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Abstract

Long-term care facilities have been widely affected by the COVID-19 pandemic.

Retirement homes are particularly vulnerable due to the higher mortality risk

of infected elderly individuals. Once an outbreak is happening, suppressing the

spread of the virus in retirement homes is challenging because the residents are

in contact with each other and isolation measures cannot be widely enforced.

Regular testing strategies, on the other hand, have been shown to effectively

prevent outbreaks in retirement homes. However, high frequency testing may

consume substantial staff working time, which results a trade-off between the

time invested in testing, and the time spent providing essential care to resi-

dents. Thus, developing an optimal testing strategy is crucial to proactively

detect infections while guaranteeing efficient use of limited staff time in these

facilities. Although numerous efforts have been made to prevent the virus from

spreading in long-term care facilities, this is the first study to develop test-

ing strategies based on formal optimization methods. This paper proposes two

novel optimization models for testing schedules. The models aim to minimize

the risk of infection in retirement homes, considering the trade-off between the
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probability of infection and staff workload. We employ a probabilistic approach

in conjunction with the optimization models, to compute the risk of infection,

including contact rates, incidence status, and the probability of infection of the

residents. To solve the models, we propose an enhanced local search algorithm

by leveraging the symmetry property of the optimal solution. We perform sev-

eral experiments with realistically sized instances and show that the proposed

approach can derive optimal testing strategies.

Keywords: Testing strategy, Retirement home, COVID-19, Long-term care,

Nursing home, Pandemic, Symmetry property

1. Introduction

Long-Term Care Facilities (LTCF) include institutions such as Retirement

Homes (RH), nursing homes, and rehabilitation centers that provide medical

and personal support to patients [1]. These organizations aim to provide high-

quality care for the elderly population and efficient management of resources5

[2, 3].

The coronavirus disease 2019 (COVID-19) pandemic has had a significant

impact on LTCFs [4, 5]. These facilities typically have a high density of el-

derly people at a higher risk for mortality after being infected with the severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. The majority10

of residents in these institutions have pre-existing conditions (i.e., diabetes, res-

piratory disease, hypertension, chronic heart diseases) [6, 7], which have been

linked to an increased risk of death in older patients [8, 9]. Early in the de-

velopment of the COVID-19 pandemic, it became clear that the elderly are the

most impacted. For instance, in the European Union/European Economic Area15

(EU/EEA), people over 65 years old accounted for 88% of all COVID-19 re-

lated deaths. In particular, LTCFs have been linked to 37-62% of fatalities in

several EU/EEA countries [10, 11]. Similarly, in the United States, over 30% of

COVID-19 related deaths were associated with nursing homes [12].

Although COVID-19 vaccines have demonstrated high efficacy, they do not20
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provide full immunity against infection nor do they completely mitigate mortal-

ity risk in older individuals [13, 14, 15, 16]. Thus, to contain the rapid spread of

the virus in LTCFs, the Centers for Disease Control (CDC) and the European

Centre for Disease Prevention and Control (ECDC) have issued infection pre-

vention and control (IPC) recommendations, including social distancing, daily25

screening (testing) of staff and residents, isolation, and visitation restrictions

[4, 1]. Among the IPC recommendations, widespread testing of staff and resi-

dents has been demonstrated to detect infections proactively and avoid propa-

gation. For instance, [9] performed an outbreak investigation in a nursing home

in Seattle and found that symptom screening fails to identify infected residents.30

In contrast, preventive testing combined with safety strategies can reduce vi-

ral spread. Similarly, [17], and [18] demonstrated that facility wide-testing is

an efficient strategy to prevent COVID-19 outbreaks since it helps to identify

asymptomatic infections in LTCFs proactively. Cohort isolation of positive res-

idents in conjunction with widespread screening has also been considered as an35

efficient strategy to prevent the spread of the virus in [19]. Overall, widespread

testing in LTCFs has been shown to be one of the most efficient strategies to

limit outbreaks. The proactive testing strategy combined with other protocols,

such as isolation and quarantine, facilitates the timely implementation of control

procedures due to the early detection of the virus [20, 21].40

Despite the recommendations from the health authorities to mitigate the

spread of COVID-19, LTCFs are still at risk of outbreaks. Besides the factors

related to the residents’ health, other aspects have been reported as the main

causes of outbreaks, including understaffing, residents sharing common spaces,

and high contact rates between residents and staff [22, 5, 23]. In particular, RH45

facilities have faced difficulties in controlling the spread of the virus because

isolating infected residents is often not possible due space limitations and reg-

ulations. Moreover, there is a shortage of staff to administer the test to the

residents [24, 19]. As a consequence, once an infection arrives at the facility,

it spreads very rapidly, putting its residents and staff at risk. In order to pre-50

vent the pandemic from spreading to vulnerable populations, it is necessary to
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implement effective testing strategies in RHs.

Performing testing procedures in RHs is a challenge. Firstly, the staff, who

have a defined workload of caregiving tasks, need to dedicate a portion of the

workload to administering the test to the residents, which may affect the quality55

of service. Due to financial and/or regulatory limitations, finding additional

staff during the pandemic to perform testing activities might not be possible

[24]. Secondly, implementing frequent testing may cause discontent among the

residents because of the implications of the test procedure. These challenges

evidence a fundamental trade-off between the staff workload for care duties and60

testing the residents. An optimal testing strategy therefore needs to satisfy staff

workload limitations while minimizing the risk of infection in the facilities.

Motivated by the current challenges in preventing the spread of COVID-19

in RHs, we propose a novel optimal testing strategy for outbreak suppression,

in the framework of an optimization model. The testing procedure in RHs is65

usually performed by trained staff. The residents are divided into groups and

tested considering a predefined test schedule. The staff is responsible for clean-

ing, disinfecting, preparing the testing workspace, and administering tests, all

of which consumes a significant amount of time. Therefore, finding an optimal

testing schedule requires determining the testing interval, the number and size70

of groups, and the day on which to test each group. Collectively, these con-

siderations result in a challenging combinatorial optimization problem. In the

Operations Research literature, this problem is similar to the resource alloca-

tion problem that optimally assigns resources to activities to minimize related

costs. Due to the complexity of solving these combinatorial problems, heuristic75

solutions are mainly considered, such as search algorithms. These algorithms

have guaranteed efficient performance for obtaining global solutions [25, 26, 27].

To the best of our knowledge, there are no studies in the literature that focus on

developing testing strategies in LTCFs that take formal optimization methods

into account.80

The contribution of this paper is twofold. First, we introduce novel optimiza-

tion models for testing schedule strategies. Specifically, we develop two Mixed
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Integer Nonlinear Programming (MINLP) models for balancing the staff’s work-

load in RHs while minimizing the expected detection time of a probable infection

inside the facility. The first model minimizes the expected time to detect an85

infection, considering a threshold on the maximum portion of staff time allo-

cated for the testing process. The second model minimizes the testing workload

for the staff, incorporating the number of infections in the neighborhood. In

both cases, the expected risk of infection is computed via a probabilistic disease

transmission model. Second, to solve the models, we propose a highly useful90

property –which we denote the Symmetry property– and leverage it to propose

an enhanced local search algorithm able to find optimal solutions.

This paper is organized into five sections. After reviewing related and re-

cent studies in Section 2, the models for the problem of finding optimal testing

strategies in RHs are developed in Section 3. A practical approach to finding95

the optimal testing strategy is proposed in Section 4. Simulation results for

different scenarios are presented in Section 5. Finally, a conclusion is drawn in

Section 6.

2. Related Work

This section covers the literature related to the optimization of testing strate-100

gies during the COVID-19 pandemic. We focus on works that study the design

of testing strategies for LTCFs aiming to control the spread of the virus.

Developing an effective testing strategy is crucial to prevent the spread of

the virus that causes COVID-19. However, a limited number of studies have

considered models within a mathematical optimization framework aiming to105

provide optimal testing strategies to control infectious diseases in LTCFs (See

[28, 29] for a review of Optimization in the context of COVID-19). Most studies

have focused on studying testing strategies employing compartmental models

(i.e., Susceptible- Infectious-Recovered (SIR) and variants) [30] and simulation

models [28].110

According to [31] viral testing has different aims depending on the ap-
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plication context: 1. Diagnostic testing: for testing symptomatic patients or

those who had contact with infected individuals. 2. Spreading suppression: for

widespread testing of asymptomatic individuals. 3. Outbreak detection: for ran-

domized testing of asymptomatic when there is a low prevalence of the infection115

in the population. Several studies have been dedicated to the optimization of

diagnostic testing strategies (See e.g., [32, 33]). However, the main focus of

diagnostic testing is clinical, for detecting and treating the presence of the virus

in individuals [34], and it is out of the scope of our study. We review studies

addressing testing strategies for outbreak detection and spreading suppression.120

Some studies have considered outbreak detection strategies in nursing homes.

