Challenges and opportunities
integrating LLAMA into AdePT

Bernhard Manfred Gruber (CERN, CASUS, HZDR, TU Dresden),
Guilherme Amadio (CERN),
Stephan Hagebock (CERN)

Accelerated Particle Transport

Low-Level Abstraction of Memory Access

* Motivation: Programs are increasingly memory-bound. Performance comes
from full customization of data layout for each target architecture.

e Splits algorithmic view of data and mapping of the data to memory
e Different memory layouts may be chosen without touching the algorithm

* Header-only, portable, C++17/C++20 library, LGPL3+
* Designed to integrate with alpaka, CUDA/HIP, SYCL, ..., but orthogonal
e GitHub: https://github.com/alpaka-group/llama

e Checkout our posters on alpaka and
LLAMA at the poster session! c M c

https://github.com/alpaka-group/llama
https://indico.cern.ch/event/1106990/contributions/4991359/
https://indico.cern.ch/event/1106990/contributions/4991311/

LLAMA concept

2022-10-27

Program LLAMA data space
View " represents | " » - - =
2 Record dimension =
2 a
- RecordRef . _ Elem1 - g
'g I _ Record ®
> RecordRef ~-.__ [ARecord” ¥ ™ Elem2 - 2
© - R ©
2 T&/ProxyRef I s=leS 1 e
—
O Jentiines points to (M 0 _‘CU
= >
Il . .
copy(...) St Layout aware Array dimensions Ll
___________________ copy |\
_Access pattern
\ T input
Target hardware information

Memory layouts

| produces |

>

Memory mapping backend

AdePT

6 Geant4
o H|=|:l-.m

* Almost half of the compute workload in HEP is particle transport simulation
* AdePT is a C++/CUDA prototype for offloading EM transport simulations to GPUs

* Can run standalone, or as module of Geant4 (fast simulation hook)

Uses VecGeom for geometry (GDML loading, volumes, acceleration structure)

Uses G4HepEm, a compact EM physics implementation

AdePT is bound by memory access (Nsight Compute); an ideal testbed for LLAMA!

Checkout our talk at 27th Geant4 Collaboration meeting: “AdePT status report
and discussion”, and our talk and proceedings at ACAT21: “Offloading
electromagnetic shower transport to GPUs: the AdePT project”

GitHub: https://github.com/apt-sim/AdePT

2022-10-27 4

https://gitlab.cern.ch/VecGeom/VecGeom
https://github.com/mnovak42/g4hepem
https://indico.cern.ch/event/1156193/contributions/5053275/
https://indico.cern.ch/event/855454/contributions/4605037/
https://arxiv.org/abs/2209.15445
https://github.com/apt-sim/AdePT

AdePT track data structure

» Default: A sparse array of track structures (once per e’/et/y)
e List of active slots and list of survivors/new particles for next iteration

* Experimental: Two dense arrays of track structures without slot arrays

active
4 2 track #0
1 lﬁ track #1
5 track #2
4 track #3
track #4
track #5
track #6

next

5

~N I NN = O

track #7
200B each

#
5

#

4

active next
track #0 track #0
track #1 track #1
track #2 track #2
track #3 track #3
track #4 track #4
track #5 track #5
track #6 track #6
track #7 track #7

N

#

5

Track before and after LLAMA integration

struct Track {
RanluxppDouble rngState;
double energy;
double numIALeft[3];
double initialRange;
double dynamicRangeFactor;
double tlimitMin;
vecgeom: :Vector3D<Precision> pos;
vecgeom: :Vector3D<Precision> dir;
vecgeom: :NavStateIndex navState;

__device__ void InitAsSecondary(
const Track &parent) {

/).
this->pos = parent.pos;
this->navState = parent.navState;

R

})
2022-10-27

struct RngState {}; struct Energy {}; // ...

using Tr
llama::

template
__device__ void InitAsSecondary(SecondaryTrack &&track,

}

llama:

d

ck = 1llama::Record<
Field<RngState, RanluxppDouble>,

:Field<Energy, double>,

llama::
llama::
llama::
llama::
llama::
llama::
llama::

