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many possible combinations of them to consider exhaustively. We therefore
briefly display the output of the model for some diverse set of possible inputs,
and instead, we provide an online optimization tool based on the model to
allow interested readers to consider all possible combinations of the model
parameters as input and observe the output. A user-friendly version of this
tool is available at where2test.de/optimization.

In our simulations, we consider a mid-sized organization with n = 100
employees and suppose the 7-day incidence rate per 100,000 population is
500. Thus, the average probability of infection per employee in a week will
be 500

100,000
, and consequently, the probability that an infection arrives at the

facility is ρ = 1− (1− 500
100000

)n. We specifically consider two scenarios based
on the disease transmission rate for unvaccinated employees (βu). First,
we choose the baseline value as βu = 0.04 from a possible range of values
reported in a previous study [48]. This baseline scenario can be regarded as
the situation where Delta is the dominant SARS-CoV-2 variant. We then
consider the situation where the transmissibility increases 2.5-fold (i.e. βu =
0.1), which is consistent with the recently identified Omicron variant [49, 50,
51]. Additionally, we set the transmission rate of vaccinated employees to
βv = (1 − 0.80)βu, which implies 80% immunity for vaccinated individuals
[52, 53, 54, 55].

Furthermore, we assume two different values each for the home produc-
tivity ratio (prod = 0.6 and prod = 0.9), the vaccination rate (0.4 and 0.8),
the test interval (τ = 7 andτ = 14 days), and the number of contacts (low:
κ = 5 + 0.10 × occup × n, and high: κ = 5 + 0.20 × occup × n). For κ, the
low contact scenario assumes every employee in the workplace has at least
5 contacts plus additional contacts totalling 10% of the employees present.
Likewise, the high rate scenario assumes the number of contacts is at least
5 contacts plus additional contacts totalling 20% of the employees present.
Figure 4 displays the result of these 15 scenarios for different setting of input
parameters, whereas Table 2 details the 15 input settings.

Each subfigure in Figure 4 shows Pareto optimal solutions and their ob-
jective values. The horizontal axis shows the possible occupancy values. The
blue diagram and the left vertical axis illustrate the resulting total produc-
tivity, and the red diagram and the right vertical axis illustrate the expected
number of infected employees per week. Note that the Pareto optimal so-
lutions are displayed only for the occupancy values which result in such
solutions, and the dominated solutions are not displayed. These results to-
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gether provide useful information for a decision-maker who may consider a
maximum infection risk threshold and try to find the maximum productivity
possible without exceeding that threshold by changing parameters such as
the vaccination rate, test interval, or contact rate.

For example, when the 7-day incidence is 500 individuals per 100,000
population (this is almost the average number of incidences in Saxony, Ger-
many from January first till mid February 2022, e.g., see https://www.
where2test.de/saxony), the background risk of infection per employee is 5

1000

per week, and for the whole organization it is 1− (1− 500
100000

)100 ≈ 0.4. The
background risk can be interpreted as the risk of infection if the employ-
ees do not come to the office and maintain normal social contacts by, e.g.,
going to restaurants and shopping. When the number of incidences is inter-
mediate, decision-makers can use the background risk as a reference point
in determining a proper threshold for the risk of infection in the company.
The horizontal green line in each of the subfigures displays the corresponding
background risk.

For example, if a decision-maker would like to follow a workplace pres-
ence strategy where within-organization risk never exceeds the background
risk, he/she can consider the occupancy corresponding to the intersection
point between the background risk and the computed infection risk, i.e.,
the green dashed line and the red diagram. For instance, such occupancy
in the first scenario in Figure 4(a) (τ = 7, prod = 0.6, vaccination rate =
0.5, Low contact rate and βu = 0.04) corresponds with occupancy 64%,
and it will result in 85% productivity, while in the second scenario, Figure
4(o)(τ = 14, prod = 0.9, vaccination rate = 0.8, High contact rate and
βu = 0.10), it is 46% with more than 94% productivity.

In a reverse usage of the Pareto optimal solutions, a decision-maker may
wish to know what is the risk of infection (e.g., compared to the background
risk) if he/she would like to achieve a particular level of productivity in
the company. For instance, in the second scenario, 4(b)(τ = 7, prod =
0.6, vaccination rate = 0.8, Low contact rate and βu = 0.04), a level of
70% productivity can be achieved with only half of the background risk, i.e.,
0.2, resulting in only 25% of employees present in the workplace. To com-
pute this, we first find the intersection point of 70% productivity with the
productivity curve (blue). In the second scenario, it results in almost 25%
occupancy. Then find the infection risk on the red curve which corresponds
with such occupancy, which in this case is almost 0.2.

Finally, decision makers can use several curves together to get a sense of
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Table 2: 15 different settings of input parameters. The corresponding Pareto optimal
solutions are depicted in Figure 4.