The authors in [31] remarked that outbreak detection strategies are recom-

mended for small institutions with a limited budget of testing and in which new

infections are rare (i.e., low transmission rates). They developed a compart-

mental network-based Susceptible-Exposed- Infectious-Recovered (SEIR) model125

considering the heterogeneity of connections, incubation period, and test effi-

cacy. The findings demonstrated that testing small groups with high frequency

is a better strategy for outbreak detection than testing larger groups less fre-

quently. In Germany, [35] studied the COVID-19 outbreaks in retirement homes

and found that symptom control and testing, in addition to vaccination, are ef-130

fective prevention strategies. [36] employed an SEIR network epidemic model

based on disease status. They used the model to study a shield-immunity ap-

proach, considering a bipartite network between the staff and residents. The

results showed that shield-immunity interventions in conjunction with regular

testing helps to reduce the size of the outbreak. [37] considered an outbreak135

testing strategy employing a Reed-Frost model. The authors evaluated the ef-

fectiveness of outbreak testing for staff and residents in nursing homes. The

findings suggested that combining infection control practices with massive test-

ing is an effective approach to prevent the spread of COVID-19.

In the context of spreading suppression strategies in LTCFs, [38] studied140

testing strategies for closed facilities (i.e., LTCFs and incarceration centers).

The study considers an extended deterministic SEIR model to evaluate the im-
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pact of widespread testing on the staff on the number of resident infections. The

results showed a 40% reduction in cases by minimizing the number of contacts

between staff and residents and testing the staff every five days. The authors145

remarked that these results are highly dependent on the type of facility. The

authors in [39] studied strategies for reopening activities considering a Markov

process. They considered a graph representation of the individuals’ contacts to

determine the structures that reduced the spread of the disease. To reduce dis-

ease spread, the results indicated that limiting the interactions of participants150

in an activity is more effective than a size limitation.

Overall, to the best of our knowledge, the problem of developing a testing

schedule that formally optimizes the trade-off between staff workload and its

impact on the number of infections in LTCFs has not been studied in the liter-

ature. Within the COVID-19 context, most studies have focused on developing155

personnel scheduling models for healthcare workers [40, 41, 42, 43, 44, 45], but

disregarding an epidemiological model for computing the risk of infection. Of

particular interest is the work of [46]. The authors developed an optimization-

based compartmental model for planning, testing, and control. Similarly, [47]

employs an SEIR model to study the optimal balance between spreading sup-160

pression and outbreak detection testing strategies under limited testing capaci-

ties. However, the solution framework of these studies is focused on country-wise

strategies and not on particular organizations.

3. Modeling the test scheduling problem for retirement homes

The required notation for the proposed models is as follows:165

Nomenclature

Parameters

m Number of residents.

n Number of staff.
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Ptime Preparation time for cleaning and preparing the testing workspace fore170

each group of residents.

Ttime Testing time for each resident.

p Maximum portion of staff time which can be allocated to testing pro-

cesses1

α Acceptable level of risk inside the retirement homes compared to the175

outside (background risk).

Maxτ Upper bound on the test interval.

β Probability of disease transmission per one contact.

κ Average number of daily contacts for each resident.

Decision Variables180

k Number of groups of residents.

τ Testing interval.

G = {g1, g2, . . . , gk} Size of groups, i.e., gi denotes the size of ith group k.

D = {d1, d2, . . . , dk} Day for testing each group k.

In the problem of scheduling the residents for testing in RHs, the aim is to185

find an optimal test schedule that minimizes the risk of infection in the facility

while balancing the staff workload. Thus, the testing strategy includes defining

a testing interval, the testing day, and the grouping of residents. Also, the tests

are available and there is no budget constraint to provide them2.

The RH consists of m residents and n staff. For simplicity, we assume the190

homogeneous in terms of the probabilities of transmitting the virus and being

1Note that p is a decision variable in Model 2.
2The problem discussed in this paper and computational experiments are based on data

of the retirement homes, Diakonisches Werk im Kirchenbezirk Löbau-Zittau GmbH, Saxony,

Germany.
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infected. Indeed, in the model, we utilize the average values of such parameters.

We also assume that, due to strict governmental regulations, the staff is subject

to regular testing, so we only focus on testing the residents in the facility [11].

The testing process is described as follows. The residents are divided into k195

groups, and tested in predefined time intervals, such that every τ days one test

per resident is performed. Thus, a testing strategy is defined using a quadruple

(k, τ,G,D) where k is the number of groups for testing, τ is the testing interval,

G = {g1, g2, . . . , gk} is a partitioning of the residents to k groups, and D =

{d1, d2, . . . , dk} shows the testing day for each group. The m residents are200

divided into k groups, and the test is performed in a day di, where 0 < di ≤ τ ,

for i = 1, 2, . . . , k. Note that all decision variables k τ , G, and D are defined

in the integer domain. Without loss of generality, we set the reference day as

zero, so dk = τ . Each group is tested in one batch for the staff, who cleans

and prepares the testing workspace. We denote the preparation cost (here time205

or workload) by Ptime. In addition to this cost, each resident has his/her own

testing time, denote it by Ttime. For simplicity, we consider the costs in terms

of one working day. The total cost for one round of testing of all residents is

expressed as follows:

Testing cost = k × Ptime +m× Ttime. (1)

The testing cost in Equation (1) is the total time the staff spend in prepa-210

ration and performing the test, every τ days. Model 1 is a MINLP defined as

follows:
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Model 1:

Minimize Expected Detection Time of (k, τ,G,D) (2)

s.t.:

k × Ptime +m× Ttime ≤ p× n× τ (3)

k∑
i=1

|gi|= m (4)

τ ≤Maxτ (5)

|gi|≤Maxg, ∀i = 1, 2, . . . , k (6)

The objective function (2) aims to minimize the expected detection time

defined by the quadruple (k, τ,G,D). For any testing strategy (k, τ,G,D), it

is possible to compute the expected time to detect a probable infection among215

the residents. For example, if k = 1, the expected time to detect will be τ
2 , and

for k > 1, it depends on the rate of COVID-19 transmission and the number

of contacts among the residents. At the end of this section, we discuss how to

compute the expected detection time (See Subsection 3.2).

Constraint (3) limits the proportion of staff time dedicated to the testing220

process, where p refers to the portion of the staff’s working time which can be

allocated to the testing process. Constraint (4), imposes that the sum of the

defined groups is equal to the total number of residents, m, where |gi| denotes

the size of the group gi. Constraint (5) ensures that the testing interval, τ , does

not exceed a predefined upper bound, Maxτ . For instance, Maxτ = 7 forces225

the algorithm to find a solution that guarantees each resident is tested at least

once a week. Constraint (6), limits the size of each batch to the upper bound,

Maxg, of the maximum number of groups.

The resulting strategy of Model 1 aims to find the testing strategy that

minimizes the time for detecting a probable infection in the facility under the set230

of constraints (3)–(6). We show under the homogeneity assumption of residents,

it also results in minimizing the expected number of infections.

Theorem 1. In the problem of finding an optimal testing strategy for a re-
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tirement home assuming homogeneity of residents, the objective of minimizing

the detection time is equivalent to minimizing the number of infections after an235

infection arrives at the retirement home.

See proof 1 in the Appendix.

