
Bernhard Manfred Gruber (CERN, CASUS, HZDR, TU Dresden),
Guilherme Amadio (CERN),
Stephan Hageböck (CERN)

Challenges and opportunities
integrating LLAMA into AdePT

2022-10-27 1

Low-Level Abstraction of Memory Access

• Motivation: Programs are increasingly memory-bound. Performance comes
from full customization of data layout for each target architecture.

• Splits algorithmic view of data and mapping of the data to memory
• Different memory layouts may be chosen without touching the algorithm

• Header-only, portable, C++17/C++20 library, LGPL3+

• Designed to integrate with alpaka, CUDA/HIP, SYCL, …, but orthogonal

• GitHub: https://github.com/alpaka-group/llama

• Checkout our posters on alpaka and
LLAMA at the poster session!

2022-10-27 2

https://github.com/alpaka-group/llama
https://indico.cern.ch/event/1106990/contributions/4991359/
https://indico.cern.ch/event/1106990/contributions/4991311/

LLAMA concept

2022-10-27 3

AdePT

• Almost half of the compute workload in HEP is particle transport simulation

• AdePT is a C++/CUDA prototype for offloading EM transport simulations to GPUs
• Can run standalone, or as module of Geant4 (fast simulation hook)

• Uses VecGeom for geometry (GDML loading, volumes, acceleration structure)

• Uses G4HepEm, a compact EM physics implementation

• AdePT is bound by memory access (Nsight Compute); an ideal testbed for LLAMA!

• Checkout our talk at 27th Geant4 Collaboration meeting: “AdePT status report
and discussion”, and our talk and proceedings at ACAT21: “Offloading
electromagnetic shower transport to GPUs: the AdePT project”

• GitHub: https://github.com/apt-sim/AdePT

2022-10-27 4

https://gitlab.cern.ch/VecGeom/VecGeom
https://github.com/mnovak42/g4hepem
https://indico.cern.ch/event/1156193/contributions/5053275/
https://indico.cern.ch/event/855454/contributions/4605037/
https://arxiv.org/abs/2209.15445
https://github.com/apt-sim/AdePT

AdePT track data structure

• Default: A sparse array of track structures (once per e-/e+/γ)
• List of active slots and list of survivors/new particles for next iteration

• Experimental: Two dense arrays of track structures without slot arrays

2022-10-27 5
200B each

Track before and after LLAMA integration

2022-10-27 6

struct Track {
RanluxppDouble rngState;
double energy;
double numIALeft[3];
double initialRange;
double dynamicRangeFactor;
double tlimitMin;
vecgeom::Vector3D<Precision> pos;
vecgeom::Vector3D<Precision> dir;
vecgeom::NavStateIndex navState;

__device__ void InitAsSecondary(
const Track &parent) {

// ...
this->pos = parent.pos;
this->navState = parent.navState;

}
};

struct RngState {}; struct Energy {}; // ...
using Track = llama::Record<
llama::Field<RngState, RanluxppDouble>,
llama::Field<Energy, double>,
llama::Field<NumIALeft, double[3]>,
llama::Field<InitialRange, double>,
llama::Field<DynamicRangeFactor, double>,
llama::Field<TlimitMin, double>,
llama::Field<Pos, vecgeom::Vector3D<vecgeom::Precision>>,
llama::Field<Dir, vecgeom::Vector3D<vecgeom::Precision>>,
llama::Field<NavState, vecgeom::NavStateIndex>>;

template <typename SecondaryTrack>
__device__ void InitAsSecondary(SecondaryTrack &&track,

const vecgeom::Vector3D<Precision> &parentPos,
const vecgeom::NavStateIndex &parentNavState) {

// ...
track(Pos{}) = parentPos;
track(NavState{}) = parentNavState;

}

LLAMA’s layout visualization (track array AoS)

