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Abstract 

The Tilted Axis Cranking theory is applied to the model of two particles coupled to a triaxial 
rotor. Comparing with the exact quantal solutions, the interpretation and quality of the mean field 
approximation is studied. Conditions arc discussed when the axis of rotation lies inside or outside 
the principal planes of the triaxial density distribution. The planar solutions represent AI  = 1 

bands, whereas the aplanar solutions represent pairs of identical AI  = 1 bands with the same 
parity. The two bands differ by the chirality of the principal axes with respect to the angular 
momentum vector. The transition from planar to chiral solutions is evident in both the quantal 
and the mean field calculations. Its physical origin is discussed. ~) 1997 Elsevier Science B.V. 

PACS: . . .  
Keywords: Tilted axis cranking; Triaxiality; Chirality 

1. Introduct ion 

The orientation of  the deformed density distribution relative to the (space-fixed) 

angular momentum vector becomes a useful concept at high spin. Tilted Axis  Cranking 

(TAC) [ 1 ] is the version of  the mean field theory that permits the calculation of  the 

orientation of  the deformed field in space together with the parameters that define its 

shape. Since its introduction [2] ,  TAC has turned out to be a reliable approximation 

to calculate both energies and intra band transition probabil i t ies (cf. Refs. [ 3 -6 ]  ). 

These applications are restricted to axial or slightly triaxial nuclei. In such cases the 

angular momentum lies in one of  the principal planes (PP) defined by the principal axes 
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(PA) of the deformed density distribution. The interpretation of such planar solutions 

is discussed in Refs. [ 1,2]. In triaxial nuclei there exists the possibility of aplanar 

solutions, where the angular momentum vector does not lie in one of the PP. The 
existence of such solutions for a fixed triaxial shape has first been demonstrated in 

Ref. [8], however its interpretation remained open. In this paper such interpretation is 
given and the consequences of substantial triaxiality for tilted rotation are investigated. 
A system of two particles coupled to a triaxial rotor (Particle Rotor Model, PRM) is 
studied and exact quantal solutions are found numerically. They are compared with the 

approximate solutions of the TAC approximation to this model system. Such approach 
has turned out to be quite instructive in the axial case, permitting a check of the accuracy 

of the TAC approximation and a refinement of the interpretation of this approach [9]. 

A preliminary report on the present study has been given in Ref. [7]. 

2. TAC and PRM basics 

In TAC one seeks HF or HFB solutions that rotate uniformly about the angular 

momentum axis J that is tilted with respect to the PA 1, 2 and 3 of the deformed 
density distribution. The orientation of the rotational axis with respect to the PA is 
described by the two polar angles O and ~o, which are illustrated in the upper panel 

of Fig. 1. The system of PA may be defined by means of the quadrupole moments of 
the density distribution Q~,. In the PA frame, the intrinsic quadrupole moments QI and 

Q~-l must be equal to zero and Q~ = Q~-2- The orientation of the density distribution in 
the lab frame x, y, and z is described by the three Euler angles ~p, O and ~p, which are 

illustrated in the lower panel of Fig. 1. The quadrupole moments in the intrinsic PA and 
the lab frame are connected by the relation 

*2 *2 Ou = D~)2a(~P,O,~)Q~ + (D2u(4', tg, ~P) + D 2~(~/,, O, q~) )Q~. (1) 

If the z-axis is chosen as the axis of rotation, the angles t9 and ~ describing the 
orientation in the two frames are the same. 

In order to find these orientation angles one diagonalizes the single-particle Routhian 

h / = hdef -- t o .  J ,  ( 2 )  

to= (w sin O sin ~o, w sin Ocos ~o, w cos O), (3) 

where hde f is the Hamiltonian of the deformed field. It is obtained in a self-consistent way 
from a rotational-invariant two-body Hamiltonian H and the particle density generated 
by (2). 