In Model 1 (i.e., Equations (2)–(6)), we derive an optimal testing strategy

by minimizing the expected detection time. Alternatively, a manager of an RH

might also want to reduce the risk of infection in the facility to an admissible240

preferred level. Then he/she wishes to achieve this level with the minimum

possible allocation of staff time. In order to represent this problem, we define

Model 2 as follows:

Model 2:

Minimize p (7)

s.t.:

Pr(infection|(k, τ,G,D)) ≤ α× background risk (8)

k × Ptime +m× Ttime ≤ p× n× τ (9)

k∑
i=1

|gi|= m (10)

τ ≤Maxτ (11)

|gi|≤Maxg, ∀i = 1, 2, . . . , k. (12)

The objective function (7) minimizes p, the portion of the staff time dedi-

cated to the testing process. Constraints (9) – (12) are as defined in Model 1.245

Constraint (8), guarantees that the probability of infection per resident under

a testing strategy (k, τ,G,D) does not exceed a desired level of infection, α. So

that α > 0 is a coefficient defined by the manager to set the level of risk inside

the RH. In order to measure the magnitude of such a level, we introduced the

background risk, that is, the probability of infection for an individual who lives250

in the area of the focal RH. It is a reference point to help the manager compare

the risk of infection inside the RH with the one in the neighborhood. We remark

that the background risk has been defined to determine the probability that an
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infection arrives at the facility either via staff or visitors. The background risk

can be computed using the number of incidences in the local neighborhood.255

In the following subsections, we describe the probabilistic approach devel-

oped to compute the expected detection time of an infection.

3.1. Computing the probability of infection

This study aims to minimize the probability of spreading an infection among

the residents. This section presents a probabilistic approach to compute the risk260

of infection in a RH.

We assume that a resident can be infected at time t = 0, so we compute the

probability of infection for a resident at any time t = d. In order to derive the

probability of infection, we define the following parameters:

• β: The probability of transmission from one infected resident to a suscep-265

tible resident per contact.

• κ: The average number of contacts per resident.

Let PI(m,κ, β, d) be the probability of infection for a resident at day t = d

in a RH with m residents who have κ contacts with other residents per day. Let

s be the source (first resident) of infection at day t = 0, and u be a resident who270

stays healthy till day t = d−1. There are two ways u gets infected on day d; via

some direct contact with s, or via contact with one of the other m−2 residents.

The transmission probability for each of the contacts is β, and the probability

of infection for the source is one, while the probability of infection for the other

residents is PI(m,κ, β, d− 1). That means that the probability of an arbitrary275

resident like u staying healthy after c contacts with s is (1− 1× β)c. While the

probability of u staying healthy after c contacts with the other m−2 resident in

day d is (1−PI(m,κ, β, d−1)×β)c. Therefore, the infection probability can be

represented as a recursive equation. Given that we consider κ contacts for each

resident per day and all of them have an equal chance to occur, the equation280

can be defined as follows:
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(13)

PI(m,κ, β, d)

= 1− (1− PI(m,κ, β, d− 1))

×
[
(1− β)κ

1
m−1 × (1− PI(m,κ, β, d− 1)β)κ(1−

1
m−1 )

]
,

where κ 1
m−1 is the expected number of contacts between u and s, and κ(1−

1
m−1 ) is the expected number of contacts between u and the other residents

except s. Note that, (1 − PI(m,κ, β, d − 1)) is the probability of u staying

healthy until day t = d− 1.285

Equation 13 provides a simple recursive formula for the probability of infec-

tion per resident d days after an infection first arrives at the facility. We can

also easily take into account the role of staff as an intermediate node between

two residents for indirect contacts (i.e., adding the number of contacts between

residents and staff to κ). However, for simplicity, we keep the formula for the290

direct contact network among the residents and utilize it for computing the

expected detection time for a testing strategy (k, τ,G,D).

3.2. Computing the Expected detection time

In this subsection, we describe how to compute the expected detection time

for a given testing strategy (k, τ,G,D). Note that G = {g1, g2, . . . , gk} are the295

k groups of residents and D = {d1, d2, . . . , dk} are the days on which they are

tested. For the sake of simplicity, we assume an origin t = 0 and define di as the

distance (i.e., number of days) from the origin, and di ≤ di+1. Figure 1 shows

a configuration of such strategy with k = 4 groups for two periods τ .

Figure 1: Schematic view of a testing strategy with k = 4 groups and two time periods of τ .
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Suppose an infection arrives at the RH at time t = t0. Let t0 ≤ d1, other-300

wise, we can reorder the groups because the configuration is circular. Since the

residents are partitioned into k groups, clearly the infection should be detected

in one of the days t = d1, t = d2, . . . , t = dk. Thus, it is sufficient to compute

the probability of detecting the infection on these predetermined days. To this

end, we apply the probability function PI(m,κ, β, d) defined in Equation 13305

with some manipulations. The function PI(m,κ, β, d) is the probability of one

resident getting infected d days after the origin. So, if a group of r randomly

selected residents is tested after d days, the probability of at least one them

being infected is,

Pr(m,κ, β, d, r) =
r

m
+ (1− r

m
)× (1− [1− PI(m,κ, β, d)]r) , (14)

where r
m is the probability of the source of infection (the first resident who310

gets infection) being sampled in the group. Let us define the complement of

this probability function by P̄ r(m,κ, β, d, r) = 1− Pr(m,κ, β, d, r), that is, the

probability that the introduced infection is not detected after d days by testing

a group of size r. Now, we can compute the expected detection time for an

introduced infection at day t = t0 as below,315

E(k, τ,G,D, t0)

=

k∑
i=1

(di − t0)×

[x+ (1− x)

× Pr(m,κ, β, di − t0, |gi|)]×
i−1∏
j=1

P̄ r(m,κ, β, dj − t0, |gj |)

 ,

(15)

where x = |gi|
m−

∑i−1
j=1|gj |

is the probability that the source of infection is sam-

pled in gi, and
∑0

j=1|gj | is 0. In this calculation,
∏i−1

j=1 P̄ r(m,κ, β, dj − t0, |gj |)

is the probability that the infection is not detected before day di. So, for con-

venience, we set
∏0

j=1 P̄ r(m,κ, β, dj − t0, |gj |) = 1. Finally, the expected time

for detecting an infection under a testing strategy (k, τ,G,D) is computed as320

follows:
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Expected Detection T ime of (k, τ,G,D) =
1

τ

τ−1∑
t0=0

E(k, τ,G,D, t0). (16)

Thus, for any testing strategy (k, τ,G,D, t0) in a RH with m residents,

the expected detection time can be computed using Equation 16, that is the

objective function of Model 1. If τ̄ is such an expected detection time, the

probability of infection per resident in the day the infection is detected can be325

computed by Eq. 13 for d = τ̄ . That is, the value of Pr(infection|(k, τ,G,D))

in Constraint (10) of Model 2.

4. An efficient approach for computing the optimal testing strategy

Computing a testing strategy (k, τ,G,D) means determining the number of

groups, k, a testing interval, τ , the size of groups, G = {g1, g2, . . . , gk}, and330

the testing day, D = {d1, d2, . . . , dk}. The values are integer decision variables,

and a feasible solution should be selected from the integer space. Clearly, if

the strategy is chosen from the real space, R, the optimal solution will result in

a better objective value, which is a lower bound on the objective value of the

optimal solution when it is chosen from the integer space.335

This section presents the solution approach for solving the testing scheduling

problem for RHs. We first present a useful observation –which we call the

symmetry property– of the optimal solution. Then, we develop an enhanced

local search algorithm for solving any instance of the problem based on the

symmetry property.340

The symmetry property. The symmetry property of the optimal solution indi-

cates that for a given test interval τ and the number of groups k, the optimal

solution can be obtained by evenly distributing the m residents in the interval τ .

More precisely, |g1|= |g2|= · · · = |gk|= m
k , and di = i τk , for i = 1, 2, . . . , k. This

property is similar to Purkiss’s principle [48] of the symmetry functions, but345

not the same because the objective function is not invariant under the possible

permutations of pairs (k, τ).
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We show the correctness of the symmetry property by providing mathemat-

ical proof for the extreme cases of the transmission rate, β, and the number of

contacts, κ. Further, for the general case, we provide a brute force analysis on350

real-world sized instances of the problem. If a symmetry strategy is an integer

solution, it will be the optimal strategy of the problem as well. Otherwise, we

use the optimal solution as the seed of a global heuristic search to find the op-

timal integer strategy. Note that, for a given k and τ , the number of possible

different combinations of G and D are of the order O

 τ

k

 m

k

.355

Theorem 2. The optimal testing strategy of the real space is a symmetry strat-

egy for the cases β −→ 0, β −→ 1, κ −→ 0, or κ −→ +∞.

The proof 2 is contained in the Appendix.

