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ABSTRACT 

Reactive transport modeling (RTM) is an essential tool for the prediction of contaminants’ behavior 

in the bio- and geosphere. However, RTM of sorption reactions is constrained by the surface site 

assessment. The reactive site density variability of the crystal surface nanotopography provides an 

“energetic landscape”, responsible for heterogeneous sorption efficiency, not covered in current 

RTM approaches.  Here, we study the spatially heterogeneous sorption behavior of Eu(III), as an 

analogue to trivalent actinides, on a polycrystalline nanorough calcite surface and quantify the 

sorption efficiency as a function of surface nanoroughness. Based on experimental data from 

micro-focus time-resolved laser-induced luminescence spectroscopy (µTRLFS), vertical scanning 

interferometry (VSI), and electron back-scattering diffraction (EBSD), we parameterize a surface 

complexation model (SCM) using surface nanotopography data. The validation of the 

quantitatively predicted spatial sorption heterogeneity suggests that retention reactions can be 

considerably influenced by nanotopographic surface features. Our study presents a way to 

implement heterogeneous surface reactivity into a predictive SCM for enhanced prediction of 

radionuclide retention. 

Keywords: Sorption reactions, Crystal surface reactivity, µTRLFS, Surface complexation 

modeling, Radionuclide migration 
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INTRODUCTION 1 

The potential migration of actinides constrains the safety assessment of disposal concepts for 2 

nuclear waste in deep geological formations. Such concepts for underground storage facilities 3 

require reliable predictions for 100,000s of years to diagnose potential migration of stored 4 

radionuclides into the biosphere. Reactive transport models are crucial in providing such 5 

predictions and the heterogeneity of physicochemical input values defines the reliability of the 6 

numerical results. A key challenge is the upscaling of the molecular processes to quantify the 7 

radionuclide retention processes, bridging the gap from laboratory scale experiments to large scale 8 

facilities. Molecular mechanistic insights are provided experimentally and analytically by 9 

spectroscopic techniques such as Time-Resolved Laser Fluorescence Spectroscopy (TRLFS)1, 2, 10 

and Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS)3, 4, and numerically by 11 

molecular dynamic simulations (MD), providing insights into the structure of the adsorbed ions at 12 

specific surface sites5, 6. Upscaling and implementing these insights into continuum scale reactive-13 

transport models is challenging because of the intrinsic variability of surface reactivity at the pore 14 

scale. Typical RTM approaches employ uniform surface parameters such as specific surface area 15 

(SSA) and site density, uniform electrostatic diffuse layer potentials, and simplified uniform 16 

surface protonation models to simulate adsorption processes of radionuclides through various 17 

surface complexation reactions implemented by surface complexation models (SCM)7-13 to yield a 18 

simple retention coefficient in RTM at the continuum scale14-16. Consequently, simplifications such 19 

as the assumption of macroscopically homogeneous behavior17 as well as surface area 20 

normalizations18 are commonly applied. These simplifications limit our ability to model and predict 21 

the consequences of varying surface reactivity.  22 

Analytically, the recent development of the µTRLFS technique allows us to identify interfacial 23 

speciation with µm-spatial resolution and the very high sensitivity required to investigate surface 24 
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complexes19, 20. This technique revealed heterogeneous sorption behavior of the trivalent actinide 25 

analog Eu(III) on a granite rock surface that cannot be quantitatively explained by mineral type 26 

and composition alone19. Consequently, insight into the intrinsic variability of surface reactivity is 27 

required to improve our predictive capabilities of reactive transport processes21. The surface 28 

reactivity may depend on several factors, including crystal defects and surface nanotopography as 29 

well as crystal orientation. From an energetic point of view, a dominant factor is the kink site 30 

density (KSD) of the crystal surface.22 Figure 1 illustrates different nanotopographic configurations 31 

of the crystal surface with specific kink site densities. With increasing KSD, these include (1) 32 

atomically flat terraces with point defects, (2) etch pits walls with steps and kinks resulting from 33 

dissolution processes, (3) surface steps with kinks along cleavage planes, and (4) very rough 34 

surface portions with a multitude of edge and kink sites owing to mechanical treatment (polishing, 35 

grinding, preparation of powdered sample material) of crystalline matter. Previous studies 36 

suggested that increasing KSD results in enhanced surface reactivity for, e.g., sorption23.  37 

 38 

Figure 1 Schematic representation of nanotopographic characteristics of a crystal surface, showing 39 

(1) an atomically flat terrace with point defects, (2) an etch pit wall with steps and kinks, (3) surface 40 

steps with kinks due to crystal cleavage, and (4) a very rough surface due to mechanical treatment 41 

such as polishing. Kink sites are marked in the red color and the kink site density increases from 42 

left to right in this scheme. 43 
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Here, we investigate the sorption of Eu(III) on calcite to experimentally exemplify the variability 44 

of surface reactivity as a function of surface nanotopography of monomineralic but polycrystalline 45 

collector surfaces during sorption processes. Eu(III) serves as a luminescent probe with excellent 46 

spectroscopic properties24 and a chemical analogue for the trivalent actinides, some of which 47 