Figure τ prod vaccine rate contact rate βu

Fig. 4(a) 7 0.6 0.5 Low 0.04
Fig. 4(b) 7 0.6 0.8 Low 0.04
Fig. 4(c) 14 0.9 0.5 Low 0.04
Fig. 4(d) 14 0.6 0.8 Low 0.04
Fig. 4(e) 7 0.9 0.5 High 0.04
Fig. 4(f) 14 0.6 0.5 High 0.04
Fig. 4(g) 14 0.9 0.5 High 0.04
Fig. 4(h) 7 0.9 0.5 Low 0.1
Fig. 4(i) 7 0.9 0.8 Low 0.1
Fig. 4(j) 14 0.6 0.5 Low 0.1
Fig. 4(k) 14 0.9 0.8 Low 0.1
Fig. 4(l) 7 0.6 0.8 High 0.1
Fig. 4(m) 14 0.9 0.5 High 0.1
Fig. 4(n) 14 0.6 0.8 High 0.1
Fig. 4(o) 14 0.9 0.8 High 0.1

the productivity or infection risk associated with changing key parameters,
such as test interval and/or vaccination rate among employees. For instance,
if the current situation in an organization is similar to the 13th scenario (see
Figure 4(l)), then 54% occupancy will result in infection risk equal to the
background risk with 81% productivity. Now, if the test interval among the
employees rises to τ = 14 days, (see 15-th scenario, Figure4(l)), and the
decision maker still would like the risk of infection in the organization to
not exceed the background risk, he/she has to decrease occupancy to almost
46%, which results 78% productivity. Similar analyses can be performed to
investigate the effects of other input parameters. As prevously mentioned,
because of the extremely large number of possible combinations of the input
parameters, it is not possible to concisely discuss all sensitivity analyses and
observe changes in the objectives across the full parameter space. Instead,
we suggest using the online application we provide for this purpose.

5. Conclusion and Future Directions

In this study, we developed a model to compute the optimal trade-off so-
lutions for minimizing the risk of infection and maximizing the productivity
in organizations during the COVID-19 pandemic. First, we proposed a prob-
abilistic approach to compute the expected number of infected employees
over the time by incorporating basic influential parameters such as the local
incidence level, number of contacts among the employees, the average test
interval, and the vaccination rate. This basic probabilistic model can easily
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Figure 4: Pareto optimal solutions for 15 different setting of input parameters. See Table
2. The horizontal axis shows the possible occupancy. The blue curve and the left vertical
axis illustrate the obtained total productivity, and the red curve and the right vertical axis
illustrate the expected number of infected employees per week.
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be extended to compute the number of infected individuals and probability
of infection over time for groups of people differing in terms of their probabil-
ities of infection. Though our focus here has been on COVID-19, our model
and methods could easily be adapted to optimize workplace occupancy in
the context of other infectious diseases.

We assumed two groups of employees with different infection probabilities
(vaccinated and unvaccinated), and presented a practical approach to com-
pute the Pareto optimal presence rate of employees to reach the maximum
productivity and minimum infected risk. In addition to the incidence level,
the key parameters that influence the maximum productivity are the home
productivity ratio of the employees, the contact rate between the employees,
the average test interval among the employees and the vaccination rate. We
designed the model to be as simple as possible while still being able to cover
and interpret the effects of all influential parameters. Our approach is linear
in terms of time complexity, and it can be simply extended to consider the
sensitivity of COVID-19 diagnostic tests. Furthermore, the model can be
extended to more than two groups of employees, e.g, different age groups.
A basic implementation of this model and the optimization algorithms are
available online at https://test.where2test.de. Future extensions of this study
may consider the following subjects

• In addition to employees, visitors (i.e., clients and customers) who have
direct contact with the employees can be considered for computing the
probability of an infection arrival at the facility.

• Heterogeneous groups of employees with different contact rates, physi-
cal networks, productivity ratios and test frequencies can be considered.

• For simplicity, we defined the total productivity of the organization
based on the individual productivity, that is, the sum of all employees’
productivity. However, it is possible for some organizations to define
their total productivity based on the type of the tasks and services in
different sections of the company. To this end, the physical graph of
contacts and more details on the outcomes would be required as input.
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Appendix: Evaluation of the proposed probabilistic approach

However, we explained the theory behind the probabilistic approach, in
this section, we implement the proposed probabilistic approach for computing
the expected number of infected employees as well. To this end, we assume
different settings of input parameters, and compute the expected number of
infections along the time. Indeed, we suppose one infection at time t = 0,
and compute the expected infections for one month, i.e., t < 30 using Eq. 7.
Fig. 5 illustrates the results for different values of βu, κ, occup and nv. In
these results, we assumed n = 150 employees and βv = 0.15βu. In each sub-
figure, three cases of transmission rates, βu = 0.05, βu = 0.10 and βu = 0.15,
are shown. Also, for comparison, we show simulation results (the dots), that
is, simulating the companies using a set of n = 150 agents (employees) based
on the parameter’s setting. To reduce the effect of random number genera-
tors, we ran the simulations for 100 times and report the average number of
infected agents. Table 3 shows the mean absolute percentage error for each
figure and the average of them. As it can be seen, the average (the last row
of the Table) percentage of difference between the results is 5.6%, 3.8% and
2.7% for transmission rates βu = 0.05, βu = 0.10 and βu = 0.15, respectively.
The results show the probabilistic analysis estimates the number of infected
individuals with high accuracy, while it is fast and flexible approach to ap-
ply for heterogeneous group of people with different transmission rate and
number of contacts.

Table 3: Mean absolute percentage error between the simulation results (average of 100
iterations) and the proposed probabilistic analysis for estimating the number of infected
employees for six different settings of the influential parameters.

βu = 0.05 βu = 0.10 βu = 0.15
Fig. 5(a) 0.055 0.042 0.041
Fig. 5(b) 0.057 0.024 0.026
Fig. 5(c) 0.028 0.017 0.014
Fig. 5(d) 0.078 0.057 0.040
Fig. 5(e) 0.051 0.053 0.024
Fig. 5(f) 0.064 0.036 0.014
Average 0.056 0.038 0.027
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Figure 5: The simulation results and the probabilistic analysis of the expected number
of infected employees for a facility with n = 150 employees along time, ∆t = 1, 2, . . . , 29
days, after the infection arrives. Six different settings of the influential parameters are
shown. The computations are based on Eq. 7.
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