In the problem of finding the optimal testing strategy, the cases β −→ 0 and

κ −→ 0 indicates the situation of the risk of propagating the infection in the360

retirement home is very low, and the cases β −→ 1 and κ −→ +∞ indicates the

reverse cases. Theorem 2 shows that for both situations, the symmetry strategy

is the optimal solution. We strongly believe this holds for any value of β ∈ [0, 1]

and any contact number κ ≥ 0. We investigated the correctness of this claim by

sensitivity analysis for almost all real-world scales of the problem, that is, for any365

combination of parameters k ≤ τ < 15 andm ≤ 100. That means having at least

one test per two weeks and a retirement home with fewer than 100 residents.

We simulated the continuous space with the precision 0.01 and, using a brute

force algorithm, investigated the optimality of the symmetry strategy. However,

due to the complexity of the function to compute the expected detection time,370

it is an intractable problem to show this fact. So, we left the mathematical

proof as an open problem.

As previously mentioned, a feasible strategy for the RH testing schedule

problem is a solution with the integer values k, τ , and the integer sets G and

D. Hence, whether the symmetry property always holds or not, it is applicable375

only when integer values generate the obtained symmetry solution. Otherwise,
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with a high probability, the integer neighbors of the symmetry solution will be

the optimal practical solution of the problem. Based on this fact, we propose a

global heuristic local search algorithm. We remark that for a small size of the

problem (e.g., m < 50, Maxg < 20, n < 10 and k ≤ τ ≤ 7) the computation for380

searching on all (integer) possible solutions of the problem and returning the

optimal one is not intractable and can be implemented in practice. We used

this approach to test the computational performance of the proposed algorithm

in finding the optimal solution.

Enhanced local search algorithm. The proposed enhanced local search al-385

gorithm, first generates all pairs of (k, τ) which satisfy Constraint (2) of Model

1, k × Ptime +m × Ttime ≤ p × n × τ . For Model 2, since p is a decision vari-

able, the pairs of (k, τ) can be generated one-by-one, and the solutions with

p > 1 are infeasible. Then, the algorithm calculates the symmetry strategy,

say S for any feasible pair of (k, τ). If S is an integer solution and satisfies390

the other constraints of the problem (e.g., |gi|≤ Maxg, for i = 1, 2, . . . , k, or

Pr(infection|(k, τ,G,D)) ≤ α × background risk in Model 2), the algorithm

reports it as the optimal strategy, otherwise, a heuristic search on the integer

possible solutions around S is implemented.

The pseudocode of the algorithm for solving Model 1 is presented in Algo-395

rithm 1 in the Appendix. The proposed heuristic search algorithm is similar to

the Simulated Annealing technique [49] but only on the integer neighborhoods

of groups’ size, G (See Algorithm 2 in the Appendix). In order to efficiently

implement this heuristic search, the algorithm utilizes the symmetry property

on the feasible pairs of (k, τ). That is, for two feasible pairs (k1, τ1) and (k2, τ2),400

if S1 = (k1, τ1, G1, D1) is an integer feasible solution for the problem and its

objective value is better (less detection time in Model 1, or smaller allocated

workload for testing process in Model 2) than the symmetry strategy of (k2, τ2),

then it prunes the case (k2, τ2) without searching on its possible integer neigh-

bors. In fact, (k2, τ2) is not promising anymore, and any integer solution with405

the value (k2, τ2) has the objective value at most as good as the corresponding
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symmetry strategy with (k2, τ2). This significantly helps the algorithm use a

branch and bound technique inside itself.

The pseudocode for solving Model 2 is similar to Model 1. In this model,

any pair of (k, τ) that is able to satisfy the k × Ptime + m × Ttime ≤ n × τ410

(i.e. for at most p = 1), coupled with its corresponding symmetry solution of

G,D satisfying Pr(infection|(k, τ,G,D)) ≤ α×background risk, is a potential

feasible solution and can be explored by the heuristic search approach to find

the minimum p value. For a given pair (k, τ) and its corresponding symmetry

solution, the heuristic search first finds the O(2k) possible integer neighbors415

of D. That means, for any di ∈ D, there are two possibilities to rounding,

floor(di) = ⌊di⌋ and ceil(di) = ⌈di⌉, except dk, which always to be assumed

dk = τ . In terms of time complexity, this is possible in a reasonable time for

the real-world sizes of the problem. For example, if the residents are tested

once a week in the worst case (Maxτ = 7), the maximum possible solutions for420

rounding the testing days never exceeds 64. Otherwise, in theory, and for large-

scale instances (i.e., for τ ≥ k > 15), we may choose just a subset of possible

neighbors.

Note that, since we assume one round of tests per day, the number of groups

is less or equal to τ . Indeed, floor(di) and ceil(di) are the integers with at425

most one unit distance from di in the integer space. However, we can extend

the idea for more than one unit distance, but based on our brute force searches

for practical cases, doing at least one test every two weeks per resident, the

optimal solution is never more than one distance unit away. In the next step, the

algorithm explores possible integer combinations of G. Similar to the rounding430

set D, the algorithm searches over the size of the groups in the integer space

but, in this case, for more than one unit.

For example, for input parameters m = 30,Maxg = 20, n = 5, Ptime =

180 minutes, Ttime = 15 minutes, p = 10%, κ = 0.5m, and β = 0.1 with the

7-day incidence per 1000 individuals, the optimal solution’s of Model 1 is τ =435

5, k = 4 and D = {d1 = 1, d2 = 2, d3 = 4, d4 = 5} and G = {|g1|= 6, |g2|=

10, |g3|= 8, |g3|= 6} with the optimal objective value, expected detection time of
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1.2133 days. In this optimal solution, the size of groups is 10− 30
4 = 2.5 units far

away from the symmetry solution’s group size. The optimal solution of Model

2 for exactly the same input parameters with the infection level α = 0.5, is440

the symmetry strategy τ = 3, k = 3 and D = {d1 = 1, d2 = 2, d3 = 3} and

G = {|g1|= 10, |g2|= 10, |g3|= 10} with the optimal value of expected detection

time 0.8658 days, risk of infection 0.0007, and the objective value p = 13.75%.

In the next section, we will provide more results of the algorithm for different

settings of the input parameters.445

5. Simulation Results and Discussion

This section organized in three parts and shows the results of the proposed

models and algorithm to find the optimal testing strategy in an RH. The first

and second parts shows the optimal testing strategy (κ, τ,G,D) for 48 different

settings of input parameters. The results are shown in Table 3 and Table 4 in450

the Appendix, and a subset of them is discussed in Table 1 and Table 2. The

third part (Figure and Figure ) presents a sensitivity analysis between the main

decision parameter and the objective values, That is, the tradeoff between the

expected detection time and the staff workload, p, in Model 1, and the tradeoff

between the expected detection time and the staff workload, p, in Model 1, and455

the tradeoff between p and the risk of infection in RH, α, in Model 2. The code

of the algorithm is implemented in the programming language Python 3.7 and

runs on a standard PC (Intel(R) Core(TM ) i7 and 32G RAM ). We remark that

the proposed solution approach can solve real-world scale problems in a short

time. For a RH with m = 90 residents, n = 15 staff, and a testing frequency of460

at least once a week, the running time is about 7 seconds.

The experiments are divided into two parts. The first shows the resulting

testing strategies, including k, τ,G,D, and the objective values for realistically

sized combinations of the inputs. In the second part, we perform a sensitivity

analysis over the parameter p in Model 1 and parameter α in Model 2. So,465

we illustrate Pareto optimal solutions of the proposed models based on these
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values.

For obtaining the optimal testing strategy, we set the input parameters to

realistic values as follows:

• (m,n) ∈ {(50, 10), (90, 15)}470

• Maxτ ∈ {4, 7}

• Maxg ∈ {⌈m2 ⌉, ⌈
m
3 ⌉}

• For Model 1, p ∈ {5%, 10%, 20%}

• For Model 2, α ∈ {30%, 50%, 75%}

• The number of contacts per resident per day, (i) κ = 0.15 ×m + 5, and475

(ii) κ = 0.3×m+ 5

• The preparation time, Ptime = 180 minutes and the testing time, Ttime =

15 minutes

• The probability of disease transmission per contact, β = 0.1. We choose

this value as a probable pessimistic case from a possible range of values480

reported in previous studies [50, 51, 52, 53] regarding the first variants of

COVID-19 (Alpha, Delta, and Omicron which is more transmissible than

the previous ones).