Each configuration [ ) constructed from the single-particle or quasiparticle eigenstates 
of the Routhian (2) corresponds to a rotational band. Each band has its individual tilt 
that is determined by minimizing the total Routhian 

E' ( w,  O, ~p) = (H - to.  j )  (4) 
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Fig. 1. Orientation of the axis of rotation (J, displayed as the heavy vector) with respect to the principal axes 
of the triaxial density distribution (upper panel) and orientation of the triaxial density distribution in the lab 
frame (lower panel). The long, intermediate and short semi-axes of the density distribution are labeled by 1, 
i and s, respectively. 

with respect to O and q~ at fixed ~o. At the minimum the angular momentum vector 

and the angular velocity oJ are parallel, (JloJ) [1].  These self-consistency equations 

must be complemented by additional ones that determine the shape of  the density 

distribution. It is noted that due to the rotational invariance of  the two-body Hamiltonian 

H there is a whole set of  degenerate self-consistent solutions that differ from each other 

by the angle ~ in the lab frame. In Ref. [ 1 ], the TAC theory is described in more detail 
for the QQ-model Hamiltonian, for which it is particularly transparent. 

In this paper we do not employ the microscopic TAC approach. Being mainly inter- 
ested in the interpretation of  the mean field solutions, we study the simple model system 

of  a hll/2 proton particle or hole and a hll/2 neutron hole coupled to a triaxial rotor. 
The shape is assumed to be given. The Hamiltonian of  this PRM is 
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3 (1~ - Jr) 2 
H hdef + 

2,.7v (6) 
P=I 

For the moments of inertia the ratios of irrotational flow are assumed, 2 

2¢r ,~2 
J ~ = J s i n  y - T v )  . (7) 

For y = - 3 0  °, the moment of inertia ,,72 is larger than ffl = ,-73- The Hamiltonian of the 
deformed field is hdef = -4-hp - hn, where the plus sign refers to particles and the minus 
to holes. We use the single-particle Hamiltonian of a high j particle, as given by 

h = l c { (  j 2 2  3 j ( j + l ) ) 3  l .2 } c o s y + ~ - - ~ [ j + + j Z ] s i n y  . (8) 

In the calculation we take C = 0,25 MeV and 3" = 40 MeV -1, corresponding to a 
deformation of /3  ~ 0.25. More details concerning the PRM can be found in Ref. [9]. 

The TAC approximation to the PRM consists in two assumptions: 

(i) The operator I of the total angular momentum is replaced by the classical vector 

J; 
(ii) (j2) = (j)2. 

Assumption (i) expresses the semi-classical treatment of the total angular momentum in 
the TAC approximation and assumption (ii) the mean field character of this approach. 

The wave function 1) is the product of the proton and neutron wave functions. Taking 
the expectation value of the Hamiltonian (6) with I } and using the approximations (i) 
and (ii), one obtains the energy 

3 (J~ 
E = (hdef> + ~,~ . ( 9 )  

/,'=1 

Minimizing it with respect to I ) results in the TAC Routhian (2) determining I ), where 
the angular velocity to is given by 

R~ 
w,, = JT '  Rv = Jv - (j~>. (10) 

Here, we have introduced the classical vector R of the rotor angular momentum. 
The solution of this eigenvalue problem provides the wave function and energy as 

functions of J. The orientation of the rotational axis is not yet fixed. It is found 
by minimizing the energy (9) with respect to the three components J~ subject to 
the subsidiary condition that J = X/J 2 + j2 + ~ is constant. Taking into account the 
stationarity of I ), one obtains the two equations 

wl  J1 w;  J l  

092 J2 093 J 3 '  ( 1 1 ) 

2 We use the "Lund convention" to introduce the triaxiality parameter 9', 
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i.e. the TAC condition that to and J must be parallel. This is equivalent to finding the 

orientation of the rotational axis by minimizing the total Routhian 

3 
1 

t'=l 

(12) 

with respect to the angles O and ~p, where the components to~ are given by Eq. (3). 