(Am(III), Pu(III)) determine the radiotoxicity of nuclear wastes over 100,000s of years. Calcite was 48 

selected as one of the most widely distributed mineral phases in the earth’s crust, with demonstrated 49 

importance for the migration of radionuclides25  and other contaminants in the geosphere26, by both, 50 

the complexation reactions at the mineral surface27, 28 as well as incorporation processes within the 51 

crystal lattice.25, 29 Due to the presence of only a single mineral phase in this study, we can exclude 52 

mineralogical effects and instead focus on the surface energy variability induced by crystallography 53 

or topography. Our strategy is the quantitative mapping of surface sorption efficiency data, 54 

including information about speciation and hydration of Eu(III) using µTRLFS19. These data are 55 

correlated with surface nanotopography maps from vertical scanning interferometry and crystal 56 

orientation data from electron backscatter diffraction (EBSD) analysis. The spatially-resolved 57 

information allows us to parameterize an improved SCM using surface nanoroughness data that 58 

account for heterogeneities in crystal surface energy, and which makes it possible to predict 59 

heterogeneous sorption behavior. The modeling results were validated using experimental data 60 

from µTRLFS.  61 

METHODS 62 

Experimental setup. Two calcite samples were utilized to investigate the effect of the different 63 

nanotopographical endmembers on the sorption efficiency of Eu(III) on the crystal surface. One 64 

sample was a polished calcite crystal with a high density of edge and kink sites due to the its rough 65 

surfaces (manufacturer: KORTH Kristalle GmbH, Altenholz, polished along (10-14), the other is 66 

a cleaved calcite surface (calcite island spar, Chihuahua, Mexico, WARD’s 46E1438) with varying 67 
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degrees of step densities analyzed by VSI. The two samples were exposed to 10-6 M aqueous 68 

[152Eu]Eu(NO3)3 in 0.1 M NaCl solution at pH 7.5 by immersing their surface upside down in the 69 

solution for 15 minutes. No alterations of the surface topography are detected using interferometry 70 

microscopy surface analysis. The sorption was quantified via autoradiographic imaging using a 71 

BAS-IP SR storage phosphor screen that was read out with a pixel size of 25 µm after exposure 72 

using an Amersham Typhoon Biomolecular Imager (GE Lifesciences). Absolute concentrations 73 

were yielded by calibration of the image in ImageJ using a series of europium standards of known 74 

concentration.   75 

As a second step, the investigations were then expanded to a more realistic system with respect to 76 

calcite-bearing host rocks. Another sorption experiment was performed using polycrystalline 77 

calcite. A cylindrical drilled marble sample (diameter: 1.5 cm, length: 1 cm, Großsoelk, Austria, 78 

composition: calcite (95 wt. %), quartz (< 2 wt. %), muscovite (< 1 wt. %), phlogopite (< 1 wt. %) 79 

and ore minerals (<1 wt. %)30, was polished using an oil-based mono-crystalline diamond 80 

suspension (crystal size: 50 nm) and partially masked with a layer of 550 nm of gold31 as a height 81 

reference for surface analysis at the nanometer scale. To identify the crystallographic orientation 82 

of the crystal grains in the sample surface a grid of 200 x 150 points (resolution: 10 µm) was 83 

analyzed with EBSD using a Zeiss NVision 40 scanning electron microscope equipped with a 84 

Bruker e-FlashHr- detector and a QUANTAX CrystAlign EBSD-System (acceleration voltages: 85 

10kV, beam current: 2.5nA).32 First, to provide a surface roughness variability similar to what is 86 

expected in natural systems after diagenetic reactions, a dissolution experiment was performed by 87 

reacting the sample surface with air-equilibrated, aqueous 2.2 mM Na2CO3 at pH 8.8 for 1 hour 88 

using a custom-made flow-through cell (cell volume: 300 µL, flowrate: 30 mL/h). The 89 

experimental conditions are identical to those described in the literature for studying dissolution 90 

kinetics of calcite surfaces at far-from-equilibrium conditions22. Second, a batch europium sorption 91 
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experiment was conducted by immersing the sample surface into a solution of 10-5 mol/L Eu(NO3)3 92 

and 0.1 mol/L NaCl with a pH value of 8.5 for 24 hours. In this step, the larger concentration and 93 

longer sorption period were made necessary to enable the µTRLFS studies19, 20. The sample was 94 

then rinsed with the background solution and dried. Spatially resolved information on the europium 95 

sorption efficiency and the adsorbed species was gained using µTRLFS mapping of a 0.5 mm × 96 

1.5 mm subsection with a spatial resolution of 20 µm. 97 

The surface topographies of all the samples were analyzed using a Sensofar S neox white-light 98 

vertical scanning interferometer equipped with Nikon DI interferometry objectives for 20 ×, 50 ×, 99 

and 100 × magnifications (see SI, Table S1 for detailed specifications). 100 

µTRLFS. µTRLFS measurements were conducted with a setup designed in-house as described in 101 

Molodtsov et al. 201919. The laser beam was provided by a pumped (Surelite SL I-20 @ 355 nm, 102 

Continuum) dye laser (NarrowScan @ Exalite 389/398 1:1 mix, Radiant Dyes). The pulse energy 103 

was set to approximately 20 µJ to prevent possible laser ablation. The wavelength was fixed at 394 104 

nm to maximize the light absorption of Eu3+ (7F0 → 5L6 transition) resulting in higher sensitivity 105 

for luminescence detection24. The laser beam was focused by a 50x long-distance objective 106 

(MLWD-50X, Newport) to a spot with approximately 20 µm in diameter. The sample surface was 107 

aligned to the focal plane of the laser beam with a z-stage (KT-RS60, Zaber) and then scanned in 108 

a 20 µm grid with an x-/y-stage (M-423 driven by TRB25CC and controlled with CONEX-CC, 109 