• The background risk is calculated considering 7-day incidences of COVID-

19 infections as 600 individuals per 100,000 population (Reference data485

of weekly incidences in Saxony, Germany in the period of October 15 to

December 15, 2021.)

We ran Model 1 and Model 2 for 48 different combinations of the input

parameters. Furthermore, we assumed that a probable infection could arrive

at an RH by the n staff members or by visitors. We considered one visitor490

on average per resident every two weeks. Given a 7-day incidence value of

600, the probability of infection per individual per week is simply computed
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as 600
100,000 . Consequently, the probability of an infection arriving at the RH is

1− (1− 600
100000 )

n+ m
14 .

The full results tables for Model 1 and Model 2 are contained in the Ap-495

pendix. For all the reported results, we ran the proposed algorithm 5 times per

input and returned the best obtained solution. Out of 5 × 48 = 240 indepen-

dent runs, the algorithm succeeded in reaching the global optimal solution of

the problem in 236 runs, and in the remaining 4 runs, it obtained local optimal

solutions close to the global ones. The optimal solutions are computed by a500

brute force algorithm.

Results Model 1. Table 3 in the Appendix summarize the full results of Model

1. Here, we focus on a subset (see Table 1) of runs that highlight important

properties of the model. The Run 1 - Run 8 represent the results for the case in

which the decision-maker allocates at most 5% of staff working load to testing.505

We observe that for the Run 1 - Run 4, there is no feasible solution when it is

preferred to test the residents once every 4 days. However, when it is extended

to test once a week, there is always a feasible testing strategy. If the staff

can test 30 residents per day and each of the residents has 9 contacts per day

(see Run 5 ), the optimal solution is the non-symmetry solution τ = 5, k = 2,510

G = {28, 22} and G = {2, 5} with minimum expected detection time equal to

1.7365 days. In contrast, if the staff can test 22 residents per day (see Run

7 ), the objective value is increased to 1.7587 days, and the optimal solution is

τ = 6, k = 3, G = {16, 17, 17} and G = {2, 4, 6}.

Another comparison can be made between Run 5 and Run 6, where the only515

difference between them is the number of contacts, κ. When κ = 9, the optimal

expected detection time is 1.7365, while the contact number κ = 17 is 1.4355

days. As described, in the first case, the optimal solution is choosing a test

interval τ = 5 and partitioning the resident into two groups with sizes 28 and

22, and testing them on days 2 and 5. While for the second one, τ = 6 is the520

optimal test interval, and it is better to partition into three groups with sizes

16, 17, 17, and 22 and test them on days 2, 4, and 6. Note that the second
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Table 1: Summary of discussed results of 48 runs for Model 1 (see the extended Table 3 in

the appendix). Columns C5, C6 and C12 correspond to the parameters Maxτ , Maxg and the

expected detection time, respectively. The runs with no feasible solution are shown by blank

cells.

m n p C5 C6 κ k τ G D C12

Run 1 50 10 0.05 4 30 9

Run 2 50 10 0.05 4 30 17

Run 3 50 10 0.05 4 22 9

Run 4 50 10 0.05 4 22 17

Run 5 50 10 0.05 7 30 9 2 5 {28,22} {2,5} 1.7365

Run 6 50 10 0.05 7 30 17 3 6 {16,17,17} {2,4,6} 1.4355

Run 7 50 10 0.05 7 22 9 3 6 {16,17,17} {2,4,6} 1.7587

Run 29 90 15 0.05 7 30 15 4 6 {25,20,25,20} {1,3,4,6} 1.4332

case is the closest solution to the corresponding symmetry solution, while the

first one is relatively far from its corresponding symmetry solution. In fact, the

symmetry solution is {2.5, 5} with the same group size equal to 25. So, since525

{2.5, 5} is infeasible, the algorithm rounded it to D = {2, 5}, and in proportion

to such testing days, it changed the group size to 28 and 22 residents to achieve

the minimum possible expected detection time. To draw an analogy between

this obtained optimal solution by the algorithm and the solution D = {2, 5}

and G = {25, 25}, the objective value for the optimal one is 1.7365 days, while530

for the latter one is 1.74198 days.

An interesting result is also found in Run 29 which is for m = 90 resi-

dents with a test interval of at most 7 days. The proposed algorithm chooses

6 as the test interval, partitions the residents into 4 groups with sizes G =

{25, 20, 25, 20}, and tests them on days D = {1, 3, 4, 6}. For this setting, the535

resulting expected detection time is 1.4332 days. However, partitioning like

{22, 23, 22, 23} and testing days {2, 3, 5, 6}, which is a more even and uniform

distribution, results in a higher value of the expected detection time (1.4343

days).

Results Model 2. The results of Model 2 are presented in Table 4 in the540

Appendix and a subset of them are presented in Table 2. In this model, the

parameter α plays an important role in defining the feasible and infeasible space.

So, as it can be seen in the table when a small value is selected for α (i.e.,
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α = 0.3), in most cases there is no feasible solution for the given input settings.

However, for bigger values such as α = 0.75, there is always at least one feasible545

solution. The portion of the staff’s workload, which can be allocated to the

testing process of the resident, changes from 3.84 to 8.96. The maximum value

is related to minimum α = 0.3. That means that if the decision-maker prefers to

achieve a low infection risk level, such as 0.3 of background risk, it is necessary

to allocate at least 8.96% of the staff’s time to testing (e.g., Run 3 ). In contrast,550

the value α = 0.75 can result in a portion like 3.84% for some settings of the

inputs (See Run 23 ).

This is because this model is not directly focused on the objective of the

expected detection time and as soon as a feasible solution (i.e., a testing strategy

that satisfies Constraint (10), Pr(infection|(k, τ,G,D)) ≤ α), is obtained, it555

tries to minimize the portion of staff time allocated to the testing process. So,

some particular values of the risk level αmay change the boundary of the feasible

and infeasible solution space. For example, for a setting of input parameters

such as m = 50, n = 10, κ = 9,Maxg = 30 and Maxτ = 5, the optimal solution

for α = 0.60 is k = 4, τ = 4, G = {12, 13, 13, 13} and D = {1, 2, 3, 5}, with the560

objective value p = 5.104%, which is a symmetry solution. While, if we set the

risk level to α = 0.61, the optimal solution will be the non-symmetry strategy

k = 2, τ = 5, G = {26, 24} and D = {2, 5}, with the objective value p = 4.625%.

A similar case happens for Model 1 for particular values of the parameter p. So,

in the next round of simulations, we illustrate the trade-off between parameter565

p as the main constraint of Model 1 and the expected detection time, as well as

the trade-off between parameter α as the main constraint of Model 2 and the

portion of staff time which must be allocated to the testing process.

Overall, the set of solutions shown in Table 4 can help decision-makers to

choose the desired optimal strategy, considering the available resources in the570

RH and the local incidence situation. For example, the results of the last four

runs of Table 3 are the same optimal strategy either G = {30, 30, 30} and the

testing days D = {1, 2, 3}, or G = {18, 18, 18, 18, 18} and the testing days

D = {1, 2, 3, 4, 5}, with objective values between 0.7381 and 1.1904 days. These
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Table 2: Summary of discussed results of 48 runs for Model 2 (see the extended Table 4 in the

appendix). Columns C5, C6 and C12 corresponds to the parameters Maxτ , Maxg , and the

obtained minimum portion of the time for the testing process of the residents which should

be allocated by the staffs, respectively.

m n α C5 C6 κ k τ G D C12

Run 3 50 10 0.3 4 22 9 3 3 {16,17,17} {1,2,3} 8.96

Run 21 50 10 0.75 7 30 9 3 7 {16,17,17} {2,4,7} 3.84

Run 23 50 10 0.75 7 22 9 3 7 {16,17,17} {2,4,7} 3.84

Run 41 90 15 0.75 4 30 15 3 4 {30,30,30} {1,2,4} 6.56

Run 45 90 15 0.75 7 30 15 5 6 {18,18,18,18,18} {1,2,3,4,6} 5.21

Run 46 90 15 0.75 7 30 29 5 5 {18,18,18,18,18} {1,2,3,4,5} 6.25

Run 47 90 15 0.75 7 22 15 5 6 {18,18,18,18,18} {1,2,3,4,6} 5.21

Run 48 90 15 0.75 7 22 29 5 5 {18,18,18,18,18} {1,2,3,4,5} 6.25

results can be achieved by at most 20% of the staff’s workload. The correspond-575

ing results in Table 4, show solutions for α = 0.75, while all the solutions follow

the pattern G = {18, 18, 18, 18, 18} and the testing days D = {1, 2, 3, 4, 5}. As

it is clear, among these solutions, the ones in which the resident has 15 con-

tacts per day result in a better objective value of 5.21%. These findings can

be significantly valuable for managers of RHs to establish new regulations for580

the contacts among residents, including restrictions for visitors and isolation

measures, updating them efficiently over time.