3. Discussion 

In the case of substantial triaxiality of the nuclear density distribution, there exist two 

possibilities: 
(i) The rotational axis (Jlto) lies in one of the three PP 1-2, 1-3 or 2-3. We call 

such a solution planar. 
(ii) The rotational axis does not lie in one of the PP. We call such a solution aplanar. 

For our model system the appearance of the two types of solutions can be easily 
understood. The high j particles tend to align with the 1-axis because their torus like 

density distribution has the maximal overlap with the triaxial core in the 2-3 plane. The 
high j holes tend to align with the 3-axis because their dumbbell-like density distribution 

has maximal overlap if its symmetry axis is parallel to the long axis. For 3' = --30°, 
the moment of inertia ,72 is the largest and it is favorable to built up the core angular 
momentum along the 2-axis. Thus, if a proton hole and a neutron hole are coupled to 

the rotor the total angular momentum will lie in the 2-3 plane. We call the solution 
planar, because J and the PA 2 and 3 lie in the same plane. At the band head, where 

R = 0, the angular momentum J is parallel to the 3-axis. With increasing spin it moves 
out into the 2-3 plane, as illustrated in the upper panel of Fig. 2. This type of solution 
has been found in Ref. [ 10]. If  a high j proton particle and high j neutron hole (or 

vice versa) are coupled to the rotor, J will lie in the 1-3 plane at the band head and 
then gradually turn towards the 2-axis, as illustrated in the lower panel of Fig. 2. We 
call the solution aplanar, because J and any pair of PA do not lie in the same plane. 
Such type of solution has first been found in Ref. [8] on the basis of a microscopic 

TAC calculation, which assumes a fixed value of y = - 3 0  °. 
Fig. 3 shows the total Routhian U(O, ~o) (Eq. (12))  for three selected values of the 

frequency w. The motion of the minimum along the path illustrated in the lower panel 

of Fig. 2 can be seen. 
Fig. 2 also shows the energies obtained from a numerical diagonalization of the PRM 

Hamiltonian (6).  Fig. 4 compares the functions I (to) derived from the PRM calculations 
with the ones obtained by TAC. There is rather good agreement between the two models. 
The TAC energies, which are not shown in Fig. 2, reproduce the PRM values very well. 
As discussed below, the kink of the function l ( to)  represents a reorientation of the core 
angular momentum from the 3-axis or from the 1-3 plane towards the 2-axis. 
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Fig. 2. Rotational levels of hll/2 particles and holes coupled to a triaxial rotor with y = -30 °. The upper 
panel shows the case of a proton and a neutron hole and the lower panel the case of a proton particle and a 
neutron hole. Full lines correspond to even and dashed to odd spin. 

3.1. Symmetries  

The angles O and ~o, which specify the orientation of  J in the intrinsic PA frame 
(cf. upper panel of  Fig. 1 ), take only the discrete values satisfying the self-consistency 
condition (JIoJ) .  Due to the rotational symmetry of  the two-body Hamiltonian H, there 

is a set of  degenerate TAC solutions having the same values of  the Euler angles O and 
q~, but differing by the value of  the angle ~p. The whole set of  degenerate TAC solutions, 

]~p, O, q~), is given by the different values the quadrupole moments Qu can take. The 

invariance of  the intrinsic quadrupole moments Q~ and (Q~ + Q/_ 2 ) / v ~  with respect to 
the rotations 7~1 (Tr), R2(Tr) and ~3(7r)  (D2 symmetry) restricts the Euler angles to 

