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Low-Level Abstraction of Memory Access

* Motivation: Programs are increasingly memory-bound. Performance comes
from full customization of data layout for each target architecture.

e Splits algorithmic view of data and mapping of the data to memory
e Different memory layouts may be chosen without touching the algorithm

* Header-only, portable, C++17/C++20 library, LGPL3+
* Designed to integrate with alpaka, CUDA/HIP, SYCL, ..., but orthogonal
e GitHub: https://github.com/alpaka-group/llama

e Checkout our posters on alpaka and
LLAMA at the poster session! c M c



https://github.com/alpaka-group/llama
https://indico.cern.ch/event/1106990/contributions/4991359/
https://indico.cern.ch/event/1106990/contributions/4991311/

LLAMA concept
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AdePT

6 Geant4
o H|=|:l-.m

* Almost half of the compute workload in HEP is particle transport simulation
* AdePT is a C++/CUDA prototype for offloading EM transport simulations to GPUs

* Can run standalone, or as module of Geant4 (fast simulation hook)

Uses VecGeom for geometry (GDML loading, volumes, acceleration structure)

Uses G4HepEm, a compact EM physics implementation

AdePT is bound by memory access (Nsight Compute); an ideal testbed for LLAMA!

Checkout our talk at 27th Geant4 Collaboration meeting: “AdePT status report
and discussion”, and our talk and proceedings at ACAT21: “Offloading
electromagnetic shower transport to GPUs: the AdePT project”

GitHub: https://github.com/apt-sim/AdePT
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https://gitlab.cern.ch/VecGeom/VecGeom
https://github.com/mnovak42/g4hepem
https://indico.cern.ch/event/1156193/contributions/5053275/
https://indico.cern.ch/event/855454/contributions/4605037/
https://arxiv.org/abs/2209.15445
https://github.com/apt-sim/AdePT

AdePT track data structure

» Default: A sparse array of track structures (once per e’/et/y)
e List of active slots and list of survivors/new particles for next iteration

* Experimental: Two dense arrays of track structures without slot arrays
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Track before and after LLAMA integration

struct Track {
RanluxppDouble rngState;
double energy;
double numIALeft[3];
double initialRange;
double dynamicRangeFactor;
double tlimitMin;
vecgeom: :Vector3D<Precision> pos;
vecgeom: :Vector3D<Precision> dir;
vecgeom: :NavStateIndex navState;

__device__ void InitAsSecondary(
const Track &parent) {

/).
this->pos = parent.pos;
this->navState = parent.navState;

R

})
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struct RngState {}; struct Energy {}; // ...

using Tr
llama::

template
__device__ void InitAsSecondary(SecondaryTrack &&track,

}

llama:

d

ck = 1llama::Record<
Field<RngState, RanluxppDouble>,

:Field<Energy, double>,

llama::
llama::
llama::
llama::
llama::
llama::
llama::

Field<NumIALeft, double[3]>,

Field<InitialRange, double>,
Field<DynamicRangeFactor, double>,
Field<TlimitMin, double>,

Field<Pos, vecgeom::Vector3D<vecgeom::Precision>>,
Field<Dir, vecgeom::Vector3D<vecgeom: :Precision>>,
Field<NavState, vecgeom::NavStateIndex>>;

<typename SecondaryTrack>

const vecgeom::Vector3D<Precision> &parentPos,
const vecgeom::NavStateIndex &parentNavState) {

/] ..
track(Pos{}) = parentPos;
track(NavState{}) = parentNavState;



LLAMA's [ayout visualization (track array AoS

. ONumialeft?2? . 0 DynamicRangeFactor | Wra p ped
%ﬂ Dir 0 NavState
= after 64B
“I (1 NumiALeft, 227,
, 1DynamicRangeFactor , 1 Dir

