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Abstract

Industrial multiphase flows are typically characterized by coexisting morphologies. Modern simu-

lation methods are well established for dispersed (e.g., Euler-Euler) or resolved (e.g., Volume-of-

Fluid) interfacial structures. Hence, a morphology adaptive multifield two-fluid model is proposed,

which is able to handle dispersed and resolved interfacial structures coexisting in the computational

domain with the same set of equations. The interfacial drag formulation of Štrubelj and Tiselj

(Int J Numer Methods Eng, 2011, Vol. 85, 575-590) is used to describe large interfacial struc-

tures in a volume-of-fluid-like manner. For the dispersed structures, the baseline model developed

at Helmholtz-Zentrum Dresden – Rossendorf is applied. The functionality of the framework is

demonstrated by investigating a single rising gas bubble in a stagnant water column, a 2D stag-

nant stratification of water and oil, sharing a large-scale interface, which is penetrated by micro

gas bubbles, and an isothermal counter-current stratified flow case. Recent developments focus

on the transition region, where bubbles are over- or under-resolved either for Euler-Euler or for

Volume-of-Fluid. Furthermore, a concept is presented for the transition of oversized dispersed

bubbles into the resolved phase.

Keywords — Multiphase Flows, Numerical Simulation, Hybrid Model, OpenFOAM, Euler-Euler
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I. INTRODUCTION

Multiphase flows are characterized by a very high level of complexity. Especially in industrial

applications, various different flow regimes can appear even in very simple geometries. A common

example are pipe flows, where segregated, bubbly, annular or slug flows can occur. The level of

complexity increases, if, e.g. countercurrent flows or wave breaking phenomena are of interest. Fur-

thermore, different morphologies often occur simultaneously, like large-scale interfaces (a boundary

between two immiscible phases) together with dispersed structures (small bubbles or droplets), or

even dispersed structures of different sizes and shape that interact with each other and might form

a large-scale interface downstream. Examples with relevance for industrial applications are an

impinging jet with bubble entrainment that occurs for instance during pressurized thermodynamic

shock scenarios (PTS, [1]), centrifugal pumps, swirling flow separators, fractionating columns, etc.

For each main flow morphology, suitable modeling approaches exists, which are usually character-

ized by different levels of complexity and computational efficiency. On the one hand, for interfaces

that are large enough to be resolved on a given grid, Lagrangian methods are available, namely

marker and cell or front-tracking methods. Furthermore, Eulerian methods have been developed

for the same purpose, such as level-set, conservative level-set or volume-of-fluid (VOF, with geo-

metric or algebraic interface reconstruction) methods. On the other hand, for interfaces that are

too small to be resolved on the grid (so called dispersed phases), Euler-Lagrange and Euler-Euler

methods have proven their applicability and reliability for various applications.

However, for many complex applications the information about the flow morphology is not

known a priori. Hence, a simulation method that requires less knowledge about the flow in ad-

vance would be desirable and should allow describing both interfacial structures – resolved and

dispersed – in a single computational domain. Such methods that combine interface-resolving and

non-resolving approaches are called hybrid models. Several attempts to develop such a model have

been made so far. Herrmann [2] and Ma et al. [3] combined Lagrangian point particle methods

with a level-set method, whereas Hua [4] combined the first with a VOF method. Numerous pub-

lications are available which refer to the blending of Euler-Euler with VOF or VOF-like models,

e.g. Boualouache et al. [5], Yan and Che [6], Černe et al. [7], Lopes et al. [8], Hundshagen et al.

[9, 10], De Santis et al. [11] and Colombo et al. [12]. For nuclear safety analysis, special attention

has been paid to stratified flows modeling unresolved interface features, e.g. by Coste et al. [13],
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Porombka and Höhne [14], Rezende et al. [15], and Höhne and Porombka [16]. Following the same

idea, but not limited to stratified flows, Wardle and Weller [17], Shonibare and Wardle [18] and

Mathur et al. [19] presented a VOF-like approach without interface reconstruction that was com-

bined with Euler-Euler modeling for dispersed flows, but strictly limited to two fields. A suitable

blending method based on the phase fraction ensures that the two-fluid model behaves either as a

VOF-like model or as a dispersed Euler-Euler model. This firstly requires the formulation of the

interfacial momentum exchange terms for all possible regimes, most importantly the drag term,

and, secondly, the extension of the two-fluid model formulation by an interface-tracking method.