0 ~< ~, ~< 27r, 0 ~< O ~< 7r/2 and 0 ~< ¢ < 7r. The other angles give values of  Qu that are 
already included. One may see this also directly from Eq. (1) by using the symmetries 

of  the D-functions and Q~ = Qr_2. A superposition of  TAC solutions ]~p, O, q~) with the 
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Fig. 3. Total Routhian (12) for a h l l / 2  proton and a hll/2 neutron hole coupled to a triaxial rotor with 
y = - 3 0  °. The same coordinate system as in Ref. 18] is used: The coordinate lines O = const are horizontal 
and the coordinate lines ~o = const connect the upper comer with the base line of the triangle. Wiggles of the 
contour lines are due to the numerical interpolation between the mesh points. 

w e i g h t  f u n c t i o n  exp  ( i I @ ) / v / - } - ~  c o r r e s p o n d s  to  a s ta te  o f  a p p r o x i m a t e l y  g o o d  a n g u l a r  

m o m e n t u m  II, M = I )  ( a p p r o x i m a t e  a n g u l a r  m o m e n t u m  p r o j e c t i o n ) .  

O n e  m u s t  d i s t i n g u i s h  b e t w e e n  t h r e e  cases :  

( 1 ) P A C  so lu t i on  

0 = O, r r / 2  g~ = O, r r / 2 .  

T h e n  

1¢ --F ~ , 0 , 0 >  = ~ 3 ( ~ ) l , t b ,  O,O} = e - i ' ~ ' l ~ , O , O  ),  ( 1 3 )  
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Fig. 4. The functions l (w) for hll/2 particles and holes coupled to a triaxial rotor with ~, = -30  °. The upper 
panel shows the case of a proton and a neutron hole and the lower panel the case of a proton particle and 
a neutron hole. The frequency is calculated by means of w(l)  = (E(I + 1) - E(I - 1))/2 from the PRM 
energies in Fig. 2. In the upper panel the full squares are obtained from the odd spin yrast levels and the open 
squares from the even spin yrast levels. In the lower panel the open circles are obtained from the yrast band 
(both signatures) and the full circles from the yrare band (both signatures). Dashed lines correspond to the 
TAC calculations, where I = J - 1/2 is shown. For a discussion of the quantal correction 1/2, cf. Ref. [9]. 

I¢ + ~ ,  7"r/2, 0) = ~1  (~')I~/', 7T/2, 0) = e - i ' ~  I~p, 7T/2, 0),  (14)  

I~p + 7T, Tr/Z, Tr/2) = 7 ~ 2 ( T r ) l ~ , r r / 2 , ~ ' / 2 )  = e - i ' ~ l ¢ , T r / Z ,  Tr/2 ). (15)  

(2)  

The  s ignature  a is a good  quantum number  and the values the total spin can take 

are restr icted to 1 = ce + 2n. 3 The  PAC solut ion represents one A1 = 2 band. 

Planar  TAC solution 

O :/= 0, ~-/2 ~o = 0, ~-/2 

or  

O = ~r/2 q~ ~ O, rr/2.  

The  s ignature  symmetry  is lost and all spins are possible.  The  planar TAC solut ion 

represents  one  d l  = 1 band. 

(3)  Aplanar  TAC solution 

O ~ 0, ~-/2 ~p ~ 0, 7T/2. 

The  s ignature  symmet ry  is lost and all spins are possible.  There  are two degenerate  

solut ions I~', O, ~) and I~, O, 7r/2 - ~o). The aplanar TAC solut ion represents two  

degenerate  d l  = 1 bands. 

3 The selection rule follows from eit¢l~, O, ~p) + e itCc'+~r) I0 + ~r, o, ~> : (1 + e i(1-~)~r) 1~, o, {p). 
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Fig. 5. Localization of the wave functions for PAC, planar TAC (pTAC) and aplanar TAC (apTAC) solutions. 
The full drawn ellipses symbolize the lowest solution at each position, which is symmetric. The dashed curves 
symbolize the first excited solution, which is odd. 

Further insight into the nature of the symmetry breaking is gained by considering the 
orientation of J in the intrinsic frame. As discussed above, due to the D2 symmetry it is 

sufficient to restrict J to the upper half space O >~ ~-/2. The topology of the solutions 

is illustrated in Fig. 5. 
(1) PAC solution 

J has the direction of the PA 3. The wave function is an eigenfunction of the 

rotation R3 (¢r) defining the signature of the corresponding dI = 2 band. 