Field<NumIALeft, double[3]>,

Field<InitialRange, double>,
Field<DynamicRangeFactor, double>,
Field<TlimitMin, double>,

Field<Pos, vecgeom::Vector3D<vecgeom::Precision>>,
Field<Dir, vecgeom::Vector3D<vecgeom: :Precision>>,
Field<NavState, vecgeom::NavStateIndex>>;

<typename SecondaryTrack>

const vecgeom::Vector3D<Precision> &parentPos,
const vecgeom::NavStateIndex &parentNavState) {

/] ..
track(Pos{}) = parentPos;
track(NavState{}) = parentNavState;

LLAMA's [ayout visualization (track array AoS

. ONumialeft?2? . 0 DynamicRangeFactor | Wra p ped
%ﬂ Dir 0 NavState
= after 64B
“I (1 NumiALeft, 227,
, 1DynamicRangeFactor , 1 Dir

_ 2 DynemicRangeFactor
| (SNumiAleft72?, , 3 DynamicRangefFactor ,

| (2NumiALeft?2?, |

. ANumiAleft?2?, , 4 DynamicRangeFactor |

5 DynaricRangeFactor
, (GNumiAleft?2?, , 6 DynamicRangeFactor ,
| TNumiALeft?2?, | , 7 DynamicRangeFacior
7 Dir 7 NavState
, BNumiAleft?2?, , 8 DynamicRangeFactor
8 Dir 8 Na m‘
. 9NumiAleft?2?
L QQynanﬁangPFaqlor | 9 Dir

1 1 1 1 qNa‘fShtF 1 1 1 1
2022-10-27 7

Benchmark scenario: TestEm3

* Realistic enough test scenario

* Physics implementation is complete
— realistic compute workload

* Track management offers interesting
memory-layout optimization problem

50 layers
A

N

* Simple geometry
 Geometry code is not GPU-friendly yet

e Optimization in VecGeom is pending
(R&D on different surface models)

* Avoid noise in the profiler Pb or PBWO, (gap)

LAr (absorber)

2022-10-27 8

Benchmark settings

* All benchmarks are on an Nvidia V100S

e 5120 CUDA cores (80 SMs), 1597MHz, 8.2
TFLOPS (DP), 32 GB HBM2/ECC, 1124 GB/S
memory bandwidth, 250 W TPD

* CentOS Stream 8, GCC 11, CUDA 11.7

* VVecCore 0.8.0, VecGeom 1.1.20, AdePT (git
449222d + branches)

* Reported numbers are average of 5 runs

e Sexamplel9\
—particles 10000 -batch 5000 \
-gdml_file testEm3.gdml \
-gunpos -220,0,0 -gundir 1,0,0

2022-10-27 9

Memory access instrumentation with LLAMA

* LLAMA’s memory mappings can be instrumented
 Either count total read/writes per field (light), or per byte of memory (heavy)
* Integrates effortlessly with user-defined memory mappings

e Counting is performed as side effect of data structure access
e Cost: 1 atomic increment per access (AoS vs. traced AoS: 3.1x slowdown)

e Limitations of software instrumentation

e We cannot observe what the hardware does
* E.g., whether a memory read is served from VRAM or cache

* We cannot observe what the compiler/optimizer does
* E.g., whether a second memory read to the same memory location is optimized away

* Preliminary refactoring of your code can improve accuracy
* E.g., replace repeated access to memory by a local variable

Lightweight access count tracing with LLAMA

Total access counts to electron track fields

700 B read MW write

s 1 e
& \P‘e“ Q'

600

Millions

500

400

300

200

100

\S
& N o
&2 & /\\'\“‘\ W

2022-10-27 Negligible memory overhead: 1 counter per field

11

Heatmap — sparse buffer — electrons

2022-10-27

Byte Offset

A0S 1 line = 20 tracks SoA

500
400

300

200

100

High memory overhead, 1 counter per byte. All heatmap runs with:
-particles 25 -batch 5 ... (Hardcoded Capacity 50k)