For the latter, Wardle and Weller [17] used an artificial interface compression term in the trans-

port equation for the phase fractions developed by Weller [20] to suppress numerical diffusion near

resolved interfaces. For the momentum exchange for the resolved interfaces, they used a residual

drag formulation that allowed for a residual slip velocity. The main limitations of this approach are

that interactions between multiple dispersed phases or between a dispersed phase and two different

continuous phases cannot be covered, and that the numerical error of the method might influence

the morphology transitions. Furthermore, the definition of the residual slip velocity is somewhat

arbitrary and has to be adjusted for every simulation.

As a logical consequence in the present work, dispersed and continuous phases have to be

simulated as individual numerical phases and phase transfer models have to be established to

describe the transitions between them. Such an approach was proposed by Hänsch et al. [21] and,

recently, has been adopted by Frederix et al. [22]. In the following, the theory of a numerical

framework is presented, which incorporates a multifield two-fluid model that is able to account

for resolved interfaces and the transition between resolved and dispersed morphologies. The term

two-fluid model refers to the idea of interpenetrating continua and does not necessarily imply that

the model is restricted to two numerical phases. Furthermore, simple applications are shown,

which demonstrate the predictive capabilities of the framework before an advanced outlook on the

currently ongoing developments is given.

II. MORPHOLOGY ADAPTIVE MULTIPHASE TWO-FLUID MODEL

The following section is a comprehensive review of Meller et al. [23] and Tekavčič et al. [24]

and introduces briefly the theory and the numerical basis of the proposed morphology adaptive
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multifield two-fluid model, from now on named hybrid model. More details about the implementa-

tion can be found in the aforementioned publications. The main design criteria for the presented

hybrid model are:

• In the long term, the model is supposed to be used for industrial applications in the fields of

nuclear safety analysis and chemical and process engineering. Hence, compromises in favor

of computational efficiency that might affect accuracy are acceptable to a certain extent.

• Phases representing dispersed and continuous morphologies should be treated with the same,

generalized set of equations, i.e. no blending between morphologies.

• In the limits of sufficiently resolved large interfaces or sufficiently under-resolved dispersed

interfaces, the hybrid model has to recover an algebraic VOF or the well-known Euler-Euler

model, respectively (edge cases for the hybrid model).

• Continuous and dispersed phases are represented by individual numerical phases to allow the

highest amount of flexibility and to avoid numerically driven morphology changes.

• Suitable mass transfer models need to be accounted for the transition between morphologies,

namely dispersed to resolved and vice versa.

• Dispersed phases should be able to interact with or cross a resolved interface.

Hence, the framework for the hybrid model consists of

1. multiple phase-specific, ensemble-averaged transport equations for individual continuous and

dispersed phases,

2. a set of closure models for the interfacial momentum transfer terms for dispersed flows,

3. an induced turbulence framework for dispersed flows,

4. a class method to model the size distribution of the dispersed structures by means of a

population balance equations together with suitable models for breakup and coalescence

[25],

5. an interfacial drag formulation to represent large scale, resolved interfaces in the two-fluid

model with the interface compression term of Weller [20], and

5



6. a turbulence dampening strategy to dampen turbulence in the vicinity of resolved interfaces

[24].

As the two-fluid model forms the basis of the presented framework, the ensemble averaged mass

and momentum conservation equations for each phase α read

∂trαρα + ∂irαραuα,i = 0 (1)

∂trαραuα,i + ∂jrαραuα,iuα,j = −rα∂ip+ ∂j2rαµαSα,ij + rαgiρα +
∑
β 6=α

rασαβκαβnαβ,i + fα,i, (2)

where rα represents the phase fraction of phase α, ρα its phase-specific density, uα the velocity

vector of the phase, p the pressure shared between all phases, µα the dynamic viscosity, Sα the

strain rate tensor, ~g the gravitational acceleration with a value of 9.81 ms−1, σαβ the surface

tension between phase pair α and β, καβ the interface curvature, ~nαβ the interface normal vector,

and ~fα the interfacial momentum exchange terms. For bubbly flows, the latter terms consist of

closure models for drag, lift, virtual mass, wall lubrication and turbulent dispersion. Furthermore, a

turbulence model with an additional bubble induced turbulence term is required for the continuous

phase. Those closure models are selected according to the baseline model developed at Helmholtz-

Zentrum Dresden – Rossendorf (HZDR). As the focus of the present work is the hybrid model, and

for sake of clarity, the reader is referred to the work of Rzehak and Krepper [26], Liao et al. [27]

and Hänsch et al. [28] for details about the baseline model development and the most up-to-date

correlations.