_ 2 DynemicRangeFactor
| (SNumiAleft72?, , 3 DynamicRangefFactor ,

| (2NumiALeft?2?, |

. ANumiAleft?2?, , 4 DynamicRangeFactor |

5 DynaricRangeFactor
, (GNumiAleft?2?, , 6 DynamicRangeFactor ,
| TNumiALeft?2?, | , 7 DynamicRangeFacior
7 Dir 7 NavState
, BNumiAleft?2?, , 8 DynamicRangeFactor
8 Dir 8 Na m‘
. 9NumiAleft?2?
L QQynanﬁangPFaqlor | 9 Dir

1 1 1 1 qNa‘fShtF 1 1 1 1
2022-10-27 7




Benchmark scenario: TestEm3

* Realistic enough test scenario

* Physics implementation is complete
— realistic compute workload

* Track management offers interesting
memory-layout optimization problem

50 layers
A

N

* Simple geometry
 Geometry code is not GPU-friendly yet

e Optimization in VecGeom is pending
(R&D on different surface models)

* Avoid noise in the profiler Pb or PBWO, (gap)

LAr (absorber)

2022-10-27 8



Benchmark settings

* All benchmarks are on an Nvidia V100S

e 5120 CUDA cores (80 SMs), 1597MHz, 8.2
TFLOPS (DP), 32 GB HBM2/ECC, 1124 GB/S
memory bandwidth, 250 W TPD

* CentOS Stream 8, GCC 11, CUDA 11.7

* VVecCore 0.8.0, VecGeom 1.1.20, AdePT (git
449222d + branches)

* Reported numbers are average of 5 runs

e Sexamplel9\
—particles 10000 -batch 5000 \
-gdml_file testEm3.gdml \
-gunpos -220,0,0 -gundir 1,0,0

2022-10-27 9



Memory access instrumentation with LLAMA

* LLAMA’s memory mappings can be instrumented
 Either count total read/writes per field (light), or per byte of memory (heavy)
* Integrates effortlessly with user-defined memory mappings

e Counting is performed as side effect of data structure access
e Cost: 1 atomic increment per access (AoS vs. traced AoS: 3.1x slowdown)

e Limitations of software instrumentation

e We cannot observe what the hardware does
* E.g., whether a memory read is served from VRAM or cache

* We cannot observe what the compiler/optimizer does
* E.g., whether a second memory read to the same memory location is optimized away

* Preliminary refactoring of your code can improve accuracy
* E.g., replace repeated access to memory by a local variable



Lightweight access count tracing with LLAMA

Total access counts to electron track fields
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2022-10-27 Negligible memory overhead: 1 counter per field
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Heatmap — sparse buffer — electrons

2022-10-27

Byte Offset

A0S 1 line = 20 tracks SoA

500
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High memory overhead, 1 counter per byte. All heatmap runs with:
-particles 25 -batch 5 ... (Hardcoded Capacity 50k)
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Heatmap — sparse buffer — photons

A0S 1 line = 20 tracks SoA




Heatmap — sparse buffer — positrons

A0S 1 line = 20 tracks SoA




Sparse buffer — AoS
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Dense buffers — AoS
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Perspective matters

AoS, wrap 200 AoS, wrap 256 AoSoA32, wrap 200 AoSoA32, wrap 256

400
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Byte Offset Byte Offset Byte Offset

Perfectly coalescing
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e track slot usage — single vs. double buffer

) Memory Access Pattern of Electron Tracks (AoS, track-level granularity, dense buffer)
Electron Track Access Heatmap (AoS), track-level granularity
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Both heatmaps use granularity sizeof(Track) instead of 1



Benchmark
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With LLAMA, it took me only 30min to test all the memory layouts!
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Baseline vs. AoS0A32/SoA (better)
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Summary and conclusions 1/2

* We integrated LLAMA into AdePT

* We could experiment with different memory layouts easily and fast

* Memory layout and access pattern must fit together
* SoA is not a silver bullet, requires dense access pattern
* AoS work substantially better with sparse and random access
* AoSoA with various blocking factors balances between them

* Memory access visualization can give incredible insights
e ... and comes almost for free with LLAMA!
e Same data structure != same access pattern
* Split and regroup data structs (hot/cold separation) based on access pattern
* Cross-check on padding, coalescing, cache lines, ...