Newport). The gathered luminescence light was redirected to the detector (Shamrock SR303i 110 

spectrograph combined with DH320T-18U-63 iCCD camera, Andor) to collect the full spectral 111 

information in each data point. Spectra were measured with 100 accumulations over 5 seconds in 112 

total with a gate width and exposure time of the iCCD of 10 ms. To evaluate the data a python-113 

based software (pycroTRLFS EVAL, HZDR) was used. The spectra were analyzed with respect to 114 

the peak areas of the 5𝐷𝐷0 → 7𝐹𝐹1 (7𝐹𝐹1) and 5𝐷𝐷0 → 7𝐹𝐹2 (7𝐹𝐹2) transitions and their fluorescence decays 115 
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after applying a linear background correction. The fluorescence intensity (sum of peaks 7𝐹𝐹1+ 7𝐹𝐹2) 116 

is correlated to the number of Eu(III) atoms and therefore corresponds to the sorption efficiency. 117 

The sorption efficiency of each pixel was calculated by normalizing the peak sum by the highest 118 

measured luminescence signal. The luminescence peak ratio (𝐹𝐹2/ 𝐹𝐹1) corresponds to the sorption 119 

strength and also serves as a distinguishing indicator for speciation because the 𝐹𝐹2 peak is a 120 

hypersensitive electric multipole transition, and its intensity reacts strongly to changes in Eu(III)’s 121 

chemical surroundings, while the 𝐹𝐹1 peak as a magnetic dipole transition is mainly unaffected.24 122 

Lifetimes of the luminescence decays were recorded in several selected data points. The 123 

luminescence decay patterns could be reconstructed by bi-exponential decay functions with a fixed 124 

long lifetime of 3600 µs, which represents the well-known lifetime of the Eu3+ incorporation 125 

species into the crystal lattice of calcite.25 This fixation is useful because the long-lived species 126 

usually have a quite low luminescence intensity, which is therefore much more affected by 127 

background correction uncertainties. As a result, the short lifetime can then be determined much 128 

more reliably. In some cases, the observed luminescence decay pattern was described by a mono-129 

exponential decay function for residual-minimization purposes. The resulting lifetimes were then 130 

correlated to the number of remaining water molecules n(H2O) in the first coordination sphere of 131 

Eu3+ by the empirical equation33, 34: 132 

n(H2O) ± 0.5 = 1.07
τ
− 0.62,                                                              (1) 133 

where τ denotes the measured luminescence lifetime (in a unit of ms). The value of n can range 134 

from zero (incorporation) up to nine remaining water molecules (fully hydrated Eu3+ aquo ion). 135 

Intermediate amounts of water molecules left correspond to inner sphere complexation of the Eu3+ 136 

ion, here sorption to the calcite surface. 137 

Sorption data analysis. Areas of different quantities of sorption were identified in the 138 

autoradiogram of the polished and cleaved samples and representative high-resolution topography 139 
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images were recorded. The sorption data on the polycrystalline calcite material from µTRLFS with 140 

a pixel size of 20 µm were cross-referenced with different grains (A-J) identified by EBSD. The 141 

grains were ordered with increasing europium sorption (see Figure S1) and Student t-tests were 142 

performed to analyze statistically significant differences in europium sorption (p=0.05). The data 143 

from neighboring grains with no statistically significant differences were combined into single 144 

datasets. This created four combined datasets with statistically significant differences in europium 145 

sorption efficiency, AF, IJHG, EDC, and B (in order of increasing europium sorption, see Table 146 

S2 and S3). Of the four datasets the grains with the most available data points – A, I, D, and B (in 147 

order of increasing europium sorption) – were chosen for a more detailed correlative analysis of 148 

the europium sorption and surface nanoroughness. VSI maps of each grain were measured and Sq 149 

values, the root mean square deviation or the standard deviation of the height data, of 20 µm × 20 150 

µm pixels were extracted from the images and correlated with the µTRLFS sorption data.  151 

For a more detailed investigation, the 20 µm × 20 µm pixels were each divided into subpixels with 152 

a smaller field of view (FOV) down to a maximum of 64 subpixels with a minimum FOV of 2.5 × 153 

2.5 µm2 which were analyzed according to their Sq value. The applied minimum FOV size of 154 

topographic data utilized for the calculation of the Sq parameter is limited by the spatial resolution 155 

and consecutive bisection algorithm used. The resulting datasets of Sq values were then averaged 156 

for every original pixel to mitigate the influence of larger structures such as scratches and holes in 157 

the crystal surface on the Sq-data (note that averaging the Sq values of the subpixels and measuring 158 

one Sq value for the whole pixel will give different results, with a higher influence of extreme 159 

values with the latter approach). These converged datasets were then correlated with the europium 160 

sorption efficiency. In a separate analysis different Sq ranges were investigated for their correlation 161 

with the sorption efficiency by only averaging the subpixels with Sq values in the ranges of 0-5 162 

nm, 5-10 nm, 10-50 nm, and >50 nm (see Figure S2).  163 
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Numerical model. According to the lifetime analysis, we utilized the surface complexation 164 

reactions to describe Eu3+ adsorption on the calcite surface in a short time experiment. Therefore, 165 

the SCM was developed using the aqueous speciation reactions and surface complexation reactions 166 

in Table S4. The SCM is an electrostatic double-layer model 11, 13 in which the net surface charge 167 

balances the net charge in the diffuse layer7. The identical site density and specific surface area 168 

