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In this work, carbon ion irradiation and precise diamond blade dicing are applied for 

Nd:GdCOB ridge waveguide fabrication. The propagation properties of the fabricated 

Nd:GdCOB waveguides are investigated through experiments and theoretical analysis. 

The micro-Raman analysis reveals that the lattice of Nd:GdCOB crystal expands 

during the irradiation process. The micro-second harmonic spectroscopic analysis 

suggests that the original nonlinear properties of the Nd:GdCOB crystal are greatly 

enhanced within the waveguide volume. Under a pulsed 1064-nm laser pumping, 

second harmonic generation (SHG) at 532 nm have been achieved in the fabricated 

waveguides. The maximum SHG conversion efficiencies are determined to be 

~8.32%W-1 and ~22.36%W-1 for planar and ridge waveguides, respectively. 
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Introduction 

Optical waveguide, as one of the essential components of integrated photonics, can 

confine light fields in extremely small volumes [1,2]. As a result, the light intensity 

obtained from the waveguide volume is much higher than that in bulks [3-5]. This 

feature provides meaningful advantages in nonlinear optical applications, where 

various nonlinear phenomena could be generated from the waveguide structure at a 

relatively low optical power. For example, frequency conversion processes based on 

waveguides feature higher conversion efficiencies and more flexible mode selections 

in comparison with those based on the bulks [4]. Combining the versatility of 

multifunctional crystals with the compact geometries of waveguide structures, 

crystalline waveguides can be used for construction of multifunctional optical devices 

with small footprints, such as on-chip lasers, compact optical modulators and 

nonlinear wavelength converters [6,7]. In practice, channel or ridge waveguides with 

light field confinement in two dimensions (2D) are preferred than one-dimensional 

(1D) planar waveguides due to their better optical confinement and more flexible 

geometries [8]. 

Ion implantation, as an important material modification method, has been applied 

to a variety of crystals [9-15]. By bombarding the target crystal surface with energetic 

ion beams, localized lattice damages and refractive index modifications at 

near-surface regions appear, resulting in optical waveguide formation [16-18]. Up to 

now, this technique has been applied to waveguide preparation in dozens of 

crystalline materials [8,16]. Optical waveguides manufactured by ion implantation are 

generally in 1D planar structures. Additional surface microfabrication is therefore 

needed to obtain 2D waveguide structures. Of the techniques used for surface 

microfabrication, femtosecond-laser-direct writing (FsLDW) and precise diamond 

blade dicing are the most commonly-used ones. Both techniques have been utilized to 

manufacture ridge waveguides based on ion-irradiated Nd:YAG planar waveguide 
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[19-23]. However, compared with the ridge waveguides fabricated by FsLDW, those 

prepared by precise diamond blade dicing feature lower scattering losses and higher 

optical quality owing to their smoother side walls [19,24-26].  

Combining the lasing and luminescence characteristics of Nd3+ ions with the 

nonlinear optical properties of GdCOB matrix, it is shown that neodymium-doped 

GdCa4O(BO3)3 (Nd:GdCOB) has attractive optical properties as an excellent laser 

gain medium and an efficient self-frequency doubling (SFD) crystal [27-31]. In previous 

works, planar and channel waveguides have been fabricated in Nd:GdCOB crystals by 

ion irradiation [32] and FsLDW [33], and second harmonic generation (SHG) have also 

been achieved using these waveguide structures. However, up to now, Nd:GdCOB 

ridge waveguides produced by ion irradiation and precise diamond dicing has not 

been reported. 

In this work, we demonstrate the fabrication of Nd:GdCOB ridge waveguides by 

combining ion beam irradiation with precise diamond blade dicing techniques. We 

performed SHG at 532 nm in both ridge and planar waveguides using 1064-nm pulsed 

fundamental wave.  

2. Experiments 

The 8 at.% Nd-doped GdCOB crystal used in this work was cut to satisfy Type-  

phase matching condition ( = 161.5 ,  = 0 3. 
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(Jingchuang Advanced, AR3000). The rotation and movement velocities were set to 

20,000 r/min and 0.05 mm/s, respectively. With the vertical optical confinement 

provided by ion induced refractive index change and the lateral optical confinement 

offered by two neighboring grooves, ridge wave

G4) formed. Both ion irradiation and 

precise diamond blade dicing are high-precision waveguide fabrication methods with 

good reproducibility and robustness[35-37], and the fabrication errors have negligible 

impacts on the waveguide properties according to simulation results. 

Fig. 1

Fig. 1. (color online) Schematic illustrations of (a) 15 MeV C5+ ions irradiation and (b) precise 

diamond blade dicing for Nd:GdCOB ridge waveguides fabrication. 