2022-10-27 7

Wrapped
after 64B

Benchmark scenario: TestEm3

• Realistic enough test scenario
• Physics implementation is complete

→ realistic compute workload

• Track management offers interesting
memory-layout optimization problem

• Simple geometry
• Geometry code is not GPU-friendly yet

• Optimization in VecGeom is pending
(R&D on different surface models)

• Avoid noise in the profiler

2022-10-27 8

Benchmark settings

• All benchmarks are on an Nvidia V100S
• 5120 CUDA cores (80 SMs), 1597MHz, 8.2

TFLOPS (DP), 32 GB HBM2/ECC, 1124 GB/S
memory bandwidth, 250 W TPD

• CentOS Stream 8, GCC 11, CUDA 11.7

• VecCore 0.8.0, VecGeom 1.1.20, AdePT (git
449222d + branches)

• Reported numbers are average of 5 runs
• $ example19 \

–particles 10000 -batch 5000 \
-gdml_file testEm3.gdml \
-gunpos -220,0,0 -gundir 1,0,0

2022-10-27 9

Memory access instrumentation with LLAMA

• LLAMA’s memory mappings can be instrumented
• Either count total read/writes per field (light), or per byte of memory (heavy)
• Integrates effortlessly with user-defined memory mappings

• Counting is performed as side effect of data structure access
• Cost: 1 atomic increment per access (AoS vs. traced AoS: 3.1x slowdown)

• Limitations of software instrumentation
• We cannot observe what the hardware does

• E.g., whether a memory read is served from VRAM or cache

• We cannot observe what the compiler/optimizer does
• E.g., whether a second memory read to the same memory location is optimized away

• Preliminary refactoring of your code can improve accuracy
• E.g., replace repeated access to memory by a local variable

2022-10-27 10

Lightweight access count tracing with LLAMA

2022-10-27 11

0

100

200

300

400

500

600

700

M
ill

io
n

s

Total access counts to electron track fields

read write

Negligible memory overhead: 1 counter per field

Heatmap – sparse buffer – electrons

2022-10-27 12

High memory overhead, 1 counter per byte. All heatmap runs with:
-particles 25 -batch 5 … (Hardcoded Capacity 50k)

1 line = 20 tracksAoS SoA

Heatmap – sparse buffer – photons

2022-10-27 13

AoS SoA1 line = 20 tracks

Heatmap – sparse buffer – positrons

2022-10-27 14

AoS SoA1 line = 20 tracks

Sparse buffer – AoS

2022-10-27 15

Electrons Positrons Photons

1 line = 1 track

Dense buffers – AoS

2022-10-27 16

Electrons Positrons Photons

1 line = 1 track

Perspective matters

2022-10-27 17

AoS, wrap 200 AoS, wrap 256 AoSoA32, wrap 200 AoSoA32, wrap 256

Perfectly coalescing

e- track slot usage – single vs. double buffer

2022-10-27 18

We could run
much bigger
batches here!

Both heatmaps use granularity sizeof(Track) instead of 1

Benchmark

3.77 3.86
4.164.18

3.97

4.55

3.85

4.80

3.78

5.00

3.69

5.04

3.62

5.10

3.61

5.05

3.64

0

1

2

3

4

5

6

Single sparse buffer Two dense buffers

R
u

n
ti

m
e

[s
]

Baseline LLAMA AoS LLAMA AoSoA2 LLAMA AoSoA4 LLAMA AoSoA8 LLAMA AoSoA16 LLAMA AoSoA32 LLAMA AoSoA64 LLAMA SoA

2022-10-27 20With LLAMA, it took me only 30min to test all the memory layouts!