Sensitivity analysis. In the second part of the experiments, we performed

a sensitivity analysis to evaluate the trade-off between the expected detection

time and the staff workload, p. For Model 2 we analyze the trade-off between585

the level of acceptable risk in the facility, α, and the staff workload.

Figure 2 and Figure 3 show the sensitivity analysis for Model 1 and Model 2,

respectively. We evaluated the case of m = 50 residents with κ = 8, 15 and 250,

and the case m = 90 residents with κ = 15, 24 and 40. The value of parameters

m,n,Maxg and Maxτ for each run are reported on the top of each subfigure.590

Figure 2, compares different values of p, the portion of staff’s time which can

be allocated to the testing process (horizontal axis), and the expected detection

time (vertical axis). The diagrams are shown for p ≤ 15 (i.e., the results for

p > 15 are the same as for p = 15). We observe that there is no feasible

solution for small values of p. We also note that there is a maximum value of595
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p to minimize the expected detection time of a probable infection for a given

set of input parameters, and it is independent of the contact number. So, a

decision-maker may choose such a value of p as the best solution to minimize the

detection time without considering the number of contacts among the residents.

For example, in the first subfigure (the case m = 50, n = 10,Maxg = 17 and600

Maxτ = 4, p = 9) the minimum portion of staff’s time that minimizes the

expected detection time for any value of κ; it means, there is no gain for the RH

to increase p more than 9% so that 91% of staff’s time can be allocated to their

caring tasks. Also, if the retirement home can test more residents in one day

(or say for Maxg), then it is possible to minimize the expected detection time605

to reach the ideal expected value of 0.5, say in 12 hours. Note that we assumed

one round of testing per day is possible, so the ideal detection time can never be

less than 0.5 days (i.e., 12 hours). Having a large group’s size, i.e., Maxg ≥ m
2 ,

and a large value of p will result in achieving such ideal detection time.

Overall, the reported results in Figure 2 display the trade-off between the610

risk of infection for residents, α, and the portion of time which the staff can

allocate for the testing process, p. Indeed, since 1 − p is the portion of staff’s

time allocated to caring tasks, we may interpret these results as two aspects

of residents: the risk of infection and comfort level of the residents. So, for a

given configuration of the input parameters, by decreasing the risk of infection615

of the residents, their comfort level decreases. In this result, the number of

contacts plays an important role, and decreasing it helps decrease the risk of

infection and, consequently, decreases p. For example, in the last subfigure, p

varies from 12 to almost 4; for a risk value of α = 0.4, there is no solution for

high contact numbers κ = 40, p = 12 for the medium contact numbers κ = 25,620

and p ≈ 9 for the low contact numbers κ = 15. Similarly to the case shown

in Figure 2, among all 8 subfigures in Figure 3, the minimum value objective

value p ≈ 4 is reached for the cases that the retirement home has the capability

of testing at least half of the resident in one day (Maxg ≥ m
2 ). As expected,

by increasing the rate of contact between the residents in an RH, a probable625

infection will also transmit quickly, and consequently, the time to detect it by
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the testing process will decrease. However, this does not mean the number of

infected individuals will decrease. For example, in the first subfigure in Figure

2, the expected detection time for κ = 25 is less than for κ = 8 for any value p.

Figure 3 illustrates the trade-off between α and p; the level of risk of infection630

and the staff workload and for different contact numbers. The results are shown

for α ∈ [0, 1]. As we mentioned before, note that for small values of α, there

is no feasible solution. For example, in the first subfigure (m = 50 residents,

n = 10 staff, Maxg = 17 and Maxτ = 4), there is no feasible solution for

α < 0.27 when the residents have κ = 8 contact per day on average. Moreover,635

if they have κ = 15 contacts, there is no feasible solution for α < 0.38. Finally,

for κ = 25, the minimum α which results in a feasible solution is 0.54. Note

that, for the corresponding setting of the input in Figure 3, for the case κ = 25,

the rate of infection for any particular value α is higher than for the case κ = 8.

Moreover, in the first subfigure, it is clear that when α changes, the portion of640

staff time only changes 2.5 units (from 9% to 6.5%). That means allocating 9%

of staff workload to the testing process is more reasonable because it significantly

reduces the risk of infection. Finally, it is worth mentioning that the diagrams

are decreasing but not monotone. Indeed, some critical values (the bending

points of the diagrams) of α resulted in a better portion of the testing workload.645

That means, it is not to be expected that by increasing any small value in

the portion of the testing workload of the staff, a better level of risk value is

obtained. Thus, the decision-maker can consider the critical values of α to

allocate an efficient portion of staff workload to the testing process.
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Figure 2: Results of Model 1 for different settings of input parameters. Each subfigure shows

the obtained expected detection time for different values of p ∈ [0, 15] for three different

number of contacts per resident per day.
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Figure 3: Results of Model 2 for different settings of input parameters. Each subfigure shows

the obtained portion of staff’s time for different values of α ∈ [0, 1] for three different number

of contacts per resident per day.
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6. Conclusion and future work650

In this paper, we developed two novel MINLP models to compute the op-

timal testing strategy for residents in retirement homes during the COVID-19

pandemic. The models aimed to minimize the risk of infection and therefore

prevent the spread of it, considering the trade-off between the portion of staff’s

workload allocated to the testing process and the frequency of tests for the res-655

idents. Because of the residents’ high risk of mortality, if they become infected,

any step to shorten the virus detection time is vital and could result in saving

lives.

Model 1 derived an optimal testing strategy by minimizing the expected de-

tection time of the virus in the facility while considering the maximum threshold660

on the staff workload. In other words, the manager obtains the testing strat-

egy which minimizes the infection risk for any given threshold on the workload.

Model 2 determined an optimal testing strategy when the manager specifies a

threshold as the maximum tolerable risk of infection inside the RH. As a ref-

erence point, we considered the risk of infection in the neighborhood of the665

retirement home.

We proposed a practical and efficient solution approach to solve the models.

We discussed the properties of the optimal testing strategy and observed that

the symmetry solution is optimal for the models in the continuous search space.

Based on this observation, we presented a global local search heuristic algorithm670

to find an optimal testing strategy in the integer search space. We verified the

models and the algorithm by testing several realistically sized instances of the

problem. In most instances, the optimal solutions are symmetry strategies in the

integer search space, but the algorithm found both solutions with and without

the symmetry property.675

The results of the experiments revealed that, in a retirement home, an op-

timal testing strategy depends not only on the local incidence level, but also

on the rate of contact among the residents and the maximum size of a group

of residents that the staff can test in one batch, especially when the optimal

29



solution is asymmetric. Thus, decision-makers can use the proposed models to680

build a set of optimal solutions that better suit their expectations and available

resources. These findings are novel because, to date, there is no other alterna-

tive to assess the effectiveness of testing schedule strategies in retirement homes

to minimize the resident’s risk of infection during a pandemic.

We identified several future research directions. Firstly, in this study, we685

assumed homogeneity of the residents in terms of the probability of infection.

However, this is a general case that is not always realistic in practice as the res-

idents differ by age, co-morbidity, and vaccination status, which may alter their

probability of infection. So, considering the heterogeneity in the probability of

infection is an interesting aspect to study. Secondly, we considered two possi-690

bilities for an infection arriving at the retirement home–via the staff members

and visitors. However, it is possible to consider additional sources of infection,

such as physiotherapists or doctors that regularly visit the residents. Thirdly,

in the modeling phase, we considered the average value of the input parameters

(i.e., number of contacts and the probability of transmitting the virus), so the695

proposed models and the algorithms work well for the instances of the problem

with low variability. However, for instances with high variability, the computed

expected detection time might not work properly. So, the proposed model can

be extended to cover such cases. Finally, future work can consider more realistic

scenarios, incorporating different shifts and testing strategies for the staff and700

considering a contact network that reflects the social interactions between the

staff and residents in a retirement home.
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Appendix

Theorem 1. In the problem of finding an optimal testing strategy for a895

retirement home assuming homogeneity of residents, the objective of minimizing

the detection time is equivalent to minimizing the number of infections after an

infection arrives at the retirement home.