A key feature of the presented hybrid model is the incorporation of resolved interfaces within

the two-fluid model. One of the reasons for choosing the two-fluid model is that it provides a large

degree of freedom – which is a challenge on the one hand, but gives more opportunities on the other

hand, in particular for the transition region as shown later. A necessary condition for a resolved

interface is that the local velocity components normal to an interface formed by two continuous

phases have to be identical. However, the demand of recovering an algebraic VOF method as

an edge case for sufficiently resolved interfaces imposes a much stronger no-slip condition to the

interface. It was shown by Yan and Che [6] that the two-fluid model collapses into the homogeneous

(VOF) model, in case the interface velocities are identical. A suitable drag model was proposed
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by Štrubelj and Tiselj [29], which reads

fDαβ,i = rαrβραβ
1

τr
(uβ,i − uα,i), (3)

with the mixture density

ραβ =
ραrα + ρβrβ
rα + rβ

. (4)

and τr as the relaxation time that has to be chosen much smaller than the physical time step.

Another important aspect requiring attention is the over-prediction of the turbulent kinetic

energy near large interfaces. This is particularly important for stratified flow cases, but has to be

investigated for large, resolved bubbles in future. Hence, a turbulence damping method based on

the model originally proposed by Egorov [30] is added to the hybrid model. The idea of this model

is to mimic a wall-like damping of turbulence near an interface, as reported by Fulgosi et al. [31].

The turbulence damping term is added to the ω-transport equation of the k-ω SST turbulence

model proposed by Menter et al. [32]

∂trαραωα + ∂irαραuα,iωα

= ∂irα
(
µα + σωµ

T
α

)
∂iωα +

rαραγ

µTα
P̃α − βrαραω2

α + 2(1− F1)
rαρασω2
ωk

∂ikα∂iωα + Sωα ,
(5)

where ωα is the specific turbulent dissipation rate, µα and µTα are the dynamic molecular viscosity

and the eddy viscosity, respectively, and kα the turbulent kinetic energy of phase α. The remaining

coefficients, namely β, σω, σω,2, γ and F1, are model constants of the k-ω SST turbulence model

and P̃α represents the production term for the turbulent kinetic energy. The turbulence damping

term Sωα counteracts the destruction term −βrαραω2
α for the specific turbulent dissipation rate

and is defined according to the expression used by Frederix et al. [33]

Sωα = Arαβρα

(
µα

ραβδ2α

)2

(6)

with the damping length scale δα and A as the interface indicator field, which is only non-zero at

the interface.

The presented hybrid approach is implemented in the open source library OpenFOAM, a

state-of-the-art library dedicated to numerical simulations of fluid dynamic problems. The full
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TABLE I
Overview over gravitational scales and dimensionless numbers of cases of rising gas bubble (G) in
liquid (L) of Balcázar et al. [38].

Case Reg ReBal
b Eo Mo ρL

ρG

µL

µG
Ug tg

1 11 6.94 116 41.1 100 100 3.132 ms−1 0.319 s
2 31 17.46 339 43.1 100 100 3.132 ms−1 0.319 s

source code of the presented hybrid model is available open source following the FAIR principles

(Findability, Accessibility, Interoperability, and Reuse of digital assets, [34]). OpenFOAM features

a finite volume method and the partial differential equations are solved numerically on a collocated

grid in a segregated manner. The drag model according to Štrubelj and Tiselj [29] results in a

stiff equation system, which requires the implementation of an n-phase partial elimination algo-

rithm [23]. Furthermore, the compact momentum interpolation for multiphase flows according to

Cubero et al. [35] is utilized to ensure consistency in terms of time step, relaxation factor and drag

force. The pressure velocity coupling is resolved by means of a projection method. The discretiza-

tion is second order accurate in space and first order implicit in time. The phase fraction equations

are explicitly integrated in time with a multidimensional limiter for an explicit solution algorithm

(MULES, [36]) and a flux-limiting scheme for the convection term by van Leer [37]. Finally, the

interface compression scheme of Weller [20] is applied to prevent resolved interfaces from diffusing

due to numerical diffusivity.