(2) Planar TAC solution 
J lies in one of the PP. There exists another degenerate solution constructed 

by the rotation ~3(~ ' ) .  The two solutions may be combined into two degenerate 
states of opposite signature that form one AI = 1 band. 

(3) Aplanar TAC solution 
J does not lie in one of the PP. There are four degenerate solutions constructed 

by reflecting J on the 1-3 and 1-2 planes. They form a rectangle with the PA 

3 in the center. The two solutions on each diagonal transform into each other by 
the rotation 7"Z3(~). Each such pair can be combined into two degenerate states 
of opposite signature that form a AI = 1 band. The two pairs correspond to two 

d l  = 1 bands. 
The two bands representing an aplanar solution have an opposite intrinsic chirality. 

As seen in the lower panel of Fig. 6, the system formed by the short (s),  intermediate 
(i) and long (1) semi-axes of the density distribution possess a chirality, when looking 
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Fig. 6. Appearance of chirality for aplanar TAC solutions. The fat arrow represents the angular momentum J. 
The solutions are labeled by the same Roman numerals as in Fig. 5. 

from the tip of  the angular momentum vector J.  I f  we agree to count in the order s, i, 1, 

the solution I (first octant) is right-handed, i.e. the semi-axes s, i, 1 form a right-handed 

system. The solution II (second octant) is left-handed. 
As seen in the upper panel of  Fig. 6, there is no chirality defined if J lies in one of  

the PP (i-I  in Fig. 6). Due to the D2h symmetry the PA (s in Fig. 6) perpendicular to 

the PP is left-right symmetric. As a consequence, the solutions I and II are related to 

each other by a rotation by ~- about the J axis. In contrast, the solutions I and II in the 

lower panel of  Fig. 6 cannot be transformed into each other by a rotation, because they 

have opposite chirality. Thus, aplanar TAC solutions are chiral and planar TAC solutions 
achiral. In the following we will prefer the terms "planar" and "chiral" to distinguish 

between the two types of  solutions. 

The name chirality is used following the terminology of  chemistry (cf. e.g. Ref. [ 12] ). 

Optical active molecules, which turn the polarization plane of  light, have two stereo 

isomers, which are related to each other by reflection on a plane. These so-called 

enantiomers have opposite chirality. The example, most important to us, is the DNS 
helix, which forms a left-handed screw. The so-called "asymmetric C atom", to which 

four different substituents are bound, is an example for molecular chirality that comes 
closest to our case. Taking the bond to one substituent (e.g. the biggest one, the " rest 
of  the molecule") as an axis (like the angular momentum in our case) the other three 

bonds form either a left-handed or a right-handed system (like the three semi-axes in 
our case). 
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It should be pointed out, though, that the chirality of molecules is of static nature. 

In the case of rotation the chirality is of dynamical origin, since it is only the angular 

momentum vector that defines a direction with respect to which the semi-axes s, i, 1 
form a left- or right-handed system. The non-rotating nucleus has the D2h symmetry of 
the triaxial density distribution, which is achiral. 

One can express the symmetry also by saying that the sense of the physical rotation 

is the same as or opposite to the rotation an observer on J carries out, who first turns 
from the s - to the i-axis and then from the i - to the 1-axis. 

We have encountered a new kind of intrinsic symmetry breaking, which is not found 

among the symmetry types discussed by Bohr and Mottelson in Ref. [ 11 ], p. 19. Neither 
also it correspond to the case without any symmetry, since parity is still a good quantum 

number. We suggest the name "chiral doubling" for the appearance of the two identical 
bands in analogy to the "parity doubling" in the case of reflection asymmetric shapes 
[ I 1 ]. In the latter case the two bands have opposite parity, though. 

