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Two new algebraic turbulence models for flows dominated by bubble-induced turbulence (BIT)
are presented. They combine different elements of existing models that are considered superior to
their alternatives. Both models focus on the core region of a channel flow, where bubble-induced
production and dissipation are nearly in balance and the void fraction is approximately homogenous.
The first model, referred to as the algebraic Reynolds normal stress model, is derived from the
differential Reynolds stress model of Ma et al. (J. Fluid Mech. 883, A9, 2020). The second model
utilizes the original two-equation turbulence model for bubbly flows (Ma et al. Phys. Rev. Fluids
2, 034301, 2017) to achieve algebraic expressions for k and ε in the BIT dominated cases. If both
models are combined, it results in a purely algebraic, explicit relation for the Reynolds normal
stresses, that only depends on the mean flow parameters, namely, mean gas void fraction, and mean
liquid and gas velocities. We find that the model can well predict the Reynolds normal stresses,
when compared with direct numerical simulation and experimental data.

I. INTRODUCTION

For large-scale turbulent bubbly flow simulations, the Euler Euler (EE) approach [1] (see the governing eqs. (A3)
and (A4) in Appendix A) coupled with steady or unsteady Reynolds-averaged Navier-Stokes (RANS) modeling is the
only viable framework. In this case only continuous statistical quantities are computed, so that beyond the closures
for single-phase terms all two-phase phenomena related to the phase boundaries need to be modeled. Except for the
prediction of the gas void fraction, the main challenge when using the EE RANS approach for turbulent bubbly flows
is in determining the Reynolds stresses appearing in the EE momentum equations.

Over the past two decades, considerable work has been done to develop single phase two-equation linear eddy
viscosity models (LEVM) to include specific source terms capturing the effect of bubble-induced turbulence (BIT)
[2–7]. These models take the influence of bubbles into account by including additional source terms in the balance
equations for both k, the turbulent kinetic energy (TKE), and ε, the turbulent kinetic energy dissipation rate, or
another equivalent parameter. This alters the turbulence quantities and, as a result, the effective transport coefficients,
such as the eddy viscosity. However, despite the fact that these models are able to predict the TKE and dissipation
well, the approach suffers from substantial uncertainties concerning the concept of the LEVM
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when applied to turbulent bubbly flows, as discussed in [8]. In the expression above, u is the mean liquid velocity,
Cµ is a constant, νt is the eddy viscosity, δij is the Kronecker delta, and the fluctuation of the velocity is defined as
u′ = u− u. Here, · · · denotes the Reynolds averaging with respect to time, space or ensemble of realizations.

For single-phase flows, there is some rational for eddy viscosity closures in that for such a flow, the turbulence
production depends essentially upon the mean velocity gradients doing work on the Reynolds stresses in the flow.
However, for BIT dominated flows, the turbulence production is mainly associated with the interfacial energy transfer
between bubbles and liquid, rather than production by the mean velocity gradients [9]. As a result, closing the
Reynolds stresses in terms of the mean fluid velocity gradient may not make sense for BIT dominate flows, and this
issue cannot be overcome by trying the better represent the effect of the bubbles in the eddy viscosity itself.
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In view of these challenges, a number of studies have sought to develop Reynolds stress closures that are more
suitable for BIT dominated flows, and differential Reynolds stress models (DRSM) based on the EE approach were
developed by several groups [8, 10–13]. One particular form of a DRSM, which will later serve as the starting point
for deriving the new explicit algebraic Reynolds stress model (EARSM), is given by the linearised model of [8](the
rapid part in the pressure strain is simplified as well):
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where the interfacial term for the k-equation is adopted from [14](see Appendix A):

Sk = min(0.18 ·Re0.23p , 1)FDur . (4)

Here, α is the gas void fraction, ν the liquid molecular kinematic viscosity, cs = 1.63, c1 = 1.7, and c2 = 0.6 are
empirical constants. Furthermore, the bubble Reynolds number Rep = dpur/ν, is based on bubble diameter dp, ur
is the averaged relative velocity between the bubble and liquid (with ur the component of ur in the x direction),
and the drag force is FD = 3

4dp
CDα|ur|ur. On the left-hand side of eq. (2), we have written (1 − α) outside of the

derivative, since in the present study we focus on homogeneously distributed bubbly flows, for which Dα/Dt = 0.

