

Towards a Seamlessly Interlinked Research Data and Software Ecosystem at HZDR

2nd Practice Forum Research Data Management, October 20, 2022 Oliver Knodel // contact: o.knodel@hzdr.de

Motivation — Software, Data and Everything in Between

- Data and software are an important result of a scientific experiment.
- Scientific publication, research software and data must receive the same academic credit:

- FAIR principles also exist for research software and should be taken into account [1].
- In addition to the publication itself a seamless interlinking between all available data products is also necessary to improve findability.

[1] Barker, M., Chue Hong, N.P., Katz, D.S. *et al.* Introducing the FAIR Principles for research software. *Sci Data* **9**, 622 (2022). doi.org/10.1038/s41597-022-01710-x

The Git Repository is not a Publication...

Software Repository

- Software is typically available (not *published*) in version control systems with open or restricted access:
- We need workflows or methods to publish software and data to ensure long-term *availability* and to meet the FAIR principles.

Software Publication

- Software must be cited in a similar way to scientific publications.
- Common data repositories (e.g. institutional, domain-specific, Zenodo) support typically the publication type software.
- With an additional software publication we can cite specific versions of a software including rich metadata:
 - Title, authors (including ORCIDs), Abstract, license, ...
 - Related Identifiers to link additional resources.
 - Typically it would not be practical to link all scientific datasets
 produced or analyzed by the software to the software publication.

Repository Structure

- Software and date mixen in one repository,
- Separation between data and software repositories,
- Something in between...

The HERMES Project: Automated Software Publication Workflow

- A simple and transparent software publication workflow for open and closed access software can be a platform for an understandable science.
- The metadata harvesting is essential to create a findable software publication.

- 07/2021 06/2023
- Aim: Support RSEs in automatedly publishing their software with rich metadata

Data (and Software) Publication Repositories

- The data can be published in the same or a different repository as the software (possibly there is a domain-specific repository for the scientific data).
- A dataset (at least the metadata) should always be published to provide sustainable scientific evidence.
- The data itself can also be published under restricted access.*
 - *Nevertheless it fulfills the FAIR principles, because the steps to access the data are documented.

- The data publication should reference:
 - The software repository used to create or analyse the dataset.
 - The scientific publication based on the datasets.
 - The instrument or facility where the data was generated...

Instrument DOIs and Landing Page

- For data publications we have the field *related identifiers*, were we can refer research facilities and instruments.
- Therefore, we plan to assign DOIs to instruments and provide DataCite records [2] and additional metadata on public landing pages.
- Components of the landing pages:
 - Mandatory: DOI, name, description, contacts, scope, location, ROR, device type.
 - Optional: Image, layout, sub-facilities, additional resources (JLSRF publication, internal website, ...) and the latest publications.
 - Citation export to BibTex, JSON, ...

[2] Bunakov, Vasily, Krahl, Rolf, Matthews, Brian, Vizcaino, Noeland Vukolov, Andrey, "Advanced infrastructure for PIDs in Photon and Neutron RIs", ExPaNDS project deliverable D2.5, Zenodo, Mar. 2022. doi: 10.5281/zenodo.5905351.

Digital Objects and Handles Enable Long-term Sustainability

- At the HZDR, we use DOIs for resources containing the whole set of bibliographic metadata:
 - Scientific articles,
 - Published datasets and software,
 - Instruments.
- Other identifiers included in the metadata are ORCID in and ROR XX available in our internal databases for almost every scientist at HZDR.
- Further digital objects can request PIDs from our Handle hdlenabled server.
- The digital objects in our ecosystem can be correlated with each to create a comprehensible experiment providing data provenance.

Linking Data, Text and Research Software Together

Software:

- I. HERMES can extract the metadata provided by Github or GitLab.
- II. A software release can trigger a pipeline that initialises a publication with DOI based on the available (and third-party) metadata.
- III. In a subsequent step, the DOI is added to the Readme file in the Git repository and the cross-linking is completed.

Data:

- I. After data collection or processing, a pipeline can start collecting metadata from a proposal system or other related services.
- II. The metadata and information from a computational workflow can be used to create a data publication with references to a specific software version (DOI) and the instrument where the data was taken.

Overview of the Project Resources from a Higher Level

L The HELIPORT project aims at developing a platform which accommodates the **complete** life cycle of a scientific project and links all corresponding programs, systems and workflows to create a more **FAIR** and comprehensible project description.

- 07/2021 06/2023
- Aim: Collect every system, service or digital product of a research project in an uniform metadata package.

Our Challenge: An End-to-End Digital Data Lifecycle

Top-Level View of the Interlinked Digital Objects of an Experiment at the HZDR

Including HELIPORT

heliport/heliport

Top-Level View of the Interlinked Digital Objects of an Experiment at the HZDR

Conclusions and Outlook

Conclusion:

- For an interlinked ecosystem, it is necessary to consider different entry points for the provision of metadata.
- The cross-linking of the services and systems is unavoidable to enable comprehensible science.
- Automated pipelines and workflows are the key to exchange metadata and support scientists and RSEs.

Status:

- We provide DOIs for software and data (instrument DOIs are work in progress),
- Handles can be created for all types of digital objects.
- → With HELIPORT and HERMES, we develop systems that automate the exchange of metadata between internal and external systems and services.