As examples for these general rules, let us discuss the triaxial TAC solutions of 

our model system. The planar case is illustrated in the upper panels of Figs. 2-6. 
Both the proton hole and the neutron hole tend to align with the 3-axis. First the core 

angular momentum R and, as a consequence, also J align with the 3-axis, because this 

orientation is favored by the Coriolis interaction. The solution is of PAC type. The bands 

of different signature, defined by the rotation ~3(r r ) ,  are separated. They correspond 

to the different intrinsic states displayed by full and dashed lines in the upper panel 
of Fig. 5. For higher spin it is more efficient to increase the 2-component of R, and 
J moves into the 2-3 plane. The two PAC solutions fission and develop into the two 

degenerate TAC solutions located symmetric to the 3-axis, which can be combined into 
two degenerate states of opposite signature. Accordingly, in the PRM calculation pairs 
of A1 = 2 sequences merge into AI = 1 bands. 

The kink of the function I ( w )  seen in Fig. 4 is caused by the reorientation of R from 
the 3- towards the 2-axis. The larger core moment of inertia along the 2-axis leads to 

the increase of if(2) = d I ( w ) / d w ,  which is the slope of the curve l(oo).  It is interesting 

to note that the reorientation of R is not a gradual process. It first remains parallel to 
the 3-axis before it reorients towards the 2-axis at the kink. 

The chiral solution is shown in the lower panels of Figs. 2-6. The combination of 

the proton particle with the neutron hole favors the 1-3 plane. At low spin, R and J lie 
in the 1-3 plane, because this orientation minimizes the Coriolis interaction. There are 
two degenerate TAC solutions obtained by reflection on the 3-axis that can be combined 
into two degenerate states of opposite signature. Correspondingly, the low-spin PRM 
spectrum consists of A1 = 1 bands, which differ by the intrinsic wave functions of the 
proton and the neutron hole (full and dashed lines in the lower panel of Fig. 5). For 
higher spin it is again more efficient to increase the 2-component of R, and J moves out 
of the 1-3 plane. The two planar TAC solutions fission into four aplanar ones. When 
they are sufficiently separated (tunneling is small), one can combine the four degenerate 
TAC solutions into two degenerate states of each signature. Accordingly, in Fig. 2 pairs 
of AI = 1 bands merge into chiral doublets. The change of ,if{2) in Fig. 4 again reflects 
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the reorientation of R. The PRM states with the same value of 1 are somewhat split, 

indicating the presence of some tunneling between the left-handed and right-handed 

states. 

3.2. Transition probabil i t ies 

The transition probabilities are calculated by means of the standard PRM expression, 
as given e.g. in Ref. [ 11 ] (cf. also Ref. [9] ). For the M1 operator g - gR is set equal 

to 1 and - 1  for the proton and the neutron hole, respectively. Only the rotor part of 

the E2 operator is taken and the intrinsic quadrupole moments are chosen as Q6 = cos'), 

and Q~ = - sin y/x/~. 

The TAC expressions for the reduced transition probabilities are the straightforward 
generalization of the ones for planar solutions (cf. e.g. Ref. [9] ). For stretched M1 

transitions one has 

B(MI  ) = 8-~{ [-/x3 sin O + cos O(# l  cos q~ +/z2 sin q~) ]2 

q-[/z2 cos q~ - / z l  sinq~]2}, (16) 

where /z~ are the intrinsic components of the expectation value of the operator of the 

magnetic moment, 

/z~ = (/2~). (17) 

For stretched E2 transitions one has 

B(E2) = ~ Q;(s inO)  2 + V~Q2(  + (cosO) 2) cos2~o 

8 Osin2~p]2 } (18) + ~ [Q~ cos 

In our model case, we use the same intrinsic quadrupole moments Q~ and Q~ 2 as for 
the PRM and the magnetic moments are 

