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Introduction

Problem: Test whether two sets of points are samples from the same D-dimensional probability distribution without

having access to the PDF. Given two point sets X € RY**P Y € RW*P train a binary classifier on inputs which are
the concatenation (X,Y") and targets (z,y),z = 0 € R™ ¢y =1 € R, c2st returns a score between 0.5 and 1. A
value close to 0.5 means that the classifier is not better than random guessing, i.e. X and Y are likely from the same
distribution. A value close to 1 means the classifier was able to separate X and Y, so they are probably samples from

different distributions.

Experiments

» 1 c2st run: 5-fold CV (train classifier 5 times), uncertainty of c2st score = sample standard deviation of CV scores

» in total > 5000 runs covering several (mostly sklearn) classifiers and their parameters: rf =

RandomForestClassifier, knn = KNeighborsClassifier, m1p = MLPClassifier, xgb = XGBClassifier (xgboost),

skbmlp = Skorch mlp variant (sklearn API, PyTorch backend)

» Synthetic data M (u, o I), unless stated otherwise D = 10, Nx = 5000, Ny = 2500, balanced accuracy scoring

Figure 1: Samples from two 2D distributions
X ~ N(/LX, Zx) and Y ~ N(/Ly, Zy> with
increasing difference in covariance X = o I (top,

> |f not Varied: OxY — 0y — 1, /LX — ILLY — O, |Ocati0n Sh|ft Vary /LY, Scale Sh|ft Vary Oy "scale Shift”) and mean i (bottom, "location
» we use classifier default parameters when not stated otherwise, except mlp: layers=(150, 150), adam solver with shift”).
early stopping; rf + xgb: n_estimators=100
Key observations
» use large sample sizes NV
» scale shift is the harder problem where we see failures with some classifiers
» watch out: knn, mlp; solid: rf, xgb; use at least 2 classitiers and compare, c2st APl: c2st (X, Y, clf=MyClassifier, ...)

Classifier parameters
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Figure 3: Scan size of hidden mlp layers. We use RelLU, adam,
early stopping based on 10% hold-out set validation accuracy
during training.
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Figure 2: Selection of parameter scans for knn, rf, xgb.
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Figure 6: Increase Nx = Ny in two oy cases. Easy problem: ox = oy = 1, expect score 0.5. Hard problem scale shift (cy = 2): converged
c2st score is ~= 0.93. Except for knn, all classifiers provide converged scores for N > 10’ and decreasing uncertainty. knn is not converged vet,
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Figure 4: Importance of using balanced accuracy. Use same 1 and
o, Nx = 5000, vary Ny, expect score of 0.5 (rf classifier, KFold
(kf) vs. StratifiedKFold (skf) cross-validation splitting).
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Figure 5: Effect of dimension D at low N = 1000. The knn failure
mode persists when increasing /N, while m1p will recover rf-like
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see also fig. 2 scale shift, where Nx = 5000. Convergence behavior will also depend on D (here D = 10, see also fig. 5).
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Figure 7: With xgb we can handle 107 points and more,
runtime &~ 1 min on one GPU (P100 and better). For
N > 10° scores become nearly constant, uncertainty
vanishes.

Code: https://github.com/psteinb/c2st, xgboost: https://xgboost.readthedocs.io, Skorch: https://skorch.readthedocs.io, psweep:
https://pypi.org/project/psweep (parameter study tooling), D. Lopez-Paz and M. Oquab. “Revisiting Classifier Two-Sample Tests". In: 5th International
Conference on Learning Representations, [CLR. 2017. URL: http://arxiv.org/abs/1610.06545
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