In practice, the vast majority of computations for bubbly flows using the EE framework have been made using two-
equation models, and DRSMs have not received as enthusiastically as two-equation models by the user community,
which is in line with the historical development in the single-phase turbulence models [15]. The reason, of course,
is that DRSMs are more computationally demanding than simple two-equation models. However, if one uses a
two-equation model, then one does not have direct access to information on the Reynolds stresses. One choice is
to estimate them using (1), however, as discussed earlier, this is likely a poor approximation for BIT dominated

flows. Another standard approach is to assume isotropy u′iu
′
j ≈ 2

3δijk [12, 16]. However, the buoyancy of the bubbles
generally introduces strong anisotropy into the flow, with the Reynolds stress in the direction of gravity being dominant
[8, 17, 18]. Therefore, the isotropic approximation can be very inaccurate.

An intermediate modeling strategy between the level of LEVMs and DRSMs are algebraic Reynolds stress models
(ARSMs) [19]. In single-phase flows, ARSMs can be obtained by applying a weak-equilibrium hypothesis (discussed
later) to a DRSM, such that ARSMs are obtained directly from DRSMs [20]. While this has proven in appropriate
contexts to be a fruitful approach in single-phase modeling, surprisingly, there do not seem to be any ARSMs derived
based on the available DRSMs for BIT flows. (Masood et al. [21] applied the ARSM model of [22], developed for
single-phase flow, to bubbly flows but did not account for any BIT dominated flow effects.)

The main purpose of the present paper is to extend the idea of Rodi [20] to BIT dominated flows, starting from
a recently developed DRSM for BIT flows. We show that for BIT dominated flows there is a considerable difference
in how ARSM can be derived as compared with the original work by Rodi for single-phase flow. Furthermore, the
expression of the new ARSM is explicit in terms of k, ε, and other parameters, in contrast to single-phase flows where
ARSM have implicit dependencies, in the case where they are derived directly from DRSMs. We also show that for
BIT dominated flows, k and ε can be determined from a purely algebraic relation. This leads to a simplified but
accurate modeling strategy for BIT dominated flows that circumvents the need to solve differential equations.
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II. DERIVATION OF EXPLICIT ALGEBRAIC MODELS IN BIT DOMINATED CASES

A. Explicit ARSM expression in the BIT dominated cases

The basic idea behind ARSM is to reduce the set of DRSM equations to a system of coupled algebraic equations
by approximating the convection and diffusion terms appearing in the DRSM. The simplest approach would be to
simply neglect these transport terms, something that is strictly only applicable when the flow is in local equilibrium.
A more general approximation in single-phase flows is to apply the “weak non-equilibrium hypothesis” introduced by
Rodi [20]. This hypothesis is that the non-dimensional Reynolds-stress anisotropy tensor
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′
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k
− 2

3
δij , (5)
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for the mean convection term, and
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k
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for the diffusion term, where Dk = (1/2)Dii. In other words, spatial and temporal variations in u′iu
′
j are considered to

be due to variations in k, while variations in u′iu
′
j/k are neglected. For the latter, Dij is proportional to the diffusion

of k scaled with the relative intensity in the respective direction.
When we apply the “weak non-equilibrium hypothesis” to bubbly turbulent flows (which amounts to inserting (6)

and (7) into (2)), the following algebraic expression for u′iu
′
j is obtained
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, (8)

where Pk ≡ 1
2Pii. Similar to the result in Rodi’s original single-phase work, this constitutes an implicit algebraic

equation for u′iu
′
j .

