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Departamento de F́ısica, Universidad Técnica Federico Santa Maŕıa,
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Abstract

In magnonics, spin waves are conceived as electron-charge free information carriers. Their wave

behaviour have stand them as the key elements to achieve lower power consumption, faster operative

rates and better packings in magnon-based computational technologies. Hence, knowing alternative

ways that reveals certain properties of their undulatory motion is an important task. Here, we

show using micromagnetic simulations and analytical calculations that spin-wave propagation in

ferromagnetic nanotubes is fundamentally different than in thin films. The dispersion relation is

asymmetric regarding the sign of the wave vector. It is a purely curvature induced effect and

its fundamental origin is identified to be the classical dipole-dipole interaction. The analytical

expression of the dispersion has the same mathematical form as in thin-films with Dzyalonshiinsky-

Moriya interaction. Therefore, this curvature induced effect can be seen as a ”dipole-induced

Dzyalonshiinsky-Moriya-like” effect.
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Using the electron’s spin degree of freedom for data processing instead of its charge is one

of the grand challenges. The first success story can nowadays be seen in spintronic devices

employing various magneto-resistance effects in magnetic sensors and storage applications.

About ten years ago a new research field called magnonics emerged driven by the idea to use

magnons as carrier of spin information [1–7]. Magnons, also called spin waves (SWs), are the

dynamic eigen-oscillations of the spin system in ferromagnets with frequencies between GHz

to THz range and with nanometer wavelengths. Novel materials allow for coherent prop-

agation of SWs over mesoscopic distances without any charge transport involved, paving

the way for green data processing. Many concepts have been proposed theoretically and

experimentally, leading to prototype building blocks of a spin-wave-based logic [8–13]. The

experimental discovery of novel phenomena such as spin Hall effect, Dzyaloshinski-Moria-

Interaction [14, 15] (DMI), spin Seebeck effect and others proved as powerful mechanisms

to excite, manipulate and detect SWs in thin magnetic films on the nanometer scale via

coupling the magnons to charge and heat transport. One particular feature of SWs in thin

films is very intriguing: A certain set of SWs known as Damon-Eshbach [16] modes show a

non-reciprocity regarding inversion of the wave vector caused by dipolar interaction. When

the propagation direction is reversed, these magnons switch from the top to the bottom

surface of the thin film. Very recently it was discovered, that an asymmetric exchange

interaction (DMI) in ultra-thin ferromagnetic films can also cause an asymmetric SW dis-

persion [17], i.e., one can switch from positive to negative dispersion upon reversal of the

wave vector. In this Letter we show that one can obtain a similar asymmetric SW dispersion

purely caused by dipolar interaction when going from thin films to three dimensional struc-

tures with curved surfaces, in particular magnetic nano-tubes (MNT). Such novel structures

can nowadays be very well produced[18, 19] motivated by the broad range of applications

for magnetoresistive devices, optical meta materials, cell/DNA separators and drug delivery

vectors [20, 21]. The high stability of their equilibrium state [22, 23] against external pertur-

bations, and their robust domain walls propagating with velocities faster than the SW phase

velocity [24], promote MNTs as appealing candidates for racetrack memory devices [25, 26]

and information processing [24, 27].

In this Letter, we report the numerical simulation and full analytical description of

curvature-induced asymmetric SW dispersion in nanotubes, which has the same mathe-

matical form [28–31] as the DMI but identifies the dipole-dipole interaction as the origin
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of the asymmetry. We demonstrate that the degree of asymmetry can be tuned with the

tube geometry but also with small electric currents flowing through the nanotube. Besides

the tuneability, contrary to thin-films with DMI the asymmetry is present and is significant

even in the absence of external magnetic fields.

Finite element micromagnetic simulations [32, 33] were performed to study the propaga-

tion of SWs in MNTs. The numerical research is focused on a tube defined by the outer

radius R = 30 nm, wall thickness d = 10 nm and length L = 4 µm. The MNT is as-

sumed to be made of Permalloy and the following material parameters are used, saturation

magnetisation µ0Ms = 1 T, exchange stiffness constant A = 1.3 × 10−11 J/m, negligible

magnetocrystalline anisotropy (Ku = 0) and low Gilbert damping αG = 0.01. Details of

simulations are presented in the Supplementary materials S1.

Propagation and dispersion of SWs in MNTs are simulated for an equilibrium state in

which the magnetisation rotates around the circumference of the tube, thus forming a perfect

flux closure configuration [34, 35]. This state in the following is referenced as a vortex (V)

configuration. It is not a ground state for the given geometry and an external field is required

to stabilise it. A circular Oersted field, H0 ≥ Hcrit, induced by a current flowing through

the MNT or its core can serve this function. The critical field for the nanotube with the

described geometry is µ0Hcrit = 53 mT [36].