Speedup 1.04

Baseline vs. AoSoA32/SoA (better)

2022-10-27 21

Baseline (AoS) AoSoA32 dense SoA dense SoA dense (first subarray)

Summary and conclusions 1/2

• We integrated LLAMA into AdePT
• We could experiment with different memory layouts easily and fast

• Memory layout and access pattern must fit together
• SoA is not a silver bullet, requires dense access pattern
• AoS work substantially better with sparse and random access
• AoSoA with various blocking factors balances between them

• Memory access visualization can give incredible insights
• … and comes almost for free with LLAMA!
• Same data structure != same access pattern
• Split and regroup data structs (hot/cold separation) based on access pattern
• Cross-check on padding, coalescing, cache lines, …

2022-10-27 22

Summary and conclusions 2/2

• LLAMA comes with some abstraction overhead
• E.g., a RecordRef in LLAMA is more than just a T*, requiring extra registers
• Compiler sometimes fails to optimize it away

• Template metaprogramming stresses compiler additionally
• But we gained a lot of flexibility!
• Compile time increased for incremental build by 27% (1 .cpp, 3 .cu files)

• Invasive code changes necessary around your data structure
• example19 has 1336 LoCs (cloc), LLAMA integration: 178 ins. 226 del. (git)

• AdePT is still bound by memory access
• Latency, access pattern, register spilling
• But not limited by bandwidth/throughput

• With LLAMA we could find a layout giving a small edge!

2022-10-27 23

Future work

• Develop a dense, single-buffer track storage
• We have prototypes with various compaction approaches

• Use different structures for e-/e+/γ to account for access pattern

• Performance model correlating access density and memory layout

• Explore mixing global/shared memory behind a single LLAMA view

• More elaborate tracing of memory access pattern
• E.g.: Which part of the data structure is hot at which time/stage of the kernel

• Better visualization of large memory traces
• How to show a byte-wise trace on a 10GiB buffer on 1 screen?

2022-10-27 24

Thank you, questions?

This work has been sponsored by the Wolfgang Gentner Programme of the German
Federal Ministry of Education and Research (grant no. 13E18CHA)

2022-10-27 25

Backup slides

2022-10-27 26

LLAMA
API
Overview

2022-10-27 27

LLAMA Mapping

2022-10-27 28

LLAMA available mappings

• AoS: Aligned, Packed, ND-array linearizers, struct member reordering, …

• SoA: Single/Multi blob, ND-array linearizers, struct member reordering, …

• AoSoA: Inner array size configurable, ND-array linearizers, struct member reordering

• BitPackFloatSoA, BitPackIntSoA: Reduce value/mantissa/exponent bits

• ChangeType: Use different type for storage, then map again

• Bytesplit: Split all types in byte arrays, then map again

• Trace: Trace access/read/write counts, then map again

• Heatmap: Trace byte wise access counts, then map again

• One: Map all array indices to the same record instance

• Null: Read returns default constructed value, writes discarded

• Split: Split record in two, map each part again

2022-10-27 29

Steps to migrate the code to LLAMA

• Structs need to be formulated via type lists (LLAMA record)

• Member functions become free functions

• Functions with LLAMA arguments/return values become templates

• Struct instances/references become LLAMA constructs or deduced
types (auto everywhere)

• Buffers (pointers to CUDA memory) become LLAMA views

• For some mappings: code needs to work with proxy references

2022-10-27 30

Track allocation – before/after

2022-10-27 31

Track *tracks;

COPCORE_CUDA_CHECK(cudaMalloc(&tracks, TracksSize));

using Mapping = llama::mapping::AoS<
llama::ArrayExtentsDynamic<std::size_t, 1>, Track>;

// using Mapping = llama::mapping::PackedSingleBlobSoA<
// llama::ArrayExtentsDynamic<std::size_t, 1>, Track>;
// ...
using BlobType = std::byte *;
using View = llama::View<Mapping, BlobType>;

View tracks;

Mapping mapping(llama::ArrayExtentsDynamic<std::size_t,
1>{Capacity});

tracks = llama::allocViewUninitialized(mapping,
[](auto alignment, auto size) {

std::byte *p = nullptr;
COPCORE_CUDA_CHECK(cudaMalloc(&p, size));
return p;

});

Implications of proxy references

Proxy reference
RanluxppDouble state =

currentTrack(RngState{});

double v = state.Rndm();

currentTrack(RngState{}) = state;

// decltype(currentTrack(RngState{})) is

// ProxyReference<RanluxppDouble>

l-value reference
double v = currentTrack(RngState{}).Rndm();

// decltype(currentTrack(RngState{})) is

// RanluxppDouble&

2022-10-27 32

AdePT simulation iteration - kernels

• TransportElectrons<bool IsElectron>
• 1. Obtain safety unless the track is currently on a boundary.