Summary and conclusions 2/2

* LLAMA comes with some abstraction overhead
e E.g., a RecordRef in LLAMA is more than just a T*, requiring extra registers
 Compiler sometimes fails to optimize it away

* Template metaprogramming stresses compiler additionally
* But we gained a lot of flexibility!
* Compile time increased for incremental build by 27% (1 .cpp, 3 .cu files)

* |[nvasive code changes necessary around your data structure
* examplel9 has 1336 LoCs (cloc), LLAMA integration: 178 ins. 226 del. (git)

* AdePT is still bound by memory access
* Latency, access pattern, register spilling

e But not limited by bandwidth/throughput
* With LLAMA we could find a layout giving a small edge!



Future work Ade/P'&

rrrrrrrrrrrrrrrrrrrrrrrrrrrr

* Develop a dense, single-buffer track storage ) AMA

* We have prototypes with various compaction approaches
» Use different structures for e-/e*/y to account for access pattern
* Performance model correlating access density and memory layout
* Explore mixing global/shared memory behind a single LLAMA view

* More elaborate tracing of memory access pattern
* E.g.: Which part of the data structure is hot at which time/stage of the kernel

* Better visualization of large memory traces
* How to show a byte-wise trace on a 10GiB buffer on 1 screen?



Thank you, questions?
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LLAMA
AP]
Overview
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LLAMA Mapping

Index space
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LLAMA available mappings

* AoS: Aligned, Packed, ND-array linearizers, struct member reordering, ...

* SoA: Single/Multi blob, ND-array linearizers, struct member reordering, ...
* A0SOA: Inner array size configurable, ND-array linearizers, struct member reordering
 BitPackFloatSoA, BitPackintSoA: Reduce value/mantissa/exponent bits

* ChangeType: Use different type for storage, then map again

* Bytesplit: Split all types in byte arrays, then map again

 Trace: Trace access/read/write counts, then map again

* Heatmap: Trace byte wise access counts, then map again

* One: Map all array indices to the same record instance

* Null: Read returns default constructed value, writes discarded

 Split: Split record in two, map each part again



Steps to migrate the code to LLAMA

e Structs need to be formulated via type lists (LLAMA record)
 Member functions become free functions
* Functions with LLAMA arguments/return values become templates

e Struct instances/references become LLAMA constructs or deduced
types (auto everywhere)

e Buffers (pointers to CUDA memory) become LLAMA views
* For some mappings: code needs to work with proxy references



Track allocation — before/after

Track *tracks;

COPCORE_CUDA_CHECK(cudaMalloc(&tracks, TracksSize));

2022-10-27

using Mapping = llama::mapping: :AoS<
llama::ArrayExtentsDynamic<std::size_t, 1>, Track>;
// using Mapping = Llama::mapping: :PackedSingleBlLobSoA<

// Llama: :ArrayExtentsDynamic<std: :size_t, 1>, Track>;

/).
using BlobType
using View

std::byte *;
llama::View<Mapping, BlobType>;

View tracks;

Mapping mapping(llama::ArrayExtentsDynamic<std::size_t,
1>{Capacity});

tracks = 1llama::allocViewUninitialized(mapping,
[](auto alignment, auto size) {
std::byte *p = nullptr;
COPCORE_CUDA_CHECK(cudaMalloc(&p, size));
return p;

1)
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Implications of proxy references

Proxy reference

RanluxppDouble state =
currentTrack(RngState{});

double v = state.Rndm();

currentTrack(RngState{}) = state;

// decltype(currentTrack(RngState{})) is

// ProxyReference<RanluxppDouble>

I-value reference
double v = currentTrack(RngState{}).Rndm();

// decltype(currentTrack(RngState{})) is
// RanluxppDouble&



AdePT simulation iteration - kernels

* TransportElectrons<bool IsElectron>
* 1. Obtain safety unless the track is currently on a boundary.
* 2. Determine physics step limit, including conversion to geometric step length according to MSC.
* 3. Query geometry (or optionally magnetic field) to get geometry step length.
* 4. Convert geometry to true step length according to MSC, apply net direction change and displacement.
* 5. Apply continuous effects; kill track if stopped.
* 6. If the particle reaches a boundary, perform relocation.
* 7.If not, and if there is a discrete process, hand over to interaction kernel.