12

500

300

Heatmap — sparse buffer — photons

A0S 1 line = 20 tracks SoA

Heatmap — sparse buffer — positrons

A0S 1 line = 20 tracks SoA

Sparse buffer — AoS

Electrons Positrons Photons

— 2500

1 line = 1 track

- - 2000

100

200

1000

300

500

400
0 64 128 192 0 64 128 192 0 64 128

Byte Offset Byte Offset Byte Offset

2022-10-27 15

Dense buffers — AoS

Electrons Positrons
0 — 3000 0] 2500
= 2500
- - 2000
100
- - 2000
= - 1500
200 1500
1000
1000
300
500
500
400 0 0
0 64 128 192 0 64 128 192
Byte Offset Byte Offset

2022-10-27

1 line = 1 track

Photons

128
Byte Offset

192

2500

2000

1500

1000

16

Perspective matters

AoS, wrap 200 AoS, wrap 256 AoSoA32, wrap 200 AoSoA32, wrap 256

400
64 128 192 256

Byte Offset Byte Offset Byte Offset

Perfectly coalescing
2022-10-27 17

e track slot usage — single vs. double buffer

) Memory Access Pattern of Electron Tracks (AoS, track-level granularity, dense buffer)
Electron Track Access Heatmap (AoS), track-level granularity

10000

00000

- 8000

- 6000

4000

2000

0

Both heatmaps use granularity sizeof(Track) instead of 1

Benchmark

active

E track #0
1

track #1

track #2

5
4 track #3

track #4

track #5

track #6

track #7

3.77 3.86
2
1
0

M Baseline ® LLAMA AoS ® LLAMA AoSoA2 m LLAMA AoSoA4 m LLAMA AoSoA8 m LLAMA AoSoA16 m LLAMA AoSoA32 m LLAMA AoSoA64 m LLAMA SoA

4

Runtime [s]

2022-10-27

next #

;

6

~ | N =

5.00 5.04

4.80
4.55
| I I

Single sparse buffer

active

next #

track #0

track #0

track #1

track #1

track #2

track #2

track #3

track #3

track #4

track #4

track #5

track #5

track #6

track #6

track #7

track #7

)

3.69

5.10 5.05
4.16 3.97
‘ 3.85
3.78 3.62 361 3.64
I I I Speedup 1.04

Two dense buffers

With LLAMA, it took me only 30min to test all the memory layouts!

20

Baseline vs. AoS0A32/SoA (better)

Baseline (AoS) A0So0A32 dense SoA dense R SoA dense (first subarray)

- - 2500 2000 1
128
- - 2000 1500 2
256 —
1500 1000 3
384
1000 500
512 500 0
0 64 128 192 256 0 1024 2048 0
Byte Offset Byte Offset

- 1 2400

= - 2200

= - 2000

0 64 128 192 256 320 384 448 512
Byte Offset

2022-10-27

Summary and conclusions 1/2

* We integrated LLAMA into AdePT

* We could experiment with different memory layouts easily and fast

* Memory layout and access pattern must fit together
* SoA is not a silver bullet, requires dense access pattern
* AoS work substantially better with sparse and random access
* AoSoA with various blocking factors balances between them

* Memory access visualization can give incredible insights
e ... and comes almost for free with LLAMA!
e Same data structure != same access pattern
* Split and regroup data structs (hot/cold separation) based on access pattern
* Cross-check on padding, coalescing, cache lines, ...

Summary and conclusions 2/2

* LLAMA comes with some abstraction overhead
e E.g., a RecordRef in LLAMA is more than just a T*, requiring extra registers
 Compiler sometimes fails to optimize it away

* Template metaprogramming stresses compiler additionally
* But we gained a lot of flexibility!
* Compile time increased for incremental build by 27% (1 .cpp, 3 .cu files)

* |[nvasive code changes necessary around your data structure
* examplel9 has 1336 LoCs (cloc), LLAMA integration: 178 ins. 226 del. (git)

* AdePT is still bound by memory access
* Latency, access pattern, register spilling

e But not limited by bandwidth/throughput
* With LLAMA we could find a layout giving a small edge!