Proof. Suppose at day d0 an infection arrives at the facility, and after d days, it

is detected (no matter the source of infection or any other resident is detected).900

Assuming a complete contact network and homogeneous rate of interactions

among the residents. The probability of infection for any resident is obtained

by Equation 13 (See Subsection 3.1), the function PI(m,κ, β, d) which is a

strictly increasing function to d. On the other hand, the expected number of

infected residents can be computed by 1+(m−1)×PI(m,κ, β, d). Consequently,905

minimizing the detection time d results in minimizing the expected number of

infections. ■

Theorem 2 The optimal testing strategy of the real space is a symmetry

strategy for the cases β −→ 0, β −→ 1, κ −→ 0, or κ −→ +∞.

Proof. For a testing strategy (k, τ,G,D), where G = {g1, g2, . . . , gk}, and910

D = {d1, d2, . . . , dk}, let define l1 = d1 and li = di − di−1, for i = 2, 3, . . . , k

as the distance (time) between the testing day of each group and its preceding

group.

In the cases of β −→ 1 or κ −→ +∞, the probability of infection transmits

from the source of infection to the other residents will go to zero. Precisely, we915

can write the probability of infection, Eq. 13, as follows

lim
β →1

PI(m,κ, β, d) = lim
κ→+∞

PI(m,κ, β, d)

= 1− (1− PI(m,κ, β, d− 1))

×
[
(1− β)κ

1
m−1 × (1− PI(m,κ, β, d− 1)β)κ(1−

1
m−1 )

]
= 1− (1− PI(m,κ, β, d− 1))× (0)

= 1.

(17)
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Thus, the expected detection time, Eq. 16, can be computed as

Expected Detection T ime of (k, τ,G,D) =

k∑
i=1

(
li
τ

li∑
t0=1

t0

)
=

1

2τ

k∑
i=1

li(li+1).

(18)

Regarding the fact
∑k

i=1 li = τ , the above equation can be written as

Expected Detection T ime of (k, τ,G,D) =
1

2τ

k∑
i=1

li(li+1) =
1

2τ

(
τ +

k∑
i=1

l2i

)
.

(19)

Therefore, to minimize the detection time, we need to minimize
∑k

i=1 l
2
i

under the condition
∑k

i=1 li = τ . Now, for a symmetry testing strategy, we

have l1 = l2 = · · · = lk = τ
k . By contradiction, suppose this property does920

not hold in some optimal testing strategy S. Thus, there exists some pair of

intervals li and lj in S such that li ̸= lj . Without changing the value of the

other τ − 2 intervals, we set li = lj =
li+lj

2 and show that a better testing

strategy can be obtained, which means, S is not optimal. Contradiction. Also,

it is clear that l2i + l2j > 2(
li+lj

2 )2, because925

l2i + l2j > 2(
li + lj

2
)2 ⇐⇒ 2l2i + 2l2j > l2i + l2j + 2lilj ⇐⇒ (li − lj)

2 > 0. (20)

Thus, the proof is complete for the cases β −→ 1 and κ −→ +∞. Now,

let consider the cases of β −→ 0 or κ −→ 0. In these cases, the probability

of infection transmits from the source of infection to the other residents will

approach zero. Precisely, we can write the probability of infection, Eq. 13, as

follows:930

lim
β →0

PI(m,κ, β, d) = lim
κ→0

PI(m,κ, β, d)

= 1− (1− PI(m,κ, β, d− 1))

×
[
(1− β)κ

1
m−1 × (1− PI(m,κ, β, d− 1)β)κ(1−

1
m−1 )

]
= 1− (1− PI(m,κ, β, d− 1))× (1)

= PI(m,κ, β, d− 1).

(21)

39



and since PI(m,κ, β, 0) = 0, we can conclude 13, as follows

lim
β→0

PI(m,κ, β, d) = lim
κ→0

PI(m,κ, β, d) = 0. (22)

This indeed means that for detecting the infection, we need to detect the

source of the infection. Therefore, the expected detection time, Eq. 16, can be

computed as

(23)

Expected Detection T ime of (k, τ,G,D)

=
1

τ

τ−1∑
t0=0

E(k, τ,G,D, t0)

=
1

τ

τ−1∑
t0=0

τ

2

=
τ

2
.

That means no matter which k, G, or D are chosen, the only important

parameter to minimize the expected detection time is minimizing test interval935

τ . So, again, a Symmetry strategy is an optimal solution for the problem. ■
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Algorithm 1 Proposed algorithm for solving the problem in Model 1

Input: Retirement home’s parameters (m,n, Ptime, Ttime,Maxτ ,Maxg, p)

Output: A testing strategy to minimize the expected detection time

1: opt exp time← +∞

2: opt strategy ← ∅

3: for τ = 1 to Maxτ do

4: for k = ⌈ m
Maxg

⌉ to τ do

5: if k × Ptime +m× Ttime ≤ p× n× τ then

6: G = {|g1|= τ
k , |g2|=

τ
k , . . . , |gk|=

τ
k}

7: D = {d1 = 1 τ
k , d2 = 2 τ

k , . . . , dk = k τ
k}

8: S ← (k, τ,G,D)

9: exp time← expected detection time of S (Eq. 16)

10: if exp time < opt exp time then

11: if S is not an integer solution then

12: (S, exp time)← Heuristic Search(S,m, n, Ptime, Ttime,Maxτ ,Maxg, p)

13: end if

14: if exp time < opt exp time then

15: opt exp time← exp time

16: opt strategy ← S

17: end if

18: end if

19: end if

20: end for

21: end for

22: if opt strategy == ∅ then

23: print (There is no feasible strategy)

24: else

25: return S and opt exp time

26: end if
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Algorithm 2 Heuristic Search

Input: A non-integer Strategy S = (k, τ,G,D) and the retirement home’s

parameters (m,n, Ptime, Ttime,Maxτ ,Maxg, p)

Output: An integer testing strategy in the neighbor set of S with the minimum

expected detection time

1: best exp time← +∞

2: best stratey ← ∅

3: Max interation← k × τ ×m

4: All Days← All integer neighbors of D with less than one unit distance

5: for anyD′ ∈ All Days do

6: G′ ← The nearest integer neighbors of G such that
∑k

i=1|gi|= m

7: exp timeG′ ← The expected detection time of (k, τ,G′, D′) (Eq. 16)

8: T0 ← exp timeG′

9: for i = 1 to Max interation do

10: if exp timeG′ < best exp time then

11: best exp time← exp timeG′

12: best strategy ← (k, τ,G′, D′)

13: end if

14: G′′ ← A random integer neighbor of G′ with less than one unit distance

from G′ such that
∑k

i=1|gi|= m

15: exp timeG′′ ← The expected detection time of (k, τ,G′′, D′) (Eq. 16)

16: ∆← exp timeG′′ − exp timeG′

17: x← A random value between 0 and 1

18: if ∆ < 0 OR x < e
−∆

Temp then

19: G′ ← G′′

20: exp timeG′ ← exp timeG′′

21: end if

22: Temp← 0.9× Temp

23: end for

24: end for

25: return (best stratey, best exp time)
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Table 3: Results of Model 1 for 48 different combinations of the input parameters. Columns

C5, C6 and C12 are the parameters Maxτ , Maxg and the objective value, the expected

detection time, respectively. The runs with no feasible solution are shown by blank cells.