III. APPLICATION OF THE HYBRID MODEL TO VARIOUS SCENARIOS

The following section briefly introduces three simulation cases, which are supposed to demon-

strate the capabilities of the presented hybrid model and serve as basic verification tests. The focus

is on resolved interfaces, as this is the main challenge that has to be solved. More details on the

simulation setups can be found in Meller et al. [23] and in Tekavčič et al. [24].

III.A. Three-dimensional Rising Bubble

This test case is a classical scenario for VOF methods. The idea is to demonstrate the

capability of the hybrid model to simulate a single rising bubble in a stagnant water column with

similar results as a comparable algebraic VOF. The setup follows Balcázar et al. [38] and the

dimensionless parameters for the selected cases are listed in Table I. The bubble is initialized as a
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Fig. 1. Bubble rising velocity and interface position (rα = 0.5) at t̃ = 12.53 for different spatial
resolutions in three-dimensional rising bubble case 1.

sphere with a diameter Db at the horizontal center of the computational domain, 2Db above the

bottom. The computational domain is a cylindrical vessel with a diameter of 8Db and a height of

12Db. The bubble diameter is used to define any dimensionless length as

L̃ =
L

Db
. (7)

Furthermore, gravitational velocity Ug =
√
gDb, gravitational time scale tg =

√
Db/g, dimen-

sionless velocity Ũ = U/Ug and dimensionless time scale t̃ = t/tg are defined. The dimensionless

numbers Reynolds number, Eötvös number and Morton number are defined as Reg = ρLUgDb/µL

, Eo = ρLgD
2
b/σ and Mo = gµ4

L(ρL − ρG)/(ρ2Lσ
3), respectively. The indices G and L represent

gas and liquid properties, respectively. An orthogonal equidistant grid is used in the center of the

domain. Towards the shell surface of the cylinder the grid is radially stretched with the aim to

reduce computational costs. The mesh spacing was selected based on a grid study, where some

exemplary results are shown in Fig. 1. For the results presented in the following the grid spacing

is fixed to ∆x̃ = 1/32. The boundary conditions are free-slip for the lateral walls of the cylindrical

domain, no-slip at the bottom wall and a free gas-liquid surface is established 1Db below the upper

boundary. The pressure is fixed at the top boundary. A sketch of the domain, the grid used and

the initial position of the bubble and the free surface is given in Fig. 2.

The results of the present solver are compared to the results obtained by Balcázar et al.

[38] and the results of interFoam, which is the default solver in OpenFOAM that implements an

algebraic VOF. As known for algebraic VOF the time step plays an important role and, hence, is
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Fig. 2. Computational domain (gray) and grid (blue) as well as initial interface position (green)
of three-dimensional rising bubble cases.

fixed to ∆t̃ = 3.13 · 10−2, which results in a Courant number of less than 0.12. Figure 3 shows

dimensionless bubble rising velocity Ũb and the sphericity sb over time as well as interface location

rG = 0.5 at dimensionless time t̃ = 12.53 for case 1 (see Table I). The bubble sphericity sb is

defined as the ratio of the surface area of a sphere with equivalent volume to the actual bubble

surface area.

It is evident from Fig. 3(b) that at the beginning of the simulation, for t̃ < 4, the bubble

rising velocity predicted with the present solver is slightly smaller than the one obtained with

interFoam. Nevertheless, in the second half of the simulation, both values approach each other.

Compared to the level-set results of Balcázar et al. [38], both OpenFOAM solvers predict a

slightly lower value. In terms of bubble shape, both solvers perform very similar in the beginning

of the simulation, whereas the hybrid model predicts slightly lower values towards the end of the

simulations. However, the comparison of the bubble shape between Balcázar et al. [38], interFoam

and the present solver at t̃ = 12.53 shows a very good agreement. Apart from the skirt region,

which is characterized by a high interface curvature, nearly no differences in bubble shape can be

observed.