(SSA) are 5 sites/nm2 and 0.262 m2/g, respectively28. The chemical reactions were calculated using 169 

PHREEQC v3.57 with the Nagra/PSI Chemical Thermodynamic Database35. The SCM results were 170 

validated using measured sorption efficiency data from Zavarin et al. 200528 (Figure S3 in SI).   171 

Parametrization of the predictive model. The topographical data for the predictive model is 172 

obtained from phase shifting interferometry (PSI) measurement with a high spatial resolution of 46 173 

nm × 46 nm. The Sq value of each pixel is calculated at a 0.46 × 0.46 µm2 FOV using 10 × 10 174 

pixels of the surface topography data. Since the averaged Sq value is sensitive to the FOV, the 175 

calibration curve for the predictive modeling was adapted for the higher resolution. Based on the 176 

experimentally validated correlation of the optimized slope α with the FOV of the Sq value for ROI 177 

I and II (Figure S4 in SI), α was set to 0.03 for the predictive modeling. See below for a detailed 178 

discussion of these procedures. The use of a slope not specifically optimized for the surface in 179 

question may cause deviations in the prediction of the sorption efficiency, however, the predicted 180 

spatial sorption patterns and their trends with the evolution of the surface are valid. 181 

RESULTS AND DISCUSSION 182 

Calcite nanotopography effects on Eu(III) sorption. The influence of surface topography on 183 

sorption efficiency was studied using calcite crystal samples with different topographies that 184 

allowed us to isolate the effects of specific surface features. The use of single-crystal samples 185 

allowed us to study specific structural endmembers, i.e. very low KSD to very high KSD, even 186 

though the exact KSDs are not accessible to measurement. Figure 2 shows the surface topographies 187 
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of a cleaved and a polished calcite crystal (I) and the absolute concentrations of sorbed Eu(III) in 188 

a cleaved edge area (A), a cleaved terrace (B), and a fine-polished surface (C) (II). The polished 189 

crystal surface (C, Figure 2I) exhibits a highly nanorough surface that consists of a high amount of 190 

kink sites due to the fine polishing (cf. Figure 1 surface 4) producing a surface that may be linked 191 

to a powder sample. On the surface of the cleaved sample, two distinct structural features can be 192 

observed: distinct steps (A) that contain various degrees of steps according to the height difference 193 

(cf. Figure 1 surface 3) and flat terraces (B) in between the steps that can are made up by the large 194 

flat areas with a low amount of step density and point defects (cf. Figure 1 surface 1). Figure 2II 195 

shows the different concentrations of sorbed europium that the surface features A, B, and C lead 196 

to, as quantified by autoradiography. The highest amount of sorbed Eu(III) can be observed on the 197 

polished sample with a highly nanorough surface while the cleaved terrace with an approximately 198 

flat surface exhibits the lowest one, with the edge structure falling in between. 199 

The observed heterogeneous sorption behavior suggests a variability of surface reactivity that 200 

reflects a heterogeneous distribution of crystal surface energy that can be quantified by surface 201 

topography analysis. The surface energy strongly depends on the number of surface building blocks 202 

such as kink sites and step edges17. A previous study22 investigated heterogeneous surface reactivity 203 

and the probability of variations in kink site density. Additional literature data36, 37 confirm the 204 

importance of the surface kink sites as the dominating intrinsic factor of enhanced surface reactivity 205 

during, e.g., dissolution and precipitation reactions. We thus hypothesize that such surface energy 206 

distribution affects the sorption efficiency, as suggested by kinetic Monte Carlo simulations (KMC) 207 

at the atomic scale38. Moreover, a molecular dynamics (MD) study investigating the reactivity of 208 

the calcite-water interface shows the number of surface reactive sites for adsorbing water molecules 209 

is higher at rough surface positions with kink sites and step edges compared to the flat surface 210 

portions with no surface roughness5. 211 
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 212 

Figure 2. (A) surface topographies of cleaved calcite surface ((i) and (ii)) and polished calcite 213 

surface (iii). (i) shows a stepped edge due to cleaving with an overall height of  about 500 nm. (ii) 214 

shows a flat cleavage plane with a maximum height of ~2 nm due to a single scratch along the 215 

otherwise flat surface. Note the different exaggerations of the z scale compared to the x and y scale 216 

of the maps (i-iii). (B) shows height distributions of the profile lines (i), (ii), and (iii). (C) Box-217 

Whisker plots of the measured absolute concentrations of sorbed Eu(III) among the areas (i), (ii), 218 

and (iii). The quantitative concentration trend indicates the effect of crystal surface nanotopography 219 

(cf. Fig. 1) on sorption efficiency. 220 
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Heterogeneous sorption of Eu(III) on polycrystalline calcite. Now, we investigate the surface 221 

of polycrystalline calcite towards variability in sorption efficiency. Figure 3 shows an overview of 222 

the investigated calcite crystal surface maps including (a) the surface topography, (b) crystal 223 

orientations of the polycrystalline calcite material, (c) normalized sorption efficiency including 224 

selected spots where fluorescence lifetimes were collected, and (d) speciation distribution. The 225 

surface is composed of multiple crystal grains with diameters of about 10 µm to several 100 µm 226 

with varying crystal orientation. The sorption efficiency was determined based on the total 227 

luminescence intensity of Eu(III) as described in the methods section. The luminescence intensity 228 

reveals a heterogeneous distribution of the Eu(III) sorption, even within single crystal faces, 229 

varying by a factor of around 10 between lowest and highest concentrations. Several grains show 230 

statistically significant differences in sorption efficiency, however, no correlation between crystal 231 

orientation and sorption efficiency is found (see below and SI). An analysis of the ratio of the 5D0 232 