Future work Ade/P'&

rrrrrrrrrrrrrrrrrrrrrrrrrrrr

* Develop a dense, single-buffer track storage) AMA

* We have prototypes with various compaction approaches
» Use different structures for e-/e*/y to account for access pattern
* Performance model correlating access density and memory layout
* Explore mixing global/shared memory behind a single LLAMA view

* More elaborate tracing of memory access pattern
* E.g.: Which part of the data structure is hot at which time/stage of the kernel

* Better visualization of large memory traces
* How to show a byte-wise trace on a 10GiB buffer on 1 screen?

Thank you, questions?

\ CENTER FOR ADVANCED HELMHOLTZ ZENTRUM
SYSTEMS UNDERSTANDING DRESDEN ROSSENDORF

CERN (" CASUS NaJ)

SPONSORED BY THE

TECH N ISCHE % Federal Ministry
UNIVERSITAT of Education
DRESDEN

This work has been sponsored by the Wolfgang Gentner Programme of the German
Federal Ministry of Education and Research (grant no. 13E18CHA)

2022-10-27 25

Backup slides

LLAMA
AP]
Overview

2022-10-27

C++ std lib/lang

user provided

--> Implements

—>» Creates

access

_ RecordRef<View, ...>
non-terminal |
op()(Name...)|

AoS |--; .
1 L. c
! Field<Name, Type> Name] e amef
SoA [--4 o 2
: ? O & | Named
! [l | & g Name2—|
AOSOA --+ Record<Elements...> || —— Type T
i Name3 1
Split __4: 0o 1 . 0
: H ArrayExtents<T,...> | Array dimensions
BitPacked... ----i l
ChangeType - - _j Mapping Blob < BlobAllocator
59 E:ggg;‘;r(‘;i';sﬁ‘;i size 1 op[l(size_t i) -> byte& op()(auto algn, size_t s) -> Blob
Trace F- - blobNrAndOffset() -> NrAndOffset Mapping::blobCount
E | allocView(Mapping, BlobAllocator)
View<Mapping, Blob>—= VirtualView<View>
Legend
LLAMA class | — Composition |op()(Arrailndex<N>)|
LLAMA concept —< Aggregation

terminal access

T& / Proxy reference

27

LLAMA Mapping

Index space

RecordCoord<0, 0>

Recor(|:ICoord<O, 1>

view(1, 3)(color, g)
!

RecordCoord<0, 2>

RecordCoord<1>

I I/\L/] |
I I/Il/
c |
Q r
2
c
o T -
-_% color g é_
T = i
S b .
S v i
as alpha 1
............... o 1 0
Array dimensions
2022-10-27

o 0 >0 [0D @O | @3 | Be

N g _blob~?| ; —> (0, 0) (©, 1) @0 | (1, 3) _ g

S ~ 3] T ©0 [0.1 | C@wo | €3 | Q@

offset ~a

= N @001 .. @ .. >
A0 — 0y [02 [@3 [©4 F

D | pop L 00 = (1) (02 (03 (04 i (N
< 00 | 01 | (02 | (0.3 | (0.4 s

= Lo | @) | L2 | L3 | L4 =

g - (Lo | L1 1L?2 3 | w4 : Q

offset §—

= \ (0, 0)(0, 1)(0, 2)(0, 3)[(0, 4)f /T >

81 o

- g b 0 00 T 0.0 [00 ©00O1 | 0 [0D 01 I

CEU [offset L3 | (L3 | L3 (L3 | g

28

LLAMA available mappings

* AoS: Aligned, Packed, ND-array linearizers, struct member reordering, ...

* SoA: Single/Multi blob, ND-array linearizers, struct member reordering, ...
* A0SOA: Inner array size configurable, ND-array linearizers, struct member reordering
 BitPackFloatSoA, BitPackintSoA: Reduce value/mantissa/exponent bits

* ChangeType: Use different type for storage, then map again

* Bytesplit: Split all types in byte arrays, then map again

 Trace: Trace access/read/write counts, then map again

* Heatmap: Trace byte wise access counts, then map again

* One: Map all array indices to the same record instance

* Null: Read returns default constructed value, writes discarded

 Split: Split record in two, map each part again

Steps to migrate the code to LLAMA

e Structs need to be formulated via type lists (LLAMA record)
 Member functions become free functions
* Functions with LLAMA arguments/return values become templates

e Struct instances/references become LLAMA constructs or deduced
types (auto everywhere)

e Buffers (pointers to CUDA memory) become LLAMA views
* For some mappings: code needs to work with proxy references

