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Introduction
Problem: Test whether two sets of points are samples from the same D-dimensional probability distribution without
having access to the PDF. Given two point sets X ∈ RNX×D, Y ∈ RNY ×D, train a binary classifier on inputs which are
the concatenation (X, Y ) and targets (x, y), x = 0 ∈ RNX, y = 1 ∈ RNY . c2st returns a score between 0.5 and 1. A
value close to 0.5 means that the classifier is not better than random guessing, i.e. X and Y are likely from the same
distribution. A value close to 1 means the classifier was able to separate X and Y , so they are probably samples from
different distributions.
Experiments
▶ 1 c2st run: 5-fold CV (train classifier 5 times), uncertainty of c2st score = sample standard deviation of CV scores
▶ in total > 5000 runs covering several (mostly sklearn) classifiers and their parameters: rf =

RandomForestClassifier, knn = KNeighborsClassifier, mlp = MLPClassifier, xgb = XGBClassifier (xgboost),
skbmlp = Skorch mlp variant (sklearn API, PyTorch backend)

▶ Synthetic data N (µ, σ I), unless stated otherwise D = 10, NX = 5000, NY = 2500, balanced accuracy scoring
▶ if not varied: σX = σY = 1, µX = µY = 0; location shift: vary µY , scale shift: vary σY

▶ we use classifier default parameters when not stated otherwise, except mlp: layers=(150, 150), adam solver with
early stopping; rf + xgb: n_estimators=100
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Figure 1: Samples from two 2D distributions
X ∼ N (µX, ΣX) and Y ∼ N (µY , ΣY ) with
increasing difference in covariance Σ = σ I (top,
”scale shift”) and mean µ (bottom, ”location
shift”).

Key observations
▶ use large sample sizes N

▶ scale shift is the harder problem where we see failures with some classifiers
▶ watch out: knn, mlp; solid: rf, xgb; use at least 2 classifiers and compare, c2st API: c2st(X, Y, clf=MyClassifier, ...)

Classifier parameters
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knn, const: Y=[0.]

n_neighbors=5.0
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rf, const: Y=[0.]

n_estimators=10.0
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xgb, const: Y=[0.]

tree_method=exact
tree_method=hist
tree_method=approx
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Figure 2: Selection of parameter scans for knn, rf, xgb.

1 2 3 4 5
Y

0.5

0.6

0.7

0.8

0.9

1.0

c2
st

 sc
or

e

mlp, const: Y=[0.]
solver=adam, batch_size=32
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Figure 3: Scan size of hidden mlp layers. We use ReLU, adam,
early stopping based on 10% hold-out set validation accuracy
during training.
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Figure 4: Importance of using balanced accuracy. Use same µ and
σ, NX = 5000, vary NY , expect score of 0.5 (rf classifier, KFold
(kf) vs. StratifiedKFold (skf) cross-validation splitting).

Dimensionality D
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Figure 5: Effect of dimension D at low N = 1000. The knn failure
mode persists when increasing N , while mlp will recover rf-like
behavior.

Sample size N
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Figure 6: Increase NX = NY in two σY cases. Easy problem: σX = σY = 1, expect score 0.5. Hard problem scale shift (σY = 2): converged
c2st score is ≈ 0.93. Except for knn, all classifiers provide converged scores for N > 103 and decreasing uncertainty. knn is not converged yet,
see also fig. 2 scale shift, where NX = 5000. Convergence behavior will also depend on D (here D = 10, see also fig. 5).
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Figure 7: With xgb we can handle 107 points and more,
runtime ≈ 1 min on one GPU (P100 and better). For
N > 105 scores become nearly constant, uncertainty
vanishes.

Resources and References
Code: https://github.com/psteinb/c2st, xgboost: https://xgboost.readthedocs.io, Skorch: https://skorch.readthedocs.io, psweep:
https://pypi.org/project/psweep (parameter study tooling), D. Lopez-Paz and M. Oquab. “Revisiting Classifier Two-Sample Tests”. In: 5th International
Conference on Learning Representations, ICLR. 2017. url: http://arxiv.org/abs/1610.06545

https://github.com/psteinb/c2st
https://xgboost.readthedocs.io
https://skorch.readthedocs.io
https://pypi.org/project/psweep
http://arxiv.org/abs/1610.06545