A schematics of the considered system is shown in Figure 1a with the tube in the V

state together with the polar coordinate system used throughout the manuscript, being ρ,

ϕ and z, the radial, azimuthal and long axis coordinates. The SWs are excited with a

homogeneous rf-field applied in the radial direction at the middle of the tube in a 100 nm

wide region, as indicated with an orange ring in Figure 1a. The SWs propagate from the

middle of the nanotube toward its ends with a wave vector kz. The circulation direction of the

magnetisation ϕ̂ together with the propagation direction ẑ defines a chirality or handedness.

The direction of propagation is shown on all Figures such, that SWs propagating to right

(left) with kR ≡ +|kz| (kL ≡ −|kz|) define the right (left) handed (RH and LH) chirality.

Since the propagation direction is perpendicular to the magnetization, similarly to thin films

this excitation geometry is addressed as Damon-Eshbach geometry.

The SW excitation and propagation were simulated for several values of the circular

field. For all field values, the continuous rf-field exciting SWs is applied as long as the

steady state is reached. Figure 1b shows a snapshot in time of the SW profiles for three
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different excitation frequencies, for 8, 10 and 20 GHz, for a circular field of 80 mT, well above

the critical field. The colour scheme represents the radial component of the magnetisation in

an unrolled view. The rf-field position is illustrated with an orange bar. λL and λR denote

the wave length of the SWs on the left and right of the excitation region, respectively.

Remarkably, the wave length of the SWs propagating to left differs from those propagating

to right. This difference in the wave length decreases with increasing excitation frequencies,

but never vanishes, according to the micromagnetic simulations for the considered range of

frequencies.

Figure 2 shows the SW dispersion obtained from the micromagnetic simulations for two

different values of the circular field, 80 mT and 1 T. The dispersion is asymmetric regard-

ing the propagation direction and moreover, the minimum of the dispersion depends on

the circular field as seen by comparing Figure 2a with 2b. Despite the geometrical simi-

larity, our simulations show that DE modes in nanotubes behave differently than its thin-

film counterparts. Simulations suggest, that for kz = kL there is a range of wave vectors

wherein the group velocity is negative, specific to Backward Volume (BV) modes in thin-

films. Similar effect has been recently reported for thin-films with Dzyalonshinskii-Moriya

interaction [17, 28–31].

For a deeper understanding on the origin of the asymmetry observed in simulations, an

analytical formula of the SW dispersion of nanotubes is presented. The analytical descrip-

tion is given under the frame of micromagnetic continuum-theory. The dispersion relation

is calculated by: (i) linearising the Landau-Lifshitz-Gilbert (LLG) equation, and (ii) solving

the linear equation in terms of individual magnons with wave vector kz along the nanotube

axis ẑ, an integer wave number n characteristic of the azimuthal symmetry along ϕ̂, and with

eigenfrequency ωn(kz). An extensive analytical derivation presented in details in Ref. [37]

(guidelines can also be found in the Supplementary materials S2) leads the following dis-

persion relation for the coherently distributed SWs (n = 0; SWs with planar wave mode

profiles as shown in fig. 1b) along the ϕ̂ axis:

ω0(kz)

γ0µ0Ms

= K0(kz) +
√
A0(kz)B0(kz) (1)

where the quantities A0 and B0 are defined as:
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A0(kz) = l2ex

(
k2z −

1

b2

)
+ h0 + L0(kz),

B0(kz) = l2exk
2
z + h0 + J0(kz),

(2)

being the functions J0, K0 and L0 given as

J0(kz) =
π

S

∫ ∞

0

dk
k3

2 (k2 + k2z)
(Γ0(k))2

K0(kz) =
π

S

∫ ∞

0

dk
k2kz
k2 + k2z

Γ0(k)Λ0(k)

L0(kz) =
π

S

∫ ∞

0

dk
2kk2z
k2 + k2z

(Λ0(k))2

(3)

with Λ0(k) =
∫ R
r
dρ ρJ0(kρ), Γ0(k) = −2Λ1(k), J0(x) the First Kind Bessel Functions of

zero order, b−2 = 2π ln(R/r)/S and S = π(R2− r2) the nanotube cross section, with R and

r being the outer and inner radii, respectively. The lex =
√
A/Kd is the exchange length,

A the exchange stiffness constant, Kd = (1/2)µ0M
2
s the shape anisotropy constant, and h0

the circular field normalised to the saturation magnetisation Ms.

Figures 2a and b show the dispersion calculated with Equation 1. The solid line represent-

ing the analytical calculations is in a perfect agreement with the results of the simulations.