Track allocation — before/after

Track *tracks;

COPCORE_CUDA_CHECK(cudaMalloc(&tracks, TracksSize));

2022-10-27

using Mapping = llama::mapping: :AoS<
llama::ArrayExtentsDynamic<std::size_t, 1>, Track>;
// using Mapping = Llama::mapping: :PackedSingleBlLobSoA<

// Llama: :ArrayExtentsDynamic<std: :size_t, 1>, Track>;

/).
using BlobType
using View

std::byte *;
llama::View<Mapping, BlobType>;

View tracks;

Mapping mapping(llama::ArrayExtentsDynamic<std::size_t,
1>{Capacity});

tracks = 1llama::allocViewUninitialized(mapping,
[](auto alignment, auto size) {
std::byte *p = nullptr;
COPCORE_CUDA_CHECK(cudaMalloc(&p, size));
return p;

1)

31

Implications of proxy references

Proxy reference

RanluxppDouble state =
currentTrack(RngState{});

double v = state.Rndm();

currentTrack(RngState{}) = state;

// decltype(currentTrack(RngState{})) is

// ProxyReference<RanluxppDouble>

I-value reference
double v = currentTrack(RngState{}).Rndm();

// decltype(currentTrack(RngState{})) is
// RanluxppDouble&

AdePT simulation iteration - kernels

* TransportElectrons<bool IsElectron>
* 1. Obtain safety unless the track is currently on a boundary.
* 2. Determine physics step limit, including conversion to geometric step length according to MSC.
* 3. Query geometry (or optionally magnetic field) to get geometry step length.
* 4. Convert geometry to true step length according to MSC, apply net direction change and displacement.
* 5. Apply continuous effects; kill track if stopped.
* 6. If the particle reaches a boundary, perform relocation.
* 7.If not, and if there is a discrete process, hand over to interaction kernel.

* TransportGammas
* 1. Determine the physics step limit.
* 2.Query VecGeom to get geometry step length (no magnetic field for neutral particles!).
* 3. If the particle reaches a boundary, perform relocation.
* 4. If not, and if there is a discrete process, hand over to interaction kernel.

* Interaction kernels
* 1. Find which particles will undergo the interaction that the respective kernel will take care of.
* 2.Sample the final state.
* 3. Update the primary and produce secondaries.

* Finishlteration
* Clear the queues and return the tracks in flight.
* This kernel runs after all secondary particles were produced.

Optimization attempts that did not work

SoA layout for Ranlux++ RNG state
* (ncu shows big stalls when accessing the RNG state)
* Because threads consume different quantities of RNs -> divergence
* We tried 3 different versions with various slowdowns

Different log implementations

Using single precision CUDA intrinsics for some log/sqrt calls
 We observed different outcomes but where not sure if those are still valid

Replacing per-thread binary search in FindLowerBinlndex by strided linear search

Put the G4AHepEmTrack in shared memory (because it is too big and needs a
reduction in block size)

Different stack handling in BVH::LevellLocate
(Use curand instead of Ranlux++, 26% gain, but bad statistics)

Optimizations that worked

* TopMatriximpl recursive -> iterative

* Various hints on inlining and not inlining
* E.g. noinline on RNG Advance()

e Put the RNG into shared memory, even if it isn’t shared

* SM hardware handles the irregular access much better than global memory (where RNG was
spilled into from registers)

e Launch bounds (influences register allocation)

e Launch parameters (block/grid sizes)

e Use a larger initial capacity

* Avoid repeated access to global memory and keep more data in registers
* Aligning transformation data in BVH to have better load instructions
 Remove the type erased wrapper G4HepEmRandomEngine

e Less upfront initialization of stack structure in BVH::LevellLocate

» Kernel fission of interactions to reduce thread divergence

Varying launch bounds and batch size

Nvidia Tesla V100S

registers per thread / threads per block

256/256 HEEEE 128/512 HEEEE 64/1024 HEEE

s B . 256/128 HEEEA 128/256 HEEEE o©4/52 NN
256/64 128/128 64/256

Run Time [s]
o
|

o N A O 0
T

50 100 250 500 1000 2500 5000
Batch Size

2022-10-27

Separate interaction kernels

GPU Throughput
Compute (sw) 3 [B single kernel
vy ., [l Splitkernels
0,0 10,0 20,0 30,0 40,0 50,0 60,0