After the fabrication, micro-Raman measurements were carried out to investigate 

the microstructural modification of Nd:GdCOB crystal using a spectrometer 

(Horiba/Jobin Yvon HR800). With a detected range of 50-1500 cm-1, the laser beam at 

473 nm was focused on the waveguide cross sections and bulk at room temperature. 

The -SH spectroscopic analysis of the sample was performed to evaluate the 

nonlinear properties of the waveguides through a confocal microscopy testing 

platform. The laser beam (with a pulse dura

and a pulse repetition rate of ~5 MHz) at 1030 nm produced by a microjoule ultrafast 

fiber laser system (ANTAUS- 10W-2u/5M) was coupled into the 

objective (N.A. = 0.3). The reflected -SH signal was collected by the same objective, 

and after passing through several mirrors and lenses, the signal was detected by a 

spectrometer. 
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Fig. 2 (color online) (a) The end-face coupling arrangement for SHG characterizations of Nd:GdCOB 

waveguides. The mode field distribution of planar and WG3 ridge waveguide at 1064 nm ((b) and (d)) 

and at 532 nm ((c) and (e)).

As shown in Fig. 2 (a), we performed SHG characterization experiments based on 

an end-face coupling equipment. After the 1064-nm light beam was emitted from the 

pulsed laser (with a pulse width of ~1

repetition rate of ~5 kHz), its power and polarization were adjusted by a neutral 

density filter and a half-wave plate, respec

0.4) was used for optical in-coupling. The SHG and residual fundamental signals 

output from the waveguides were collected by another microscope objective. In order 

to detect the SHG signal, we used a spectrometer and a powermeter behind an optical 

low-pass filter (OLPF), which has a transmittance of 98% at 532 nm and a 

reflectivity of >99% at 1064 nm. Fig. 2b-e present the fundamental modes along TM 

and SH modes along TE in planar and WG3 ridge waveguides (all the ridge 

waveguides show similar modal distributions), respectively. Both fundamental and 

SH waves are well-confined in the waveguiding regions, showing nearly single-mode 

profiles, which are very beneficial for SHG.  

3. Results and discussion 
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Fig. 3. (color online) (a) The curves of the electronic stopping power (blue line) and the nuclear 

stopping power (red line) distribution, as well as the refractive index profile of the waveguide (green 

line), as functions of the depth. Figures (b) and (e) show the microscopic images of the cross sections 

of planar and WG2 ridge waveguides, respectively. Experimental ((c) and (f)) and simulation ((d) and 

(g)) results of the modal profiles of planar and WG2 ridge waveguide along TE at 1064 nm, 

respectively.

The nuclear (Sn) and electronic (Se) stopping power profiles of 15 MeV C5+ ions in 

Nd:GdOCB were calculated using the SRIM-2008 (Stopping and Range of Ions in 

Matter 2008) code, and the results are shown in Fig. 3(a). The non-zero Se is observed 

within the ion penetration range of 0-10 

Sn value remains zero within the first 

surface. Therefore, the electronic damage is considered to be the main cause for the 

refractive index change at the ion-irradiated area, whereas the nuclear damage at the 

end of the ion trajectory is responsible for the optical barrier creation. Moreover, the 

formation of the waveguide layer is a collective effect of both Sn and Se. The 

maximum modification of refractive index in the waveguide region is about 0.003 

estimated by formula (1): 

2
msin

2
n

n
                             (1) 

where m is the maximum incident angle at which the laser beam cannot be focused 

into the waveguide by the microscope objective, and n=1.7184 is the refractive index 

of the Nd:GdCOB crystal [32]. Therefore, taking the stopping power profiles as 

references, we reconstructed the refractive index distribution (see Fig. 3 (a)). Fig. 3 (b) 

and (e) demonstrate the microscopic images of the planar waveguide and the WG2 
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around 10 m, which is in fairly good agreement with the calculation performed using 

the SRIM-2008 code [38]. We imported the index profile into the Rsoft Beam PROP 

8.0 [39], and simulated the near-field modal distribution. Taking planar waveguide and 

WG2 ridge waveguide for example, Fig. 3 (c) and (f) display the simulated near-field 

distributions at 1064 nm, which are very similar to the experimental results imaged by 

a CCD camera in the end-face coupling setup (see Fig. 3(d) and (g)), suggesting the 

reasonability of the reconstructed refractive index profile. 

Fig. 4. Output power of (a) planar and (b) WG3 ridge waveguide as a function of all-angle 1064 nm 

laser transmission with a constant launched power of 17.4 mW under continuous wave (cw) 

configuration.

To investigate the polarization-dependent properties of the waveguides, the 

all-angle optical transmission of the fabricated waveguide at 1064 nm has been 

measured. As one can see from Fig. , for both planar and WG3 ridge waveguides (all 

the ridge waveguides show similar results), the output power reaches its maxima (0.86 

mW and 0.62 mW) along TE polarization (0

minima (0.22 mW and 0.16 mW) alo However, the 

SHG process occurs under TM TE2  process in Nd:GdCOB waveguides, so the 

polarization-dependent effect has a negative impact on the frequency-doubled output 

power and conversion efficiency of SHG. 