Two additional simplifications may be made to the result in (8). First, in BIT dominated flows the interfacial term
is the main source of production, with |Pij | � |SR,ij | [23], and therefore (8) may be simplified to
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)

Sk − (1− α)ε+ c1(1− α)ε
, (9)

which is an explicit algebraic equation for u′iu
′
j . Second, for BIT dominated flows far from the wall, it was shown in [8]

using DNS data that local equilibrium is a good approximation. For local equilibrium, the Reynolds stress convection
and diffusion terms can be neglected entirely, and (9) further simplifies to
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)
. (10)

From this it is seen that the model predicts that the Reynolds stress anisotropy is directly related to the interfacial
anisotropy. Moreover, it should be noted that (2), from which (10) is derived, involves modeling assumptions about
the dissipation and pressure-strain terms. The relatively simple form of (10) is in part due to the simple Rotta linear
return-to-isotropy model for φij [24], with constant c1.

The result in (9) is more general and powerful than that in (10) since the former only assumes weak non-equilibrium,
while the latter exact local equilibrium. However, without assuming local equilibrium, it is not possible to derive an
explicit algebraic equation for the TKE in BIT dominated flows (this result is discussed below), and the derivation of
a fully explicit algebraic model is one of the goals of this paper. Therefore, in what follows we use (10) and focus on
the region of BIT dominated flows where local equilibrium is a reasonable approximation. Extensions to flows where
local equilibrium does not hold, and where (9) could provide a suitable model will be considered in future work.
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Parameter SmMany LaMany

Np 2880 913
α 2.14% 2.14%

dp/H 0.052 0.076
Ar 38171 114528
Rep 235.5 475.2

TABLE I: Parameters of the cases used for the present study according to [23]. The labels Sm (smaller) and La
(larger) designate different bubble sizes. Here, Np is the number of bubbles, α the void fraction, dp the bubble

diameter, Ar the Archimedes number. The values of Rep are the results of the simulations.

Since the trace of (10) yields 2k = 2k, eq. (10) does not provide a means for obtaining the TKE, just as is the
case for single-phase ARSM. Therefore k, as well as ε, must be determined by other means, for instance from a two
equation model for bubbly flows such as the model proposed by Ma et al. [14]. Furthermore, since Pij does not appear

in (10), owing to the restriction to BIT dominated flows, (10) is an explicit equation for u′iu
′
j , unlike the single-phase

ARSM of [20] where a system of algebraic equations must be solved to obtain u′iu
′
j .

B. Explicit algebraic expressions for k and ε in the BIT dominated cases

The other major difference between the present study and the original work of [20], is that for our case simple
algebraic expressions may be constructed for k and ε that apply to BIT dominated flows. Taking half the trace of
(10) and rearranging yields the expression

ε =
Sk

(1− α)
. (11)

Moreover, under the same conditions the model transport equation for ε from [14] (see eq. (A2)) reduces to

0 ≈ εε + Sε , (12)

where the dissipation term is εε = −(1 − α)Cε2(ε2/k), the source term is Sε = 0.3CD(Sk/τ), Cε2 = 1.92, and
τ = dp/ur is the time scale characterizing the BIT dominated flow. Incorporating these expressions into (12) yields
the desired algebraic expression for k

k =
Cε2dpSk

0.3(1− α)CDur
. (13)

III. COMPARISON OF PREDICTIONS WITH DNS AND EXPERIMENT

Equation (10) together with the explicit algebraic k−ε models given by (11) and (13) provide a very simple, purely

algebraic model for predicting u′iu
′
j . We now test these algebraic models using DNS and experimental data.

To assess (11) and (13), two test cases (SmMany and LaMany) of [23] are considered to demonstrate the results for
ε and k, respectively. This data is generated from bubble-resolving DNS with many thousands of spherical bubbles
at low Eötvös number. The DNS were conducted for upward vertical flow between two flat walls in a channel,
with x the streamwise, y the wall-normal, and z the spanwise coordinate. The size of the computational domain is
Lx×Ly×Lz = 4.41H×H×2.21H, where H is the distance between the walls. A no-slip condition was applied at the
walls and periodic conditions in x and z. Gravity acts in the negative x-direction, and the bulk velocity Ub was kept
constant by instantaneously adjusting a volume force, equivalent to a pressure gradient, thus imposing a desired bulk
Reynolds number Reb = UbH/ν, where ν is the kinematic viscosity of the liquid. The DNS were all conducted with
Reb = 5263. The data used in this work were obtained for two monodisperse cases (SmMany and LaMany). Table
I provides an overview of both cases with the corresponding labels. The data available cover statistical moments of
first and second order for liquid and bubbles.