→ 7𝐹𝐹2 and 7𝐹𝐹1 luminescence transitions and lifetimes of the excited states provides information on 233 

the speciation of Eu(III) on the sample surface, as they are influenced by the bond strength24 and 234 

the number of water molecules33 in the first coordination sphere of the excited europium (see SI 235 

for detailed analysis of luminescence lifetime and speciation). In contrast to the heterogeneously 236 

distributed sorption efficiency, the mapping of the 7𝐹𝐹2/ 7𝐹𝐹1 peak ratio which is correlated to 237 

speciation (Figure 3d) shows a mostly homogeneous distribution. Most pixels exhibit peak ratios 238 

~5, indicating that the dominant speciation of Eu(III) is surface sorption or incorporation species. 239 

A few pixels show a peak ratio of seven or above, but only where the luminescence intensity is 240 

very low, which leads to larger uncertainties in the determination of the peak ratios.  241 

The measured lifetimes at selected surface sites (see Figure 3c, circles) are shown in the SI (Table 242 

S5). We generally find two distinct lifetimes: A short lifetime, which correlates to ~2 H2O in the 243 

coordination sphere of Eu(III) and a longer lifetime which indicates a complete loss of hydration. 244 
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The short lifetime in combination with the typical peak ratio discussed above can be interpreted as 245 

an inner-sphere surface sorption complex that has been previously reported25, 39. This species is 246 

only present where the luminescence intensity is high and can be considered to be the major fraction 247 

of Eu on the mineral surface. The long lifetime and thus complete loss of hydration suggest 248 

incorporation into the calcite lattice25. The species appears homogeneously distributed over the 249 

whole surface, albeit always only in low quantities. As Eu is a common impurity in natural 250 

calcites40, and because it seems unlikely that incorporation occurred in the short duration of our 251 

experiments29 we interpret this species as Eu(III) incorporated into the natural calcite before our 252 

experiments. We can then conclude that as a first approximation the Eu(III) sorption efficiency is 253 

heterogeneously distributed over the surface, but the dominant species is the same inner sphere 254 

complex throughout. 255 

 256 

Figure 3. Correlative microscopy of (a) Surface height map, field-of-view (FOV) size = 1 mm × 257 

0.4 mm; ROIs I-III refer to three representative sub-regions for model validation (see Figure 6). 258 

(b) Crystal orientation map based on EBSD data, different colors represent specific crystal 259 

orientations, see the legend in Figure S1 for details. c, Normalized sorption efficiency (normalized 260 

𝐹𝐹1 + 𝐹𝐹2 µTRLFS peak sum) with lifetime data points marked with a hollow dot in blue (high 261 
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intensity) and purple (low intensity), spatial resolution: 20 µm × 20 µm. d, Peak ratio 𝐹𝐹2/𝐹𝐹1, 262 

indicating speciation/bonding strength, spatial resolution: 20 µm × 20 µm. 263 

Surface nanoroughness parametrization replaces the SSA parametrization towards 264 

improved surface complexation modeling. The two datasets of the cleaved and polished surface 265 

illustrate the influence of the surface nanotopography is as a major factor for the measured Eu(III) 266 

sorption variability (Fig. 2). At the nanometer scale, the spatial configuration surface building 267 

blocks defines the surface reactivity and, thus, the sorption efficiency23. Nanoroughness can be 268 

considered a proxy to quantify the occurrence of such surface building blocks. In order to quantify 269 

surface roughness, we select the Sq parameter, the root-mean-square (r.m.s.) deviation of the 270 

surface height41 calculated from the surface topography data, to test its suitability to explain the 271 

observed heterogeneous sorption efficiency. Parameter Sq quantifies the height variability more 272 

reliably42 than the arithmetic average roughness Sa. Additionally, we tested the potential use of the 273 

surface area ratio parameter, Sdr, as a proxy parameter, see Figure S6 in SI. 274 

For the polycrystalline calcite sample, we identify four datasets of different grains, AF, IJHG, EDC, 275 

and B by µTRLFS with statistically significantly different Eu(III) sorption (see Table S2 &S3). 276 

The crystal orientation within these datasets varies widely with no discernable trend (see Figure 277 

S1). No correlation between crystal orientation and Eu(III) sorption efficiency has been found. 278 

Furthermore, no correlation between the sorption efficiency and the absolute sample height exists 279 

as regions of distinctly different absolute surface heights show similarly low sorption efficiencies 280 

(see Figure 3a and c). Grain-specific data (grains: A, B, D, and I) of the sorption efficiency of 281 

Eu(III) versus the average Sq roughness of the grain surfaces show a linear correlation (R2 = 0.94), 282 

cf. Figure. 4, proving the Sq parameter as a suitable proxy for surface reactivity. Note that effects 283 

of crystal orientation may result in a variability of surface nanoroughness, encompassed in the 284 

roughness parameter.  285 
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 286 

 287 

Figure. 4. Normalized amount of europium sorption efficiency based on µTRLFS data collected 288 

on grains A, I, D, and B as a function of the Sq roughness of the grain surface. 289 