Fig. 4. Output power of (a) planar and (b) WG3 ridge waveguide as a function of all-angle 1064 nm Fig. 4. Output power of (a) planar and (b) WG3 ridge waveguide as a function of all-angle 1064 nm 

laser transmission with a constant launched power of 17.4 mW under continuous wave (cw) laser transmission with a constant launched power of 17.4 mW under continuous wave (cw) 

To investigate the polarization-dependeTo investigate the polarization-dependent properties of the waveguides, the 

all-angle optical transmission of the faall-angle optical transmission of the fabricated waveguide at 1064 nm has been bricated waveguide at 1064 nm has been all-angle optical transmission of the fa

measured. As one can see from Fig. , for both planar and WG3 ridge waveguides (all measured. As one can see from Fig. , for both planar and WG3 ridge waveguides (all 

the ridge waveguides show similar results), the ridge waveguides show similar results), 

mW and 0.62 mW) along TE polarization (0mW and 0.62 mW) along TE polarization (0

minima (0.22 mW and 0.16 mW) alominima (0.22 mW and 0.16 mW) alo

SHG process occurs under TMSHG process occurs under TM

polarization-dependent effect has a negapolarization-dependent effect has a nega

power and conversion efficiency of SHG. power and conversion efficiency of SHG. 

 into the Rsoft Beam PROP 

ar waveguide and ar waveguide and 

and (f) display the simulated near-field and (f) display the simulated near-field 

ilar to the experimental results imaged by ilar to the experimental results imaged by 

up (see Fig. 3(d) and (g)), suggesting the up (see Fig. 3(d) and (g)), suggesting the 



Fig. 5. (color online) Micro-Raman spectra obtained from the WG3 ridge waveguide (red line) and the 

bulk (blue line) of the Nd:GdCOB crystal.

Micro-Raman spectra of the Nd:GdCOB at substrate and C5+ ion implantation 

region are presented in Fig. . The Raman peak number and position show no 

differences between the bulk and waveguide areas. However, the Raman intensity in 

the waveguide increases with respect to the bulk, which may be a result of the lattice 

expansion attributed to the electronic collisions during the ion irradiation[40-42]. It is 

also possible that C5+ ion implantation has caused more point defects in the crystal, 

leading to the slight broadening of the Raman peak half-width. 

Fig. 6. (color online) (a) The emitted intensity spectra of -SH when the laser beam (at 1030 nm) is 

focused at the WG3 ridge waveguide (red line), the planar waveguide (green line), and the bulk (gray 

line). (b) The laser spectra of the fundamental beam at 1064 nm (red line) and the second harmonic 

generation at 532 nm (green line) in WG3 ridge waveguide.

The -SH responses of the ridge and planar waveguides, as well as the bulk area, 

are investigated, as shown in Fig. (a). From the SH intensity profiles, the intensity 
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distributions for the bulk, planar, and ridge waveguides have similar shapes, with their 

peaks at the same position. However, the SH signal in the WG3 ridge waveguide (all 

the ridge waveguides show similar results) is enhanced significantly, around ten times 

larger than that in the bulk. It is evident that the nonlinear properties of the 

Nd:GdCOB crystal are well retained and further greatly enhanced in the waveguide. 

As showed in Fig. (b), the measured spectra by the pulsed laser pump of the 

fundamental (at 1064 nm) and SH (at 532 nm) waves from the WG3 ridge waveguide 

clearly depict the nonlinear process of SHG in Nd:GdCOB waveguides. The 1064-nm 

fundamental and SH waves are determined to be TM- and TE-polarized, respectively. 

This verifies that the SHG process occurs under the TM TE2  process, which is in 

good accordance with the phase matching configuration of the bulk. 

Fig. 4. (color online) Second harmonic power and the corresponding conversion efficiency as functions 

of the fundamental pump power in (a) planar and (b) WG4 ridge waveguides.