The results were evaluated from (11) and (13) in an a priori manner using the DNS data to compute Sk, α, ur,
and CD. They are shown in Figure 1, together with the DNS data from [23]. Also shown for comparison are the
predictions from the full differential two equation model of [14]. It can be seen that despite their simplicity, the
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(a) (b)

(c) (d)

FIG. 1: Liquid TKE and dissipation from the present explicit algebraic (EA) k − ε expression, two equation model
of [14], and DNS data for two cases: (a,b) SmMany ; and (c,d) LaMany.

algebraic expressions (11) and (13) describe the behavior of ε and k well in the channel center of the SmMany case
for which they were derived. For the LaMany case the agreement is not quite as good as that obtained with the full
differential two equation model of [14].

We now test (10) by comparing its predictions for the Reynolds normal stresses in three test cases against the
DRSM of [8], as well as DNS and experimental data. It should be noted that in the DRSM of [8], the non-linear
pressure-strain model of [25] is used (see (B1) in Appendix B), which is different compared to the linearized version of
the model stated in (2). Figure 2 shows results obtained with (10) for the bubbly channel (again, SmMany, LaMany
cases) and the bubble column, labeled Akbar3. The Akbar case [26] features a rectangular water/air bubble column,
with a gas superficial velocity of 3 mm/s. Furthermore, this case is very close to monodisperse with dp = 4.37 mm
and Rep ≈ 1080. The coordinate system of the DNS cases is used for improved readability, which is different from
the one employed in the original paper. More details are provided in [26] and [27].

When computing u′u′ and v′v′ using (10), the required quantities ε and k are obtained using (11) and (13),
respectively, and the interfacial term SR,ij is obtained from (3), with α, dp, ur, and CD from either DNS or experiment.
Moreover, Sk in (3) is determined from DNS for the SmMany and LaMany cases [23], while for the case Akbar3, Sk
is specified using the model of [14].

Two important observations can be made concerning the results in Figure 2. First, the streamwise component of
the Reynolds normal stress is predicted more accurately than the wall-normal direction (the absolute errors of the
predictions for the streamwise and wall-normal components are similar, however, when considering the relative error,
the streamwise component is seen to be the most accurately predicted), especially in the cases SmMany and LaMany.
Second, the prediction is improved and approaches the quality of DRSM for both u′u′ and v′v′ in the sequence
SmMany, LaMany to Akbar3, which corresponds to increasing bubble Reynolds number, Rep. The main reason the

model predicts v′v′ less accurately than u′u′ is associated with the sensitivity of v′v′ to the pressure-strain term.
This is confirmed by Figure 7 in [8] which shows that in contrast to streamwise component the pressure-strain term
is the dominated source term contributing in the Reynolds stress budget of the wall-normal direction, rather than
the interfacial term. The algebraic expression (10) is obtained using the linear model of Rotta for the pressure-strain
term, which can lead to inaccuracies, whereas [8] utilizes the superior non-linear model of [25] and so leads to better
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(a) (b)

(c) (d)

(e) (f)

FIG. 2: Liquid Reynolds-stress components from the present EARSM, DRSM of [8], and DNS/experimental data for
three test cases: (a,b) SmMany ; (c,d) LaMany ; and (e,f) Akbar3.

predictions for v′v′. As Rep increases, the role of the pressure-strain term weakens relative to the contribution from
the interfacial term. This is why the predictions in the channel center from the new EARSM approach those of the
DRSM of [8] in the sequence SmMany, LaMany to Akbar3, since the errors associated with the linear modeling of the
pressure-strain term become less important as Rep increases.