/z~ = ±(j,,),  (19) 

where the upper and lower signs hold for the proton and the neutron hole, respectively. 
Fig. 7 shows the calculated reduced transition probabilities for the combination of a 

proton with a neutron hole. The inter band transition probabilities reflect the change from 
the planar to the aplanar rotation, which is illustrated in Fig. 5. At low spin there are 
transitions between the lowest and first excited states in the minimum in the 1-3 plane 
(full and dashed lines in Fig. 5). The distributions of the angular momenta are similar 
and can be connected by the E2 and M1 operators. The transitions from the excited to 
lowest band are stronger than the ones in the opposite direction. A similar phenomenon 
appears in PAC bands with a substantial signature splitting, where the M1 transitions 
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Fig. 7. B(MI ) and B(E2) values from the particle rotor calculation for the case of a proton and a neutron 
hole coupled to the triaxial rotor. 

are weak or strong, depending on whether the core angular momentum changes or not 

[ 13]. The inter band transitions disappear after the transition to the aplanar geometry 

near I = 15. The two degenerate solutions correspond to very different orientations of 

the angular momentum relative to the intrinsic frame, which cannot be connected by 
operators of low multipolarity, as M1 or E2. The origin of the K forbiddeness in axial 

nuclei may be viewed in the same way. Near I = 15, where the two bands in the PRM 

come very close, there is a mixing of the two intrinsic structures, which locally generates 

a maximum of the inter band and a minimum of the inter band transitions. 

The TAC solutions reproduce the intra band transition probabilities between the yrast 
levels of the PRM calculation in a qualitative way. The deviation of TAC from PRM is 

stronger than in the axial case studied in Ref. [9]. The reason is probably that R may 

oscillate against J, which is not possible for the axial rotor. The calculation of inter 

band transition probabilities is outside the realm of the TAC approach. 

3.3. Possible experimental evidence 

The case y = - 3 0  ° is the most favorite one for the appearance of the chiral doublets. 

Fig. 8 shows the bands for a particle and a hole coupled to the triaxial rotor for different 

values of y. The chiral doublets appear in the interval 25 ° < - y  < 40 °. Thus there is 
a certain margin of triaxiality, where the phenomenon can be expected. The two lowest 
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Fig. 8. Rotational levels of a hll/2 proton and a hll/2 neutron hole coupled to a triaxial rotor with different 
values of ~, which are indicated by the numbers in the panels. Full lines correspond to even and dashed to 
odd spin. 

positive parity bands of  134pr, recently measured [ 15], are shown in Fig. 9. The assigned 

configuration for band 1 is a hi 1~2 quasi proton combined with a hll/2 quasi neutron, 
where the former has particle and the latter hole character. The spectrum is similar to 

our calculation for ~ = - 2 0  °, showing a band crossing with the two bands staying close 

to each other later on. The transitions probabilities are qualitatively consistent with our 
calculation shown in Fig. 7: There are strong M1 and E2 crossover intra band transitions 

below the band crossing. The transitions from the excited (band 2) to the lowest band 

(band 1 ) are seen, where the ones in the opposite direction are missing (planar solution). 

Near the crossing transitions in both directions are seen (band mixing). Above the 
crossing no inter band transitions are observed. However, the population is too weak 

there to permit conclusions about the attenuation of  the inter band transitions that is 

expected when approaching the chiral solution. In fact, the energy splitting of  the two 

bands after the crossing suggests that there must be still substantial tunneling between 
the two chiralities. Thus, bands 1 and 2 in 134pr might correspond to a case close to the 

onset of  the chirality. The situation reminds of  the breaking of  the reflection symmetry 

of  the density distribution. In this case a number of  bands with opposite parity have been 
found, which come close and cross, but do not merge into real parity doublets [ 16]. 
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Fig. 9. Energy of the two lowest bands of positive parity in 134pm. The data is from Ref. [ 15 l, where band 1 
(full dots) is assigned to the configuration of a hH/2 quasi proton combined with a hlv 2 quasi neutron. 