Using Equation 1, the SW dispersion is calculated for tubes with different diameter and

varying circular field. Two cases are summarised for tubes with 10 nm film thickness and

outer radius of 30 and 150 nm in Figure 3a and b, respectively. As shown, the minima

of the dispersion is shifted towards larger kz values with increasing circular field, allowing

for the manipulation of the asymmetry and the wave vector ranges for which the SWs

have negative group velocity. However, the asymmetry is decreased with increasing outer

diameter, since the curvature is reduced and completely vanishes for infinite diameters at

the thin film limit. It is noteworthy to mention, that equation 1 allows for a systematic

study of the eigenoscillations and its features (kz, ω0(kz)) in function of nanotubes size,

material parameters, applied circular and/or axial fields, without the need for the expensive

micromagnetic simulations.

The asymmetric SW dispersion reported in this Letter cannot be explained within the

classical frame of the DE dispersion known for thin films. The DE modes in nanotubes with

negative kz behave as the volume charge free BV modes in thin films. Such effect, however

is already known for thin films [17] with antisymmetric exchange (DMI) due to spin-orbit

coupling. In fact the DMI favours a canting of the spins with a given chirality and therefore
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introduces a local symmetry break which can lead to an asymmetric dispersion relation [28–

31]. Nevertheless, for nanotubes the source of the asymmetric dispersion resides only in the

dipole-dipole interaction and which is discussed in the following.

Note, that equation 1 has the same mathematical form as in thin-films with interfacial

DMI or in crystals with a special symmetry (Cnv) and bulk DMI (see Eqs. 6 - 9 in Ref. Di

et al. [30] and Table 1 in Ref. Cortés-Ortuño and Landeros [28]). The K0(kz) plays the

same role in nanotubes as the well-known asymmetrical terms in thin-films(crystals) with

interfacial(bulk) DMI (i.e. the term 2γ0
Ms
Dk in the dispersion of thin-films with interfacial

DMI [30], where D is the DMI constant) but with the difference that K0(kz) originates

from the dynamic volume charges created by the SWs as a result of the tubular curvature.

From equation 3 it is easy to see that K0(kz) is an odd function (i.e., K0(kz) = −K0(−kz)),
therefore being the asymmetrical term in the dispersion relation.

The term K0(kz), which can only be calculated by numerical integration of the corre-

sponding Bessel functions, comprises the dynamic dipolar energy arising from the surface

as well as from the volume charges[38] ρV ≡ −(Ms/4π)∇ · ~M . The negative dispersion

or negative group velocity, however should be related to small or close to zero

volume charges. With the magnetisation in the vortex state for a SW with wave vector kz,

wave number n = 0 and eigenfrequency ω, the volume charges averaged over the nanotube

radius is 〈ρV 〉 = 〈ρV 〉0 ei(kzz−ωt+ξ), with:

〈ρV 〉0 = −M
2
s

4π

(
1

ρ̄
+ kz

√
B0 (kz)

A0 (kz)

)(
1 +
B0 (kz)

A0 (kz)

)− 1
2

(4)

where A0 (kz) and B0 (kz) are defined in Eq. 2; ξ is the phase constant of the radial and

axial SW components. It can be seen, that the amplitude is proportional to two terms. The

first term, 1/ρ̄ being the inverse of the nanotube average radius which is proportional to

the mean nanotube curvature [39]. The second term kz

√
B0(kz)
A0(kz)

depends on the propagation

vector kz. Hence, the sum of the two terms depends on the sign of kz. Therefore, for opposite

propagation directions the dynamic volume charges are different.

In figure 4a the volume charge amplitude as a function of the wave vector

is shown for NTs with three different radius. As expected from the previous

considerations, it has an asymmetric dependence on the kz. Moreover, zero

volume charges are obtained for kz values different from zero. Around these kz
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values the reduction in energy from the surface charges is larger than the energy

increase from the volume charges, thus the total energy decreases, leading to a

negative dispersion.

In figure 4d the SW profile as well as the divergence calculated with our TetraMag [32,

33] code is shown for a case when the SWs propagating towards the opposite ends have

the same wave length. Clearly, the resulting dynamic volume charges and thus the dipolar

energies differ for the two sides. In experiments (or simulations) the excitation is done with

a well defined frequency, therefore the SW’s should possess the same energy for the opposite

travel directions. In NTs this can only be reached if the wave lengths differ such, that the

dynamic dipolar energy resulting from the surface and volume charges is the same for the

two propagation directions. As a consequence SWs propagating to opposite directions have

different wave length and show an asymmetric dispersion. It is worth mentioning that the

dipole-dipole interaction was reported to be also responsible for the asymmetric domain wall

propagation in nanotubes [40].