For a more detailed site-specific investigation as well as for testing the potential use of 290 

topographical features for parametrization of the numerical approach, the sorption efficiencies of 291 

all pixels of the four different grains with statistically significant different Eu(III) sorption 292 

efficiencies were correlated with the Sq value of the field-of-view of each pixel (Figure 5a). Each 293 

pixel covers an area of 20 µm × 20 µm (in accordance with the Eu sorption data resolution), which 294 

is equivalent to 200 × 200 pixels of the surface topography data shown in Figure 3a. Based on these 295 

115 data points (Figure 5a), only a weak correlation (R2 = 0.16) between Eu sorption efficiency 296 

and Sq value can be identified. Overall, the data seems to be distributed between two regimes, i.e., 297 

one regime shows a larger increase of Eu sorption with elevated Sq values up to 40 nm (red color 298 

area in Figure 5a), the other regime shows a strong effect of Sq on Eu sorption, mostly covering 299 

low includes elevated Sq values up to 80 nm with minor or no correlation with Eu sorption 300 
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efficiency (blue color area in Figure 5a). A closer look at the VSI images reveals that in the latter 301 

case, the Sq values are strongly influenced by larger surface structures, such as scratches or holes. 302 

These features have a large impact on the Sq value but do not appear to significantly impact Eu(III) 303 

sorption. Thus, to deconvolve the two regimes (large structures vs. nanoscale roughness) we 304 

gradually reduced the field of view for the Sq value calculation down to a minimum of 2.5 × 2.5 305 

µm2 using consecutive bisection to divide each pixel into a maximum of 64 subpixels, resulting in 306 

64 Sq values for each original pixel. Averaging these sub-pixel Sq values for each original pixel 307 

results in a new Sq value for each pixel at a 2.5 × 2.5 µm2 FOV, and the impact of the larger 308 

structures is reduced due to the averaging procedure. The mitigation of the influence of the larger 309 

structures is warranted by a more detailed analysis of the correlation between sorption efficiency 310 

and Sq values. A separate analysis of subpixels in the ranges of < 5 nm, 5-10 nm, 10-50 nm, and > 311 

50 nm was performed. These ranges were chosen characterize different surface building blocks: 312 

The range of 0-10 nm reflects the critical nanoroughness of the surface, the intermediate range is 313 

typical for smaller holes left by the EBSD process and dissolution etch pits (10-50 nm), and the 314 

range > 50 nm corresponds to large scratches and holes due to the sample preparation. A correlation 315 

of the chosen Sq ranges with the sorption efficiency shows correlations only for the first three 316 

ranges, i.e., 0 - 50 nm. No correlation was found for Sq values above 50 nm, justifying the de-317 

emphasization of larger structures by the averaging procedure in the previously described (see 318 

Figure S2). Mechanistically, this indicates that specific nm-sized surface building blocks such as 319 

steps and kinks are the main drivers of the increased sorption efficiency. 320 

Using the newly calculated Sq values for each pixel, we see an increase of the coefficient of 321 

determination (R2) (see SI Figure S5), resulting in a linear correlation at a FOV of 2.5 × 2.5 µm2 322 

with R2 = 0.34 (Figure 5b) corresponding to a Pearson’s correlation coefficient r of 0.58. While 323 

this may appear low, we like to point out that an r of 0.58 is considered to reflect a rather strong 324 
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effect for datasets with a large influence of other randomly distributed influences43. The motivation 325 

of our investigations is to test the predictive power of Sq as a proxy parameter in a polycrystalline 326 

system that inherently reflects a combination of several variables. The important prediction of the 327 

safety of a nuclear waste repository needs model parameter validation in a realistic system to avoid 328 

oversimplification. The data showing a visible spread, nevertheless, the point cloud envelopes a 329 

cone of possible linear relationships between Sq and Eu sorption efficiency. This general 330 

correlation is potentially and locally affected by several other factors that cause a decreased 331 

coefficient of determination for the overall pixel-by-pixel correlation when compared to the 332 

averaged grainwise correlation. Influencing factors may include the crystal orientation, the 333 

contribution of intrinsic Eu to the µTRLFS signal, the still present impact of larger structures on 334 

the Sq value, and effects of unspecific Eu(III) precipitation and calcite dissolution during the 335 

sorption experiment. This leads to slightly different valid slopes in different areas of the sample. 336 

Furthermore, assuming slightly increased Eu sorption signals due to the presence of incorporated 337 

natural Eu and slightly exaggerated Sq values due to large topographic features for the outliers 338 

would shift the highest Eu sorption data and highest Sq values to lower values. This would result 339 

in a tendency of narrowing the spread of the cone of possible linear relationships (see Figure S7 340 

for illustration). Possible corrections and improvements will be the subject of future investigations. 341 

For this study, we choose the linear regression of all data points as the most parsimonious solution 342 

to establish a correlation between sorption efficiency and surface nanoroughness. However, while 343 

these results provide a quantitative link between surface nanoroughness and sorption efficiency, 344 

they cannot be implemented into standard SCM approaches directly. Instead, these models rely on 345 

the specific surface area (SSA) and site density (SSD) to quantify the available surface sorption 346 

sites interacting with aqueous species at the solid/liquid surface. Typically, SCMs include a 347 

description of the electric double layer (e.g. the Gouy-Chapman model44) and conventional mass 348 
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action laws for intrinsic chemical reactions at the surface,45 but adsorption is ultimately treated as 349 

an interaction of metal ions with functional groups uniformly distributed on the surface. 350 