Speed Of Light (SOL) [%]

Problem: Threads in transport kernels diverge
because of diverging interactions
— 13 / 32 threads active on average

Here: Split off interaction computations from
cross-section and geometry kernels (one
kernel for pair creation, one for ionisation, ...)

Result: 17 / 32 threads active for physics + geo
29 / 32 threads active for Bremsstr.
Runtime:64s—55s

Conclusion: Keeping threads coherent is key

for detector simulation
Generally difficult; stochastic processes

2022-10-27

2s - 35ms +840ms +645ms +850ms +B855ms +6860ms +665ms +B670ms +676ms
» CPU(4)
~ CUDA HW (0000:00:08.0 - T
» [All Streams] ¥ I_
28 - +290ms +285ms +300ms +305ms +310ms +315ms +320ms +326ms, +330ms
» CPU (4)
~ CUDA HW (0000:00:08.0 - T
o e & H_En dof
void . step
Warp State (All Cycles)
0,0 2,0 4,0 6,0 8,0
Stall No Instruction
Stall Long Scoreboard
stan wait Ly Il Single kernel
stall L0 Thrott [y B split kernels

0

©

2,0 40 8,0 8,0
Cycles per Instruction

37

Bottleneck: Ranlux state memory layout

e State is stored as
AoS (uint64_t[9])

* Mostly 1 or 2

elements needed
e Advance(),
touching all

elements, called
rarely

2022-10-27

{

host__ __device__ winté4_t MNextRandomBits()
Navigation: L2 Theoreti

Liv i 3 L2 Theoretical Sectors

if (fPosition + w > kMaxPos) { source . R) Global Excessive

Advance();

!I
@||e=

21'882] 0

assert(fPosition <= kMaxPos && "position ouf

)
=3

} Pl
1| 2T
141 : E31 T
: : - <4 s . SHF.R . RZ, 86, C_= 9 42y
int idx = fPosition / 64; iy . =
; _ ‘4 . l T E | I 1Y)
int offset = fPosition % 64; b ——
; : - _ . C_14 2

int numBits o4 offset; T
[S| —

145) '
i i = i 53 : ™ _zrsg
vinté4_t bits fState[idx] offset;
if (numBits < w) {
. RO, RZ, Oxfc, 7 12y
bits |= fStatelidx + 1] << numBits; WP e (0 iy L G f | =
2 [zvee
} LOP3.LUT R33, RéE, , RZ, 3
IADD3 R7, RO, Bx30, o [veE)
bits &= ((vinté4_t(1) << w) - 1); : g 2ree
4 R12, ™ g K|)
i of 2138

.y -SYS (I Gl B 1) IR Y7

fPosition += w; . R12, 3
: . [zssy
(K]
4

.ABS.NODEC

return bits;

Return From Subroutine

38

LLAMA SoA for RNG state

1. Store a LLAMA RecordRef (=handle) to
the RNG state in RanluxppEnginelmpl

2. Resolve all SoA addresses via LLAMA and
change the state in RanluxppEnginelmpl
from a uint64_t[9] to a uint64_t*[9]

3. Replace all classes and member functions =
by free functions and pass LLAMA
RecordRef to RNG state around

* None of these worked because each thread
needs a different count of random numbers
(=indexing divergence) 0

w

u

N

1.

Ul

=

U

o

2022-10-27

Runtime RTX 2060

master Version 1 Version 2 Version 3

M AoS M SoA

39

Runtime characteristics

2022-10-27

Particlesin Flight

5x10°
5x10°
4x10°
4x10°
3x10°
2x10°
2x10°
2x10°
1x10°
5x 104

0 x10° «

photons

electrons

|

positrons

100

200

300

400

Iteration Number

500

600

700

800

40

