

Optimization and preliminary design of a hightemperature, low pressure-ratio sCO₂-compressor for a wide operating range

S. Rath, U. Gampe (Institute of Power Engineering, TU Dresden, Germany)
U.Hampel, S. Unger (Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, Germany)

Motivation

- Experimental facility set up within the CARBOSOLA project (supercritical <u>carbon</u> dioxide as alternative working fluid for <u>bo</u>ttoming cycle and <u>solar</u> thermal application)
- First rig configuration without expansion device
 → pure fluid circulation at low pressure difference
- Design of a centrifugal compressor to provide fluid circulation over a wide operating range

Baseline impeller design

Mass flow	ṁ	3.3	kg/s
Total inlet temperature	$T_{0,\mathrm{tot}}$	(31) 200	° C
Total inlet pressure	$p_{0,tot}$	290	bar(a)
Pressure ratio	Π_{tot}	1.035	-
Estimated tot. to tot. Efficiency	η_{tt}	0.85	-
Speed	n_{RPM}	18000	rpm
Work coefficient	ψ	1.18	-
Flow coefficient	φ	0.04	-
Hub diameter	d_H	20.0	mm
Suction diameter	$d_{\mathcal{S}}$	33.0	mm
Impeller diameter	d_2	72.0	mm
Outlet width	b_2	2.00	mm
Tip clearance	x_{tip}	0.35	mm

- First impeller design based on the rig boundary conditions
- Parametrized geometry model using the design software
 CFturbo providing a direct export to CFD

Optimization criteria

- Geometry optimization by varying 20 design parameters using a multi-objective genetic algorithm
- Numerical evaluation of each design in terms of a 3D, single blade passage CFD-model
- Operating range of each design estimated at the design point by the equivalent diffusion factor from 1D impeller theory:

$$D_{\text{eq}} = \frac{w_{max}}{w_2} = \frac{1}{2 \cdot w_2} \cdot \left(w_1 + w_2 + \frac{2\pi \cdot d_2 \cdot u_2 \cdot I_B}{z_{\text{eq}} \cdot L_B} \right)$$

Full optimization target:

$$\min(D_{eq}) \wedge \min(w_2) | \pi_{tot} \ge 1.036$$

Optimization results

- Evaluation of 1067 designs in total
- Selection of 4 designs with various $D_{\rm eq}$ to verify the optimization target

- Design 59: "Peak" of the Pareto front at lowest $D_{\rm eq}$ from which only small changes in π_{tot} occur for higher $D_{\rm eq}$
- Designs 728, 87: Compromise between higher π_{tot} and low D_{eq}
- Design 527: Highest D_{eq}

- Comparison of performance lines validates suitability of $D_{\rm eq}$ to be used as an <u>indicator</u> for a wide operating range
- Differences for impeller 728 and 87 shows that $D_{\rm eq}$ is an indicator but not a guarantee for a wide and stable range
- Impeller design 728 shows the best compromise of a wide operating range and high values for π_{tot}

Optimized design

Based on the selected impeller a solid model and a stage design were created for further evaluation

This work has been carried out within the project CARBOSOLA funded by the German Federal Ministry for Economic Affairs and Energy, grant reference: 03EE5001B.