• 2. Determine physics step limit, including conversion to geometric step length according to MSC.

• 3. Query geometry (or optionally magnetic field) to get geometry step length.

• 4. Convert geometry to true step length according to MSC, apply net direction change and displacement.

• 5. Apply continuous effects; kill track if stopped.

• 6. If the particle reaches a boundary, perform relocation.

• 7. If not, and if there is a discrete process, hand over to interaction kernel.

• TransportGammas
• 1. Determine the physics step limit.

• 2. Query VecGeom to get geometry step length (no magnetic field for neutral particles!).

• 3. If the particle reaches a boundary, perform relocation.

• 4. If not, and if there is a discrete process, hand over to interaction kernel.

• Interaction kernels
• 1. Find which particles will undergo the interaction that the respective kernel will take care of.

• 2. Sample the final state.

• 3. Update the primary and produce secondaries.

• FinishIteration
• Clear the queues and return the tracks in flight.

• This kernel runs after all secondary particles were produced.

2022-10-27 33

Optimization attempts that did not work

• SoA layout for Ranlux++ RNG state
• (ncu shows big stalls when accessing the RNG state)
• Because threads consume different quantities of RNs -> divergence
• We tried 3 different versions with various slowdowns

• Different log implementations

• Using single precision CUDA intrinsics for some log/sqrt calls
• We observed different outcomes but where not sure if those are still valid

• Replacing per-thread binary search in FindLowerBinIndex by strided linear search

• Put the G4HepEmTrack in shared memory (because it is too big and needs a
reduction in block size)

• Different stack handling in BVH::LevelLocate

• (Use curand instead of Ranlux++, 26% gain, but bad statistics)

2022-10-27 34

Optimizations that worked

• TopMatrixImpl recursive -> iterative

• Various hints on inlining and not inlining
• E.g. noinline on RNG Advance()

• Put the RNG into shared memory, even if it isn’t shared
• SM hardware handles the irregular access much better than global memory (where RNG was

spilled into from registers)

• Launch bounds (influences register allocation)

• Launch parameters (block/grid sizes)

• Use a larger initial capacity

• Avoid repeated access to global memory and keep more data in registers

• Aligning transformation data in BVH to have better load instructions

• Remove the type erased wrapper G4HepEmRandomEngine

• Less upfront initialization of stack structure in BVH::LevelLocate

• Kernel fission of interactions to reduce thread divergence
2022-10-27 35

Varying launch bounds and batch size

2022-10-27 36

Separate interaction kernels

2022-10-27 37

Bottleneck: Ranlux state memory layout

• State is stored as
AoS (uint64_t[9])

• Mostly 1 or 2
elements needed
• Advance(),

touching all
elements, called
rarely

2022-10-27 38

1. Store a LLAMA RecordRef (=handle) to
the RNG state in RanluxppEngineImpl

2. Resolve all SoA addresses via LLAMA and
change the state in RanluxppEngineImpl
from a uint64_t[9] to a uint64_t*[9]

3. Replace all classes and member functions
by free functions and pass LLAMA
RecordRef to RNG state around

• None of these worked because each thread
needs a different count of random numbers
(=indexing divergence)

0

0.5

1

1.5

2

2.5

3

3.5

4

master Version 1 Version 2 Version 3

Runtime RTX 2060

AoS SoA

LLAMA SoA for RNG state

2022-10-27 39

Runtime characteristics

2022-10-27 40