m n p C5 C6 κ k τ G D C12

Run 1 50 10 0.05 4 30 9

Run 2 50 10 0.05 4 30 17

Run 3 50 10 0.05 4 22 9

Run 4 50 10 0.05 4 22 17

Run 5 50 10 0.05 7 30 9 2 5 {28,22} {2,5} 1.7365

Run 6 50 10 0.05 7 30 17 3 6 {16,17,17} {2,4,6} 1.4355

Run 7 50 10 0.05 7 22 9 3 6 {16,17,17} {2,4,6} 1.7587

Run 8 50 10 0.05 7 22 17 3 6 {16,17,17} {2,4,6} 1.4355

Run 9 50 10 0.1 4 30 9 3 3 {16,17,17} {1,2,3} 1.0427

Run 10 50 10 0.1 4 30 17 3 3 {16,17,17} {1,2,3} 0.8692

Run 11 50 10 0.1 4 22 9 3 3 {16,17,17} {1,2,3} 1.0427

Run 12 50 10 0.1 4 22 17 3 3 {16,17,17} {1,2,3} 0.8692

Run 13 50 10 0.1 7 30 9 3 3 {16,17,17} {1,2,3} 1.0427

Run 14 50 10 0.1 7 30 17 3 3 {16,17,17} {1,2,3} 0.8692

Run 15 50 10 0.1 7 22 9 3 3 {16,17,17} {1,2,3} 1.0427

Run 16 50 10 0.1 7 22 17 3 3 {16,17,17} {1,2,3} 0.8692

Run 17 50 10 0.2 4 30 9 2 2 {25,25} {1,2} 0.8082

Run 18 50 10 0.2 4 30 17 2 2 {25,25} {1,2} 0.7005

Run 19 50 10 0.2 4 22 9 3 3 {16,17,17} {1,2,3} 1.0427

Run 20 50 10 0.2 4 22 17 3 3 {16,17,17} {1,2,3} 0.8692

Run 21 50 10 0.2 7 30 9 2 2 {25,25} {1,2} 0.8082

Run 22 50 10 0.2 7 30 17 2 2 {25,25} {1,2} 0.7005

Run 23 50 10 0.2 7 22 9 3 3 {16,17,17} {1,2,3} 1.0427

Run 24 50 10 0.2 7 22 17 3 3 {16,17,17} {1,2,3} 0.8692

Run 25 90 15 0.05 4 30 15

Run 26 90 15 0.05 4 30 29

Run 27 90 15 0.05 4 22 15

Run 28 90 15 0.05 4 22 29

Run 29 90 15 0.05 7 30 15 4 6 {25,20,25,20} {1,3,4,6} 1.4332

Run 30 90 15 0.05 7 30 29 6 7 {13,13,13,12,23,16} {1,2,3,4,5,7} 1.1547

Run 31 90 15 0.05 7 22 15 6 7 {21,17,13,13,13,13} {1,3,4,5,6,7} 1.4673

Run 32 90 15 0.05 7 22 29 6 7 {13,13,13,22,16,13} {1,2,3,4,6,7} 1.1548

Run 33 90 15 0.1 4 30 15 3 3 {30,30,30} {1,2,3} 0.9035

Run 34 90 15 0.1 4 30 29 3 3 {30,30,30} {1,2,3} 0.7381

Run 35 90 15 0.1 4 22 15

Run 36 90 15 0.1 4 22 29

Run 37 90 15 0.1 7 30 15 3 3 {30,30,30} {1,2,3} 0.9035

Run 38 90 15 0.1 7 30 29 3 3 {30,30,30} {1,2,3} 0.7381

Run 39 90 15 0.1 7 22 15 5 5 {18,18,18,18,18} {1,2,3,4,5} 1.1904

Run 40 90 15 0.1 7 22 29 5 5 {18,18,18,18,18} {1,2,3,4,5} 0.9391

Run 41 90 15 0.2 4 30 15 3 3 {30,30,30} {1,2,3} 0.9035

Run 42 90 15 0.2 4 30 29 3 3 {30,30,30} {1,2,3} 0.7381

Run 43 90 15 0.2 4 22 15

Run 44 90 15 0.2 4 22 29

Run 45 90 15 0.2 7 30 15 3 3 {30,30,30} {1,2,3} 0.9035

Run 46 90 15 0.2 7 30 29 3 3 {30,30,30} {1,2,3} 0.7381

Run 47 90 15 0.2 7 22 15 5 5 {18,18,18,18,18} {1,2,3,4,5} 1.1904

Run 48 90 15 0.2 7 22 29 5 5 {18,18,18,18,18} {1,2,3,4,5} 0.9391
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Table 4: Results of Model 2 for 48 different combinations of the input parameters. Columns

C5, C6 and C12 are the parameters Maxτ , Maxg and the objective value, the obtained

minimum portion of the time for the testing process of the residents which should be allocated

by the staffs, respectively. The runs with no feasible solution are shown by blank cells.

m n α C5 C6 κ k τ G D C12

Run 1 50 10 0.3 4 30 9 3 3 {16,17,17} {1,2,3} 8.96

Run 2 50 10 0.3 4 30 17

Run 3 50 10 0.3 4 22 9 3 3 {16,17,17} {1,2,3} 8.96

Run 4 50 10 0.3 4 22 17

Run 5 50 10 0.3 7 30 9 3 3 {16,17,17} {1,2,3} 8.96

Run 6 50 10 0.3 7 30 17

Run 7 50 10 0.3 7 22 9 3 3 {16,17,17} {1,2,3} 8.96

Run 8 50 10 0.3 7 22 17

Run 9 50 10 0.5 4 30 9 2 4 {25,25} {2,4} 5.78

Run 10 50 10 0.5 4 30 17 4 4 {12,13,12,13} {1,2,3,4} 7.66

Run 11 50 10 0.5 4 22 9 3 4 {16,17,17} {1,2,4} 6.72

Run 12 50 10 0.5 4 22 17 4 4 {12,13,12,13} {1,2,3,4} 7.66

Run 13 50 10 0.5 7 30 9 2 4 {25,25} {2,4} 5.78

Run 14 50 10 0.5 7 30 17 4 4 {12,13,12,13} {1,2,3,4} 7.66

Run 15 50 10 0.5 7 22 9 4 5 {12,13,12,13} {1,2,3,5} 6.13

Run 16 50 10 0.5 7 22 17 4 4 {12,13,12,13} {1,2,3,4} 7.66

Run 17 50 10 0.75 4 30 9 2 4 {25,25} {2,4} 5.78

Run 18 50 10 0.75 4 30 17 3 4 {16,17,17} {1,2,4} 6.72

Run 19 50 10 0.75 4 22 9 3 4 {16,17,17} {1,2,4} 6.72

Run 20 50 10 0.75 4 22 17 3 4 {16,17,17} {1,2,4} 6.72

Run 21 50 10 0.75 7 30 9 3 7 {16,17,17} {2,4,7} 3.84

Run 22 50 10 0.75 7 30 17 3 4 {16,17,17} {1,2,4} 6.72

Run 23 50 10 0.75 7 22 9 3 7 {16,17,17} {2,4,7} 3.84

Run 24 50 10 0.75 7 22 17 3 4 {16,17,17} {1,2,4} 6.72

Run 25 90 15 0.3 4 30 15

Run 26 90 15 0.3 4 30 29

Run 27 90 15 0.3 4 22 15

Run 28 90 15 0.3 4 22 29

Run 29 90 15 0.3 7 30 15

Run 30 90 15 0.3 7 30 29

Run 31 90 15 0.3 7 22 15

Run 32 90 15 0.3 7 22 29

Run 33 90 15 0.5 4 30 15 4 4 {22,23,22,23} {1,2,3,4} 7.19

Run 34 90 15 0.5 4 30 29

Run 35 90 15 0.5 4 22 15

Run 36 90 15 0.5 4 22 29

Run 37 90 15 0.5 7 30 15 4 4 {22,23,22,23} {1,2,3,4} 7.19

Run 38 90 15 0.5 7 30 29

Run 39 90 15 0.5 7 22 15

Run 40 90 15 0.5 7 22 29

Run 41 90 15 0.75 4 30 15 3 4 {30,30,30} {1,2,4} 6.56

Run 42 90 15 0.75 4 30 29 3 4 {30,30,30} {1,2,4} 6.56

Run 43 90 15 0.75 4 22 15

Run 44 90 15 0.75 4 22 29

Run 45 90 15 0.75 7 30 15 5 6 {18,18,18,18,18} {1,2,3,4,6} 5.21

Run 46 90 15 0.75 7 30 29 5 5 {18,18,18,18,18} {1,2,3,4,5} 6.25

Run 47 90 15 0.75 7 22 15 5 6 {18,18,18,18,18} {1,2,3,4,6} 5.21

Run 48 90 15 0.75 7 22 29 5 5 {18,18,18,18,18} {1,2,3,4,5} 6.25
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