* TransportGammas
* 1. Determine the physics step limit.
* 2.Query VecGeom to get geometry step length (no magnetic field for neutral particles!).
* 3. If the particle reaches a boundary, perform relocation.
* 4. If not, and if there is a discrete process, hand over to interaction kernel.

* Interaction kernels
* 1. Find which particles will undergo the interaction that the respective kernel will take care of.
* 2.Sample the final state.
* 3. Update the primary and produce secondaries.

* Finishlteration
* Clear the queues and return the tracks in flight.
* This kernel runs after all secondary particles were produced.



Optimization attempts that did not work

SoA layout for Ranlux++ RNG state
* (ncu shows big stalls when accessing the RNG state)
* Because threads consume different quantities of RNs -> divergence
* We tried 3 different versions with various slowdowns

Different log implementations

Using single precision CUDA intrinsics for some log/sqrt calls
 We observed different outcomes but where not sure if those are still valid

Replacing per-thread binary search in FindLowerBinlndex by strided linear search

Put the G4AHepEmTrack in shared memory (because it is too big and needs a
reduction in block size)

Different stack handling in BVH::LevellLocate
(Use curand instead of Ranlux++, 26% gain, but bad statistics)



Optimizations that worked

* TopMatriximpl recursive -> iterative

* Various hints on inlining and not inlining
* E.g. noinline on RNG Advance()

e Put the RNG into shared memory, even if it isn’t shared

* SM hardware handles the irregular access much better than global memory (where RNG was
spilled into from registers)

e Launch bounds (influences register allocation)

e Launch parameters (block/grid sizes)

e Use a larger initial capacity

* Avoid repeated access to global memory and keep more data in registers
* Aligning transformation data in BVH to have better load instructions
 Remove the type erased wrapper G4HepEmRandomEngine

e Less upfront initialization of stack structure in BVH::LevellLocate

» Kernel fission of interactions to reduce thread divergence



Varying launch bounds and batch size

Nvidia Tesla V100S
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Separate interaction kernels

GPU Throughput
Compute (sw) 3 [ B single kernel
vy ., [l Splitkernels
0,0 10,0 20,0 30,0 40,0 50,0 60,0

Speed Of Light (SOL) [%]

Problem: Threads in transport kernels diverge
because of diverging interactions
— 13 / 32 threads active on average

Here: Split off interaction computations from
cross-section and geometry kernels (one
kernel for pair creation, one for ionisation, ...)

Result: 17 / 32 threads active for physics + geo
29 / 32 threads active for Bremsstr.
Runtime:64s—55s

Conclusion: Keeping threads coherent is key

for detector simulation
Generally difficult; stochastic processes
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Bottleneck: Ranlux state memory layout

e State is stored as
AoS (uint64_t[9])

* Mostly 1 or 2

elements needed
e Advance(),
touching all

elements, called
rarely

2022-10-27
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LLAMA SoA for RNG state

1. Store a LLAMA RecordRef (=handle) to
the RNG state in RanluxppEnginelmpl

2. Resolve all SoA addresses via LLAMA and
change the state in RanluxppEnginelmpl
from a uint64_t[9] to a uint64_t*[9]

3. Replace all classes and member functions =
by free functions and pass LLAMA
RecordRef to RNG state around

* None of these worked because each thread
needs a different count of random numbers
(=indexing divergence) 0

w

u

N

1.

Ul

=

U

o
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Runtime RTX 2060

master Version 1 Version 2 Version 3

M AoS M SoA
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Runtime characteristics
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