For case 2, the results are shown in Fig. 4 in terms of the same quantities as for case 1. Both

solvers, interFoam and the present solver, predict a deceleration of the bubble in the second half
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Fig. 3. Bubble rising velocity and sphericity over time as well as interface position (rG = 0.5) at
t̃ = 12.53 for three-dimensional rising bubble case 1. Data for interface position of Balcázar et al.
[38] are adjusted in terms of scale and position.

of the simulation. Due to this, an under-prediction of 3 % in rising velocity is observed compared

to Balcázar et al. [38]. However, when looking at the bubble shape at t̃ = 12.53 both OpenFOAM

solvers show the same results, differing slightly from the results of Balcázar et al. [38]. The

ligaments predicted by Balcázar et al. [38] are slightly shorter and the gas-liquid interface between

them is flat. However, in summary the present solver shows nearly identical results to a default

algebraic VOF method implemented in interFoam. Some moderate differences to the more accurate

level-set method have been found, but overall the agreement is satisfying.

III.B. Two-Dimensional Stagnant Stratification of Water and Oil with Air Bubbles

An important design criterion already mentioned is the capability of the framework to handle

interactions of dispersed phases with an interface between two other continuous phases. For testing

purposes, a bubble column with a width of 0.15 m and a height of 0.5 m was defined. Dispersed

air bubbles with a diameter of Dair = 1 mm are introduced into a stagnant stratification of oil

and water (50% of the domain filled with each phase). The grid is equidistant with a grid spacing
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Fig. 4. Bubble rising velocity and sphericity over time as well as interface position (rG = 0.5) at
t̃ = 12.53 for three-dimensional rising bubble case 2. Data for interface position of Balcázar et al.
[38] are adjusted in terms of scale and position.

of ∆x = ∆y = 0.005 m. The top boundary is a fixed-pressure boundary condition, whereas at

the lateral boundaries a no-slip condition for water and oil and a free-slip condition for the gas is

imposed. The dispersed gas is injected at the bottom of the domain in a region between 0.05 m <

x < 0.1 m with a void fraction of rair = 0.26 and a wall-normal velocity of Uair = 0.197 ms−1. The

time step is set to ∆t = 0.03 s. The closure models for phase pairs formed by a continuous and

a dispersed phase are defined according to Ishii and Zuber [39] for drag and Crowe et al. [40] for

virtual mass (CVM = 0.5). The drag model for a pair of continuous phases is the aforementioned

model of Štrubelj and Tiselj [29]. The material properties of the phases are listed in Table II.

The time resolved results in Fig. 5 show how the swarm of bubbles enters the domain and

forms a mushroom shaped cloud afterwards. At t ≈ 1.6 s, the swarm hits the water-oil interface,

penetrates it and continues rising towards the top boundary. The water-oil interface temporarily

deforms when the bubble swarm passes, keeps sloshing for a while, and, finally, almost perfectly

recaptures at its initial position. The dispersed air passes the sharp water-oil interface smoothly
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Fig. 5. Top row: contours of volume fraction of dispersed air phase rα as evolution over time,
bottom row: contours of vertical component of velocity fields of dispersed air phase Uair,y in ms−1

as evolution over time; white lines mark the resolved interface (rwater = 0.5) between continuous
water and oil phases.

without any oscillatory of the phase velocity field. Note that the phase velocities of water and oil

are identical everywhere in the domain. This is a desired behavior and a result of the selected

interfacial drag formulation of Štrubelj and Tiselj [29] together with a very small value for the

relaxation time τr in Eq. (3).

III.C. Three-dimensional Stratified Flow with Turbulence Dampening

The two previous test cases are characterized by a vertical flow, i.e. in the opposite direction

to gravitational acceleration, induced by bubbles rising in a stagnant liquid. As the framework is

intended to be generally applicable, in the following section results of a horizontal flow configuration

are presented, which is not only driven by gravity. The computational domain represents the test

section part of the WENKA experimental facility [41]. Only a brief summary of the simulation

TABLE II
Material properties of water, oil, and air in case of a two-dimensional stagnant water-oil stratifi-
cation with air bubbles.

Unit Water Oil Air
ρα kg m−3 997 990 1.185
µα Pa s 0.01 0.01 0.000184

σwater−oil N m−1 0.0244 –
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Fig. 6. Computational domain and boundary conditions. The depth of the domain is 110mm. All
dimensions are given in mm.

setup and the results is given here. For a detailed introduction and a more elaborated discussion,

the reader is referred to Tekavčič et al. [24].