Consequently, heterogeneous sorption variabilities as observed in our experiment and previously 351 

reported in our previous work19, 20 cannot be modeled by this standard approach. These variabilities 352 

are based on heterogeneously distributed affinities of cations for distinct positions on the calcite 353 

surface46, which are interpreted to be related to the variable amount of coordinated water molecules 354 

and Ca-O bond lengths47 on the different positions of the crystal surface. These underlying affinity 355 

variations hold true beyond our specific system, for example, an investigation of the interaction 356 

between CO and a Cu surface demonstrated the CO-Cu binding energies at surface defects like 357 

steps or kinks to be systematically larger than at the terraces48. In general, cations preferably form 358 

surface complexes with the typically undercoordinated functional groups at the position of surface 359 

defects49. 360 

In surface complexation modeling, the SSD reflects the total surface sites per unit surface area 361 

(nm2), and the SSA reflects the total surface area per unit mass of mineral, which is typically 362 

measured using the BET method50. The BET-measured surface area shows a dependence on the 363 

surface topography of the solid surface, which is linearly correlated with a surface roughness factor 364 

, i.e., the ratio of the measured (rough) surface area to the projected (smooth) area51. In order to 365 

implement spatial variability of the total number of surface sites based on variations of SSD and/or 366 

SSA owing to surface roughness variability into an SCM, one could either modify the SSA and fix 367 

SSD or vice-versa or modify both at the same time. We choose to vary the SSA and keep the SSD 368 

constant, supported by a strong linear correlation of the interpolated surface area and the Sq value 369 

(see Figure S8 in SI). As we have established a correlation between surface nanoroughness Sq and 370 

sorption efficiency, linking the Sq of our sample to its SSA should enable us to implement the 371 

observed interfacial heterogeneity into a predictive model. An SCM was set up (see SI for details) 372 
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to establish a quantitative relationship between the Eu sorption efficiency and SSA (Figure 5c). 373 

Ultimately, we aim to link our experimental data to literature data using surface data collected by, 374 

e.g., BET adsorption techniques. Thus, the concept utilizes a modification of the SSA parameter 375 

based on the bulk literature data as a starting point. An opposite choice of varying SSD and keeping 376 

SSA constant would yield identical results (see Figure S9) as the process is mathematically 377 

equivalent. This allows us to quantitatively link SSA and Sq pixel by pixel (Figure 5d) by cross-378 

referencing the experimental sorption efficiency data (Figure 5b) and the model result (Figure 5c). 379 

The quantitative trends in Figs. 5b and d exhibit consistent trends with the investigations of both 380 

KMC38 and MD5 approaches, which confirms the validity of using surface nanoroughness data as 381 

a proxy for the intrinsic crystal surface energy, which has a significant impact on sorption 382 

efficiency. Therefore, we utilize this linear trend between SSA and Sq to parameterize a predictive 383 

SCM with the assumption that the SSA has a monotonically increasing linear relationship with Sq 384 

values.  385 

 386 
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Figure 5. Quantitative correlation between SSA (model) and Sq (experiment) based on 387 

experimental data analysis and SCM results. a, The scatter plots of measured sorption efficiency 388 

versus Sq at a 20 × 20 µm2 FOV. b, The scatter plots of measured sorption efficiency versus Sq at 389 

2.5 × 2.5 µm2  FOV (right). c, SCM results of sorption efficiency versus SSA based on the reactions 390 

and thermodynamic data in Table S4. d, A scatter plot of SSA versus the averaged Sq at a 2.5 × 391 

2.5 µm2 FOV. The SSA of each point is calculated by the sorption efficiency through the 392 

quantitative curve in Figure 2c. The correlation between SSA and Sq shows a linear curve (gray 393 

dashed line) with a coefficient of determination, R2 = 0.33. The red solid line and blue solid line 394 

represent the calibration curves used to parameterize the SCM for model validation in ROI I, II, 395 

and III, respectively. See text for detailed discussion. 396 

Improved SCM parametrization and model validation. The quantitative relationship between 397 

Sq and SSA derived in the previous section is now used to parameterize a spatially resolved SCM 398 

using experimentally determined nanoroughness data. Based on the quantitative analysis in Figure 399 

2, we derive the slope of the linear function of SSA vs. Sq as α, with α = 0.0054. The ROIs I, II, 400 

and III in Figure 1a are selected as representative regions with available VSI-measured surface 401 

topography and sorption data from µTRLFS for model validation. Based on the surface topography 402 

of the ROIs (Figure 6a), the corresponding surface roughness maps (Figure 6b) were calculated 403 

with a pixel resolution of 10 µm × 10 µm by averaging the Sq value of 2.5 µm × 2.5 µm sub-pixels. 404 

We then use the quantitative relationship between Sq and SSA as reflected in α to calculate the 405 

SSA of each 10 µm × 10 µm pixel in the three ROIs and, from that, the Eu sorption (Figure 6c). 406 

Naturally, the SCM results of the SSA parameterization are very sensitive to the value of α and the 407 

spread of the cone of possible linear relationships is wide. Consequently, we performed a sensitivity 408 

analysis to optimize the value of α for every ROI. Optimized α values were obtained for the 409 

individual ROIs by maximizing the fit of the modeled Eu sorption in each ROI with the 410 
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corresponding experimental values (Figure S10). This yielded different calibration curves for each 411 

ROI which are plotted in Figure 5d and fall well within the spread of the experimental data, with 412 

ROI III exhibiting a steeper slope (blue line with α = 0.0075) than the other two (red line with α = 413 

