High-temperature sensible thermal energy storage (STES) Thermo-economic assessment for various designs, storage materials and heat transfer fluids

M.B. Mohankumar, Dr.-Ing. S. Unger, Prof. Dr.-Ing. habil. Dr. h. c. Uwe Hampel

Motivation

Increase demand for renewables Intermittent and volatile power output

Energy storage is vital

Provides:

- **Grid stability**
- **Energy security**
- Power balance
- Sustainability

Why Sensible thermal energy storage (STES)?

- Simple and Low cost
- Storage durability (from hours to months)
- Energy storage capacity (from kWh to GWh)

Integration with sCO₂ Power cycle

Why sCO₂?

- Acts like gas with density of liquid
- Compactness and low compressor work
- Lower temperature operation (crit. temp.)

Persichilli et al. (2012)

Effectively exchanges heat as there is no occurrence of pinch

1D Mathematical Model for TES unit

- Heat balance for fluid and solid
- Finite difference Crank-Nicholson dissertation scheme
- Method of lines adopted in MATLAB to solve coupled heat equation

For Fluid:
$$\epsilon \cdot (\rho c_p)_f \cdot \frac{\partial T_f}{\partial t} + \epsilon \cdot (\rho c_p)_f U_f \frac{\partial T_f}{\partial x} = k_{\text{feff}} \cdot \frac{\partial^2 T_f}{\partial x^2} + h_v \cdot (T_s - T_f)$$

For Solid:
$$(1 - \varepsilon) \cdot (\rho c_p)_f \cdot \frac{\partial T_f}{\partial t} = k_{\text{feff}} \cdot \frac{\partial^2 T_s}{\partial x^2} + h_v \cdot (T_f - T_s)$$

Solid medium: High temperature ceramic, high temperature concrete, fire bricks, Alferrock and vetrified flyash

Heat transfer fluid: Air, CO₂, Helium, Nitrogen

TES reference design

Boundary Conditions

Parameters		Value
Thermal capacity, [MWh _{th}]		240
Fluid inlet Temperature $T_{f_{,}}$ in	[°C]	1000
Initial solid temperature T_{s_i} in	[°C]	400
Fluid outlet temperature $T_{f_{j}}$ ou	t [°C]	600
Max solid temperature $T_{s_{,}}$ m	[°C]	1200
Pressure [bar]		1
Porosity ε		0.4
mass flow rate m, [kg/s]		0.5,1,2,3

Novel TES design approach

Segregated brick Honeycomb

Solid rods

Solid medium

Expected outcome

Thermal performance evaluation:

- Heat transfer fluid and solid medium design
- TES unit design
- **Mass flowrate**
- Flow geometry

- Evaluation of overall thermal efficiency
- Outlook on potential design and storage medium
- Evaluation and comparison of energy cost in €/MWh_{th}