From the WENKA experimental database, the flow conditions 3 and 23 are selected. These

cases are characterized by a nearly steady-state supercritical stratified flow. The results are com-

pared for the measurement points MP1 and MP2, where vertical profiles of volume fraction, ve-

locity and turbulence fields were measured. The position as well as the geometry of the simulation

domain is shown in Fig. 6. The grid spacings in the channel section of the domain between

0mm < x < 470 mm are ∆x = 5 mm, ∆y,water = 1 mm, ∆y,air = 2.6 mm, and ∆z = 5 mm. The

total number of grid cells is Ncells = 176044. Water enters the channel at the liquid inlet on the

bottom left and air enters the gas inlet at the top of the opposite side. Hence, a counter-current

flow of water and air develops in the channel section. To ensure physical inlet conditions for a

fully developed channel flow and to reduce the computational effort, a field mapping from loca-

tions further downstream of the water and air inlets (45 mm for water, 493 mm for air) was used.

The boundary conditions are no-slip conditions for water and air at the channel walls and a fixed

pressure boundary condition with p = 100900 Pa at both outlets. The remaining boundaries are

set to homogeneous Neumann boundary conditions. An intensive study for various parameters

was performed, which includes:

• The evaluation of different turbulence damping approaches: no damping, symmetric damping

(both phases) and asymmetric damping (only the gas phase),

• a parametric study on the damping length scale parameter δα,

• a mesh sensitivity study using the asymmetric damping approach, and, finally,

• simulations using a three-dimensional domain with symmetric and asymmetric dampening
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and a damping parameter of δα = 7 · 10−5 m.

In the following, we will discuss only results for the three-dimensional domain. The measured

and simulated profiles for velocity and turbulent kinetic energy at measurement point MP1 and

MP2 are shown in Fig. 7. Independent from the damping strategy, both simulations with the

hybrid model show good results for velocity as well as turbulent kinetic energy. Compared to

other authors, e.g., [33, 16], the quantitative and qualitative agreement of the profiles is similar,

which strengthen our confidence in the hybrid model. The symmetric turbulence damping tends

towards an under-prediction of the turbulent kinetic energy on the liquid side of the interface. The

asymmetric damping improves the situation, but this comes at the price of a worse prediction of

the streamwise velocity and turbulent kinetic energy at the gas side of the interface. For such

relatively smooth interfaces, the hybrid model together with the no-slip condition (enforced by the

drag model according to Štrubelj and Tiselj [29]) and a turbulence damping works as expected.

Nevertheless, for more complex stratified flows, e.g. with unresolved surface waves and droplet

entrainment, further modeling is required. In particular, the drag model needs some improvement

and should allow some velocity slip, and the hybrid approach should be enabled to handle dispersed

phase entrainment and detrainment processes to simulate wave breaking phenomena.

IV. OUTLOOK AND UPCOMING CHALLENGES

The presented hybrid model shows good performance for the edge case of sufficiently resolved

interfaces as well as for cases where dispersed interfaces interact with resolved ones. The hybrid

model is implemented into the Euler-Euler framework in OpenFOAM and is available open source

[34].

No dedicated validation of the hybrid model for dispersed bubbly flows is carried out as this

modeling aspect is captured by relying on the established HZDR baseline model [27, 28]. The

upcoming research might focus on the transition between the Euler-Euler and the VOF method as

sketched in Fig. 8. In the following, some ideas how to overcome the problems in this transition

region and how to enable morphology transitions between the numerical phases will be presented.

However, all ideas are speculative and subject to scientific discussions in future.
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Fig. 7. Results for a 3D domain compared to the measured vertical profiles by Stäbler [41]. The
horizontal dash-dot line indicates the water level measured in the experiment.

IV.A. Under-resolved Volume-of-fluid Simulations

One of the major problems of algebraic VOF methods is that the mesh resolution has to

be sufficiently fine for a good prediction of, e.g. the bubble rising velocity and the bubble shape.

However, for a hybrid model one needs to extend the validity range of VOF towards coarser mesh

resolutions. A coarser mesh resolution results in an artificially enlarged boundary layer of the

interface region. This results in a bubble rising velocity, which is much too slow [42]. This effect

is clearly visible in Fig. 1, which shows the results of the mesh study for the three-dimensional

rising bubble of Balcázar et al. [38]. The interface for t̃ = 12.53 on the coarsest mesh with

∆x̃ = 1/8 is clearly lagging behind. Contrary to the homogeneous model, the utilized two-fluid
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Fig. 8. Bubble diameter versus grid spacing ratio and suitable methods for numerical simulation:
Euler-Euler method (E-E) and Volume-of-Fluid method (VOF).

model formulation allows for interfacial slip between the gas and the liquid phase. Hence, the

interfacial coupling of Štrubelj and Tiselj [29], which ensures a strong coupling between the phases

on a fine grid, has to be blended into a looser coupling on coarser grids. For a fully under-resolved

gas bubble, a drag coefficient of CD = 0.44 seems to be reasonable as reported by Gauss et al.