The SW asymmetry defined as the frequency difference of the SWs traveling to opposite

direction but with the same wave vector is also proportional to the asymmetrical term and

can be calculated analytically using Eq. 1. It reads as:

∆f =
γMs

2π

∣∣∣∣ω0(kz)− ω0(−kz)
∣∣∣∣ =

γMs

π
|K0(kz)|. (5)

The SW asymmetry can be estimated from equation 3 by looking at the dependence of

K0(kz) on the value of kz. Equation 5 in function of the wave vector is plotted for nanotubes

with different radius in figure 4b. It can be seen that the maximum frequency difference

decreases with increasing tube radius. For tubes with small diameter this value is in the

range of several GHz, however, for tubes with 500-600 nm in diameter – that are accessible

experimentally due to the recent progress in material science [18] – the frequency difference

is still in the range of several 100’s of MHz. The SW wave length for which the maximum

asymmetry is reached is shown in Figure 4c as a function of the nanotube outer radius. It is

in perfect agreement with our simple predictions based on the volume charges, namely the

asymmetry (smallest contribution to of the volume charges to the total energy) is largest

for wave lengths comparable to the nanotube diameter.

In a final step two limiting cases of the dispersion are presented: 1) kz = 0

and 2) kz � 1/R. For kz = 0 the dispersion has the following form ωFMR =
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γ0µ0

√
(H0 −Hu) (H0 +Ms) which resemble the Kittel Formulae for Ferromagnetic

Resonance (FMR) of a thin-film with in-plane magnetization parallel to the

applied field, and both oriented perpendicular to an in-plane easy axis of the

shape anisotropy field Hu. For large radius, Hu � H0, therefore the well-known

FMR Formulae [41] ωFMR ≈ γ0µ0

√
H0 (H0 +Ms) for thin-films with a homogeneous

in-plane magnetization parallel to the applied magnetic field H0 is obtained.

For very small wave length, kz � 1/R, the dispersion can be written as:

ω0(kz) ≈ γ0µ0

√
(Msl2exk

2
z −Hu +H0 +Ms) (Dk2z +H0), (6)

which is identical to the exchange-dominated dispersion relation of a planar

thin-film in Damon-Esbach configuration with in-plane magnetization oriented

perpendicularly to the in-plane easy axis [16, 42] (The derivation of the asymp-

totic analytical expressions are summarised in Ref. [37]).

In summary, we have shown using micromagnetic simulations as well as analytical calcu-

lations that SW propagation in nanotubes is fundamentally different than in thin films. The

observed asymmetric dispersion is a purely curvature induced effect[43–45] and can be tuned

with small electrical currents. We have shown that the SW asymmetry is in the range of

MHz to GHz in frequency and depends on the nanotube radius. The analytical expression

of the dispersion has the same mathematical form as in thin-films with Dzyalonshiinsky-

Moriya interaction. The fundamental origin of the asymmetric dispersion is the classical

dipole-dipole interaction, therefore it can be seen as a ”dipole induced DMI-like effect”. We

hope that the presented results will encourage the experimental verification of the presented

curvature induced effect.
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FIG. 1. a) Schematic illustration of a nanotube in a vortex state and the cylindrical coordinate

system. SWs are excited in the middle with a radial rf field, as illustrated by the orange ring.

The SWs travel toward the ends of the nanotube with a wave vector kz perpendicular to the

magnetisation. The +kz and −kz indicate the right and left propagation directions, respectively.

b) A snapshot in time of the SW profiles (radial component of the magnetisation colour coded)

for three different excitation frequencies, for 8, 10 and 20 GHz for a circular field of 80 mT. The

orange bar indicates the position and width of the rf field. λL (λR) denotes the wave length of the

waves traveling to the left (right).
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FIG. 2. SW dispersion relation obtained by micromagnetic simulations (red and blue dots) and

analytical calculations (solid line) for circular fields of 80mT a) and 1T b). The blue squares

mark the frequencies for which the SW profile is shown in Figure 1b. A nearly perfect agreement

between the results of micromagnetic simulations and analytical calculations is found.
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FIG. 3. The dispersion of SWs is summarised for several circular fields as a function of the wave

number for nanotubes with a) 30 nm and b) 150 nm outer radius and 10 nm film thickness. The

minima of the dispersion is shifted towards larger kz values with increasing circular field for both

diameters. The open dots represent the minima for each circular field and the solid line connecting

them is a guide to the eye only.
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FIG. 4. a) The volume charge amplitude as a function of the wave vector. b) SW asymmetry in

function of the wave vector kz for nanotubes with varying radius. c) The wave length λSW of the

excited SWs for which the maximum asymmetry is reached versus the nanotube radius. d) SW

profile for waves with equal wave length but opposite travel direction and the corresponding volume

charges. The colour scheme encodes the radial component of the dynamic magnetisation. The dark

yellow rectangles mark the excitation region.
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