IV. CONCLUSIONS

Two new explicit algebraic turbulence models have been developed for flows dominated by BIT. The first model
is an explicit algebraic model for the Reynolds stress based on the linearised DRSM of [8]. This model requires the
information about k and ε as input, which could be obtained from a two equation turbulence model. However, we
have derived a second explicit algebraic model for k and ε. When these two models are used together, it yields to a
purely algebraic model that is able to predict the Reynolds normal stresses in BIT dominated flows.
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We have demonstrated that these models can predict the Reynolds normal stresses well, especially for larger bubble
Reynolds numbers, and the results achieved are comparable to those of the full differential RSM. The simplicity of
these purely algebraic models makes them very attractive for use in engineering calculations to efficiently predict
bubbly turbulent flows, and may be useful in the development of future BIT models.

Despite the success of these models, they, like all models, have their limitations. In particular the models apply to
the core of the wall bounded flows, but not the near wall-regions, and is less accurate for smaller bubble Reynolds
numbers. Moreover, it should be noted that the explicit algebraic Reynolds stress model we have developed is not a
complete Reynolds stress closure, since the model is unable to provide the information of off-diagonal components for
which its prediction is

u′v′ =
k

c1(1− α)ε
b∗12︸︷︷︸
=0

Sk +
2

3
δ12︸︷︷︸
=0

k

(
1− 1

c1

)
= 0 . (14)

This deficiency can be traced back to the original DRSM of [8], upon which our algebraic model is based. In this
DRSM, the interfacial term is modeled as a diagonal matrix (3), so that the off-diagonal terms that in reality contribute
to u′v′ are absent. In future work we will seek to further develop the models to address these limitations.
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Appendix A: Form of the modelled interfacial term in two-equation Euler-Euler RANS given by [14] and the
governing equations of the Euler-Euler approach

The model equations of [14] for BIT flows are written within the Euler-Euler k−ε framework, and have the following
form

D((1− α)k)

Dt
= Pk +Dk −(1− α)ε︸ ︷︷ ︸

εk

+ min(0.18 ·Re0.23p , 1)FD · (uG − uL)︸ ︷︷ ︸
Sk

, (A1)

D((1− α)ε)

Dt
= Pε +Dε −(1− α)Cε2

ε2

k︸ ︷︷ ︸
εε

+ 0.3 · CD
Sk
τ︸ ︷︷ ︸

Sε

, with τ =
dp
ur
. (A2)

Away from the walls, the dominant terms are the interfacial terms (Sk and Sε) and dissipation terms (εk and εε),
where Cε2 = 1.92. Pε and Dε are the production and diffusion terms, respectively, in the modelled ε-equation.

For an incompressible gas-liquid, two-phase flow without phase transition, the governing equations within the
Euler-Euler framework [1] are

∂(αKρK)

∂t
+∇ · (αKρKuK) = 0, (A3)

D(αKρKuK)

Dt
= ∇ · (2αKµKSK)− αK∇p+ αKρKg +MK −∇ · (αKτKt ), (A4)

where all quantities are mean values. The superscript K denotes the phases (L liquid, G gas), with µ, u and S being
the molecular viscosity, the mean velocity, and the mean strain rate tensor, respectively. The unresolved stress tensor
τ t and the sum of all interfacial forces M acting on phase K have to be modeled.
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Appendix B: The pressure-strain model used in [8]

The modeled pressure-strain term φij used in [8] is identical to the SSG model [25] (the two-phase version), and is
given by

φij =− c1(1− α)εaij + c′1(1− α)ε
(
aikakj −

1

3
δijA2

)
− c∗2

(
Pij −

1

3
δijPkk

)
− c∗3

(
Eij −

1

3
δijEkk

)
− c∗4(1− α)kFij − c∗5aijPkk ,

(B1)

where Pij is the production, and

Eij = −(1− α)

(
u′iu
′
k

∂uk
∂xj

+ u′ju
′
k

∂uk
∂xi

)
, Fij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (B2)

The constants in (B1) are [15]

c1 = 1.7, c′1 = 1.05, c∗2 = 0.4125, c∗3 = 0.2125,

c∗4 = 0.033 + 0.65A
1/2
2 , c∗5 = 0.45 .
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