Fig. 4 illustrates the second harmonic powers (in average power) and the 

conversion efficiencies as functions of the 1064-nm fundamental pump power for 

planar and WG4 ridge waveguide (WG4 has the best frequency doubling performance 

of any ridge waveguides) under the pulsed configuration. The measured data points 

are marked with the solid circles (blue color for the SH powers, and red color for the 

conversion efficiencies). For the planar waveguide, the maximum average power 

output of the SH light is ~1.04 mW with a pump power of ~112 mW, resulting in a 

conversion efficiency of  8.32%W-1. The maximum average output power of the 

SH light for the WG4 ridge waveguide is ~2.80 mW, which is around twice times 

larger than that of the planar waveguide. The conversion efficiency reaches a 

maximum value of ~22.36%W-1, leading to a significant enhanced performance. The 

Fig. 4. (color online) Second harmonic power and the corresponding conversion efficiency as functions Fig. 4. (color online) Second harmonic power and the corresponding conversion efficiency as functions 

of the fundamental pump power in (a) planar and (b) WG4 ridge waveguidesof the fundamental pump power in (a) planar and (b) WG4 ridge waveguides

Fig. 4 illustrates the second harmonic Fig. 4 illustrates the second harmonic 

conversion efficiencies as functions of conversion efficiencies as functions of the 1064-nm fundamental pump power for 

planar and WG4 ridge waveguide (WG4 haplanar and WG4 ridge waveguide (WG4 ha

of any ridge waveguides) under the pulsed of any ridge waveguides) under the pulsed 

are marked with the solid ciare marked with the solid circles (blue color for the SH powers, and red color for the 

conversion efficiencies). For the planarconversion efficiencies). For the planar

output of the SH light is ~1.04 mW with output of the SH light is ~1.04 mW with 

conversion efficiency of conversion efficiency of 

SH light for the WG4 ridge waveguide isSH light for the WG4 ridge waveguide is
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peaks at the same position. However, the SH signal in the WG3 ridge waveguide (all 

is enhanced significantly, around ten times is enhanced significantly, around ten times 
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annealing treatment at 260  for about 30 minutes was carried out in order to observe 

the changes of related nonlinear properties. However, this thermal operation has 

negligible influences on the SHG performance of waveguides. The maximum SHG 

output power (Pmax), the conversion efficiency ( max), and the propagation losses ( ) 

data for all ridge waveguides are summarized in Table 1, and the related properties of 

the planar waveguide are also included for references. With an increase in the width 

of the ridge waveguide, the corresponding maximum SHG power and conversion 

efficiency will be enhanced. The similar dependence on the ridge width of the SHG 

properties can also be found in previously reported KTP ridge waveguides [26]. 

Furthermore, ridge waveguides show better performance in frequency doubling 

compared to the planar waveguide, mainly due to the more compact structure of the 

ridge waveguide, which leads to stronger light intensity confined in limited volume. 

The propagation losses of the ridge waveguides decrease with the increase of ridge 

widths. And all ridge waveguides have higher propagation losses than the planar 

waveguide, mainly owing to the relatively high waveguide side-wall roughness 

caused by the dicing process. By optimizing the dicing parameters, such as the blade 

type and its rotation velocity, the roughness of the waveguide sidewall can be lowered, 

thereby reducing the propagation loss of the fabricated ridge waveguide[43]. In 

addition, the reduction of waveguide side-wall roughness can be also realized by 

using ion beam milling[44]. Frequency doubling efficiency will be improved if 

waveguide losses are optimized and self-frequency-doubling effect can be expected.

s. However, this thermal operation has 

mance of waveguides. The maximum SHG mance of waveguides. The maximum SHG 

), and the propagation losses (), and the propagation losses ( ) ) 
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Table 1.The maximum output SH powers (Pmax) and the corresponding conversion efficiencies ( max) 

and propagation losses ( ) of the Nd:GdCOB planar and ridge waveguides.

 WG1 WG2 WG3 WG4 Planar 

Width ( m) 10 20 25 30 - 

Pmax (mW) 2.41 2.53 2.68 2.80 1.04 

max(%W-1) 19.22 20.23 21.35 22.36 8.32 

 (dB/cm) 8.5 7.5 7.2 6.9 5.7 

4. Conclusions 

We have fabricated ridge waveguides in Nd:GdCOB crystals through the combination 

of carbon ion irradiation and precise diamond blade dicing. Based on an end-face 

coupling setup, the optical waveguiding properties of both Nd:GdCOB ridge 

waveguides and planar waveguide are experimentally investigated. The simulated 

modal profiles agree well with the measurements, suggesting the rationality of the 

constructed index profile based on stopping powers. From the micro-Raman spectrum, 

lattice expansion occurs during the carbon ion implantation with more point defects. 

The nonlinear properties of the Nd:GdCOB crystal have been fully preserved and 

greatly enhanced within the waveguides through -SH analysis. The SHG at 532 nm 

based on Type I phase matching has been observed under 1064-nm pulsed laser 

configuration. The maximum SH power is ~2.80 mW obtained in WG4 ridge 

waveguide, and the corresponding conversion efficiencies is ~22.36%W-1. For planar 

waveguides, the maximum SH power is ~1.04 mW with a conversion efficiency of 

8.32%W-1. Our work demonstrates that carbon ion irradiation combined with precise 

diamond blade dicing can be used to fabricate efficient nonlinear waveguides, 

providing potential applications in integrated photonics. 
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