

Institute of Radiation Physics

Radiation Source ELBE

Resolving Surface Chemical States of p-GaN:Cs Photocathodes by in-situ X-ray Photoelectron Specctroscopy (XPS)

Jana Schaber
Helmholtz Zentrum Dresden-Rossendorf
<u>j.schaber@hzdr.de</u>
www.hzdr.de

Agenda

- > Short overview of GaN chamber (Set-up)
- Activation cycle
- > Achieved QE values vs. temperature
- > Surface composition with XPS:
 - > After thermal cleaning
 - **>** After Ar⁺ sputtering
 - > After Cs activation
 - Degradation (+ X-ray influence)
- Summary & Outlook

Set-up

- UHV preparation chamber (average 3 x 10⁻¹⁰ mbar)
- 310 nm UV-LED with 50 μW
- halogen lamp for thermal cleaning
- Backside heating by manipulator
- external IR sensor for temperature measurement
- XPS chamber (average 5 x 10⁻⁹ mbar)

cycle

- → Thermal cleaning, Cs activation and QE decay are defined as one cycle
- → p-GaN can be used several cycles

QE vs. T

in-situ XPS

Surface composition after the thermal cleaning (backside)

- → C and O are not removed by thermal cleaning
- → Might be incorporated into the crystal lattice

Ar⁺ sputtering

- → Ar+ irradiation caused surface damage
- → depletion in N atoms → Ga:N ratio is not 1 anymore!
- → No NEA surface was achieved in Cs activation!

Cs activation

- Deposition of Cs: shift towards higher BE
- No shift in O 1s → oxygen is not at the surface → derive from sublayers/ incorporated
- Significant influence on C 1s peak: new component is fromed

Cs 3d_{5/2} peak

- Cs 3d_{5/2}: at lower BE than Cs⁰
- → Cs must be Cs⁺¹
- → No bulk Cs
- → Cs plasmons with low intensity
- → <u>BUT</u>: X-rays from dual anode has also an influence on degradation

²⁾ Schaber, J.; Xiang, R.; et al. Influence of Surface Carbon on p-GaN:Cs photocathodes with high quantum efficiency, publication in progress

¹⁾ Moulder, J. F.; Jill C. Handbook of x-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Physical Electronics Division, 1992, Perkin-Elmer Corp.

photocathode degradation

X-rays accelerate the degradation as external source

cesium carbide species

- → Carbon is always at the surface
- → Incoorperated into the crystal
- → Cesium carbide species increase in peak intensity

Increase in peak intensity is caused by:

- → Carbon atoms that form a new species with Cs
- → Carbon atoms that diffuse from sublayers to the surface
- → Is there a cesium carbide island formation?

Summary

- QE values (7-12 %) @ 400-500 °C
- above 600 °C: surface morphology was destroyed
- in-situ XPS capability:
- C, O: incooperated during the MOCVD growth
 - removeable by Ar irradiationBUT: ion sputtering damage
- easy activation with exclussively cesium
- → photoemision peaks towards a higher BE
- Chemical state of Cs: no bulk Cs⁰ but Cs⁺¹
- C 1s peak was influenced
 - Cesium carbide species
 - Cesium carbide peak intensity increased with degradation
 - Shift back towards lower BE
- X-rays of dual anode accelerated the QE decay!

Outlook

- Higher p-GaN quality (MBE or HVPE) → No C on the surface
- Different Mg concentrations
- P-GaN on other substrates (Si, Cu, SiC, TiN,)
- Sputtering with helium ???
- P-GaN behaviour in the SRF Gun ???

Thank you for your attention!