[42]. A blending criterion might be the interfacial curvature (inverse of mean radius of a surface)

in relation to the grid spacing κ∆x, which enables blending if curvature is too high to be depicted

on the underlying grid. This results in a resolution-adaptive interfacial drag modeling based on

the local detection of under-resolved parts of the interface.

IV.B. Over-resolved Euler-Euler simulations

A similar issue exists for the Euler-Euler modeling. Here the validity of the approach has to

be extended towards very fine grids. The naive application of the Euler-Euler model on fine grids

may lead to convergence problems or unphysical results, something that can be attributed to the

inconsistency of the development of the closure models and their application [43]. An example of

such a problematic case, a pipe flow with annular gas injection, is shown in Fig. 9, where the void

fraction profile shows an unphysical peak in the center of the domain. A simple approach to mimic

”coarser meshes” for the closure models is to apply some diffusion to the phase fraction field. This

can be understood as a filtering operation. Fig. 9 also shows the results of a proof-of-concept with

a suitable diffusion coefficient, which helps to retain a physical void fraction field. However, the

amount of diffusion is not known a priori and future activities have to answer the question whether

a general rule for the choice of the artificial diffusion can be found.
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Fig. 9. Gas volume fraction profile in a pipe flow produced by injecting large bubbles with a
diameter of 0.2R for several refinement levels. The refinement levels correspond to 2 (4, 8, 16, 32)
cells per bubble diameter. The Euler-Euler model without diffusion may produce strange results
(a), which can be improved by artificial diffusion (b).

IV.C. Transition towards resolved interfaces

Another important mechanism that takes place in the transition region is the morphology

transfer between dispersed and continuous phases. This means that small, dispersed bubbles

coalesce until they reach a size that is sufficiently large to be resolved on the underlying grid.

Furthermore, gas bubbles may enter a different region of the simulation domain that has a grid,

which is sufficiently fine to resolve them. Hence, as soon as the grid resolution allows resolving the

interface a phase transfer has to be initiated that shifts dispersed phase fraction towards continuous

phase fraction. A first step in this direction is a simple threshold model. The phase transfer is

active as long as the following condition holds:

rG,disperse + rG,continuous ≥ rthreshold. (8)

For a very simple proof-of-concept case presented in Fig. 10, a threshold value of 74% is applied,

motivated by the densest packing of spheres. Within a simple rotating flow, it is expected that

the gas accumulates in the center region and due to that forms a continuous gas core. Figure 10

illustrates the behavior of the phase transfer model. First, the grid has to be fine enough to enable

the transition process. On a coarse grid, the gas just accumulates in a broader region in the center

of the domain, but remains dispersed. However, if the mesh is fine enough, the swirl drives the

gas towards the center of the domain where the phase transfer takes place and a continuous gas

core with a sharp, resolved interface develops. This serves as a conceptual starting point for phase

18



Fig. 10. Disperse bubbles (a) exposed to a rotating liquid are moving to the center of the domain.
If the gas phase fraction exceeds the threshold, a transfer from disperse to continuous gas applies
(b). Finally, a stable continuous gas core forms (c). Blue indicates a gas phase fraction value of
zero, red indicates one.

transfer towards resolved phases and future work has to assess the potential of this simple ansatz.
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transitions between different scales of interfacial structures,” Int. J. Multiph. Flow, 47, 171

(2012); 10.1016/j.ijmultiphaseflow.2012.07.007.

[22] E. M. A. Frederix, D. Dovizio, A. Mathur, and E. M. J. Komen, “All-regime two-phase

flow modeling using a novel four-field large interface simulation approach,” Int. J. Multiph.

Flow, 145, 103822 (2021); 10.1016/j.ijmultiphaseflow.2021.103822.

[23] R. Meller, F. Schlegel, and D. Lucas, “Basic Verification of a Numerical Framework

Applied to a Morphology Adaptive Multi-field Two-fluid Model Considering Bubble Motions,”

Int. J. Numer. Meth. Fluids, 93, 3, 748 (2021); 10.1002/fld.4907.
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