It is an open question whether sufficiently strong triaxiality occurs for the appropriate 

high j quasiparticle configurations, such that the genuine chiral doublets appear. The 

experimental evidence for triaxiality at low and medium spin can be understood assuming 

that nuclei in certain regions (e.g. mass 130 and 190) are soft with respect to triaxial 
deformations [ 14,17-19].  Thus, there is the question whether the assumed triaxiality 

of  the aplanar TAC solution is really stable, as already pointed out in Ref. [8].  For a 
definite answer one has to carry out microscopic TAC calculations, based e.g. on the 
QQ-Hamiltonian (cf. Ref. [ 1 ] for the axial case), demanding also self-consistency with 

respect to the intrinsic quadrupole moments Q~ and Q~. It is possible that due to the 
underlying microscopic structure the rotational energy of the core may depend in a more 

complex way on 3/than in our model. For example, it has been demonstrated in Ref. [ 17] 

that quasiparticles from a half filled j prefer 3/= - 3 0  ° and align with the 2-axis. The 
contribution of  such quasiparticles to the core angular momentum could stabilize the 
chiral tilted rotation. It is also possible that at very high spin triaxial shapes are more 

stable, because they are favored by the liquid drop part of  the energy (Jacobi instability). 
The appearance of  chiral doublets would be a very clear signal for triaxial shapes. In 
order to answer these questions microscopic TAC calculations are necessary that are 

beyond the scope of  the present paper and will be addressed in a forthcoming study. 

4. Conclusions 

Studying the model system of two particles coupled to a triaxial rotor, general features 
of  tilted rotation in triaxial nuclei have been found that are distinctly different from the 

case of  axial nuclei. 
I f  high j holes are combined with a triaxial core the angular momentum will lie in 

the principal plane formed by the long and intermediate axes. For high j particles it 
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will lie in the principal plane formed by the short and intermediate axes. Such a planar 

TAC solutions correspond to a signature pair d l  = 2 bands that merges into a A1 = 1 

band with increasing spin. This is different from typical axial nuclei where bands start 
as d l  = 1 sequences and develop a signature splitting with increasing spin. 

If  high j particles are combined with high j holes and with a triaxial core, the angular 
momentum will first lie in the principal plane defined by the short and long axis and 

with increasing spin be tilted towards the intermediate axis. The occurrence of  such an 

aplanar solution corresponds to a pair of  A1 = 1 bands that merges into a doublet A1 = 1 

bands. The two degenerate d l  = 1 bands with the same parity correspond to opposite 

chirality of  the end points of  the three semi-axes of  the triaxial density distribution 

relative to the angular momentum vector. This is a new type of  symmetry breaking that 

is only possible in triaxial nuclei at high spin. The chiral doublets correspond to regular 

d l  = 1 bands with strong M1 and E2 intra band transition but no connecting inter band 

transitions. 
Nuclei with mass around 190 and 130, which are known to be soft with respect to 

triaxial deformation, seem to be the most promising candidates to observe the chiral 

doublets. At present it is not clear whether the combination of  high j intruder particles 

with high j intruder holes will permit a sufficiently stable triaxial deformation. The 

case studied in this paper, where the angular momentum components along the three 

axes arise from the high j intruder particles, collective core rotation and the high j 

intruder holes, is just one possibility for chiral TAC solutions. The angular momentum 

components along the three principal axes may also be generated by particle orbits with 

different geometry. An example could be a combination of  high j intruder particles with 

mid shell high j intruder quasiparticles and normal parity high j holes. 

Microscopic TAC calculations are necessary to decide whether the aplanar tilted 

rotation is stable and the chiral doublets exist. Independently, is seems interesting to 

look for chiral doublets in experiment. Bands 1 and 2 in 134pr reported in Ref. [ 15] 

might represent experimental evidence for an incipient chirality of  the rotation. 
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