0.0038). The SSA modification via Sq parametrization allows us to model similar sorption trends 414 

in all three cases. In general, a quantitative comparison of model results (Figure 6c) with the 415 

measured data (Figure 6d) shows good agreement within a 20% discrepancy between model and 416 

experiment (Figure 6e). In particular, the model underestimates the highest Eu sorption values in 417 

ROI III, which may be caused by Eu impurities of the natural calcite crystals, as indicated by the 418 

fluorescence lifetime measurement at this point of the sample (see SI Table S5, point 12/48). In 419 

contrast to typical SCM approaches that employ a simple uniform SSA value9, 10, this modified 420 

SSA based on Sq analysis allows for the investigation of spatially resolved retention variability 421 

based on the variability of crystal surface energy17. Choosing the right α will be critical in the 422 

feasibility of this approach for predictive modeling and more research needs to be devoted towards 423 

the clarification of the varying influences on the relationship between surface topography and 424 

surface energy variation. 425 
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 426 

Figure 6. SCM validations in ROIs I, II, and III. a, surface topography, spatial resolution = 10 µm 427 

× 10 µm; b, averaged surface roughness (Sq) at a 2.5 µm × 2.5 µm FOV, spatial resolution = 10 428 

µm × 10 µm; c, SCM results of sorption efficiency, spatial resolution = 10 µm × 10 µm; d, 429 

normalized experimental results of sorption efficiency measured using µTRLFS techniques, spatial 430 

resolution = 20 µm × 20 µm; e, the ratio of model vs. experimental sorption efficiency. Green color 431 

represents a range of +/- 20 % discrepancy, red color: overestimation, blue color: underestimation.  432 

Predicting radionuclide sorption evolution. As a next step, we explore the potential of our 433 

improved parameterization approach to predict heterogeneous sorption on the crystal surface of an 434 

independent set of experimental data. Figure 7 shows two surface topography maps, measured 435 

using phase shifting interferometry (PSI) of a calcite single crystal after 120 minutes (a I) and 135 436 

minutes (a II) of etching, respectively, representing the crystal surface evolution during dissolution. 437 

From the topographical data (Figure 7a), we again derived the Sq values, here with a spatial 438 

resolution of 0.46 µm × 0.46 µm (Figure 7b), use Sq to derive the SSA with the previously 439 



 23 

determined value for α, adapted for the higher resolution (see Figure S4), and predict heterogeneous 440 

Eu(III) sorption (Figure 7c) based on our novel SCM parameterization approach. 441 

A first important finding from this prediction is that Eu(III) is preferably adsorbed at surface steps 442 

which exhibit higher nanoroughness and kink site densities. In contrast, flat terraces and nearly flat 443 

bottoms of the surface pits are predicted to show lower adsorption. For the widening of etch pits 444 

on the surface, such as in cross-section A-B in Figure 7, the areas of high surface roughness move 445 

outwards with the evolution of the etched pit, resulting in a redistribution of the preferred sorption 446 

areas. Another finding with important implications for the evolution of the overall surface 447 

efficiency is that the sorption efficiency varies with the evolution of surface topography beyond 448 

just a spatial redistribution of the preferred sorption sites. As an example, ROI C shows an overall 449 

increase of the Sq value due to the etching which goes along with a 160% increase in sorption 450 

efficiency. This enhanced sorption efficiency as a result of the evolving surface structure may be 451 

linked to an increase in surface steps and kinks17 by etching. In contrast to the enhanced sorption 452 

efficiency in ROI C, the sorption efficiency of ROI D exhibits a 25% reduction, linked to a reduced 453 

Sq due to the removal of surface features by etching. Such behavior is explained by locally 454 

contrasting surface step arrangement on a reacting crystal surface. One situation is a constant 455 

number and density of single height steps on the crystal surface. The other situation is the formation 456 

of step bands due to surface step bunching, resulting in a locally enhanced step density52. 457 

The overall sorption efficiency of the entire domain and its evolution over time depends on the 458 

balance between such subareas. Thus, SSA parameterization via surface nanoroughness in SCM 459 

analysis may provide a tool to predict the evolution of radionuclide sorption caused by the changes 460 

in surface building blocks. Consequently, the detailed quantitative insight into retention variability 461 

gained by this approach may provide a more accurate description of sorption at the pore scale 462 

contributing to an enhanced predictive capability on the core scale and beyond. An experimental 463 



 24 

validation of such high-resolution modeling is not yet possible using current analytical approaches 464 

with limited spatial resolution. Nevertheless, the mechanistic background of specific crystal surface 465 

portions showing enhanced kink site densities (Figure 1) and, thus, elevated sorption uptake (Figure 466 

2) provides an opportunity for the validation of such modeling approaches. Consequently, the 467 

numerical results predict potential pattern evolution of reacting surfaces and offer opportunities for 468 

applications. 469 

 470 

 471 

Figure 7. Prediction of the evolution of sorption efficiency for two high spatial resolution data, 472 

based on PSI techniques reflecting evolving surfaces at 120 min and 135 min dissolution reaction 473 

time. Surface area = 18.5 µm × 18.5 µm. a, surface topography, spatial resolution = 0.046 µm × 474 

0.046 µm. b, surface roughness (Sq), spatial resolution = 0.46 µm × 0.46 µm. c, SCM results of 475 

sorption efficiency, spatial resolution = 0.46 µm × 0.46 µm. ROI A-B shows the sorption 476 

preference at surface steps rather than the flat terrace. ROIs C and D show the enhanced and 477 

reduced sorption efficiency due to the changes in surface topography by etching, respectively.  478 
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