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Abstract

This thesis addresses the evolution of nanoscale ripple patterns on solid surfaces during

low-energy ion sputtering. Particular attention is paid to the long-time regime in which

the surface evolution is dominated by nonlinear processes. This is explored in simulation

and experiment.

In numerical simulations, the influence of anisotropy on the evolution of the surface

patterns in the anisotropic stochastic Kuramoto-Sivashinsky (KS) equation with and with-

out damping is studied. For a strong nonlinear anisotropy, a 90◦ rotation of the initial

ripple pattern is observed and explained by anisotropic renormalization properties of the

anisotropic KS equation. This explanation is supported by comparison with analytical

predictions. In contrast to the isotropic stochastic KS equation, interrupted ripple coars-

ening is found in the presence of low damping. This coarsening seems to be a nonlinear

anisotropy effect that occurs only in a narrow range of the nonlinear anisotropy parameter.

Ex-situ atomic force microscopy (AFM) investigations of Si(100) surfaces sputtered

with sub-keV Ar ions under oblique ion incidence show the formation of a periodic rip-

ple pattern. This pattern is oriented normal to the direction of the ion beam and has a

periodicity well below 100 nm. With increasing ion fluence, the ripple pattern is super-

posed by larger corrugations that form another quasi-periodic pattern at high fluences.

This ripple-like pattern is oriented parallel to the direction of the ion beam and has a

periodicity of around one micrometer. Interrupted wavelength coarsening is observed for

both patterns. A dynamic scaling analysis of the AFM images shows the appearance of

anisotropic scaling at large lateral scales and high fluences. Based on comparison with the

predictions of different nonlinear continuum models, the recent hydrodynamic model of

ion erosion, a generalization of the anisotropic KS equation, is considered as a potentially

powerful continuum description of this experiment.

In further in-situ experiments, the dependence of the dynamic scaling behavior of the

sputtered Si surface on small variations of the angle of incidence is investigated by grazing

incidence small angle X-ray scattering (GISAXS). A transition from strongly anisotropic

to isotropic scaling is observed. This indicates the presence of at least two fixed points in

the system, an anisotropic and an isotropic one. The dynamic scaling exponents of the

isotropic fixed point are in reasonable agreement with those of the Kardar-Parisi-Zhang

(KPZ) equation. It remains to be seen whether the hydrodynamic model is able to show

such a transition from anisotropic to isotropic KPZ-like scaling.
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Chapter 1

Introduction

Back in the 1960s, Navez et al. studied the morphology of glass surfaces bombarded with

a 4 keV ion beam of air [1]. During the sputtering, they found the surface to develop

periodic structures with lateral dimensions ranging from 30 to 120 nm depending on the

angle of incidence. The orientation of the structures was determined by the direction of

the ion beam. For grazing incidence, ripple patterns oriented parallel to the projection

of the ion beam were observed whereas the ripples were rotated by 90◦ at near-normal

incidence. At normal incidence, however, the surface developed dot-like features. In the

following years, sputter-induced ripple structures were found on all kinds of amorphous

as well as crystalline materials like insulators [2], semiconductors [2, 3], and metals [4].

During the 1990s, several in- and ex-situ studies investigated the ion-induced formation

of nanoripples by means of new techniques for the exact characterization of the eroded

surfaces like light scattering [5] and x-ray methods [6], as well as scanning tunneling [7] and

atomic force microscopy [8]. In 1999, Facsko et al. observed the formation of hexagonally

ordered nanodots on GaSb surfaces during normal incidence ion sputtering [9]. Such

regular dot patterns have been found on various semiconductor surfaces sputtered at

normal incidence [10] as well as off-normal incidence with [11] and without sample rotation

[12].

Nowadays, ion-induced nanopatterns become interesting for certain technological ap-

plications. Recent experiments demonstrate the principal applicability of nanoripples

in the fabrication of microelectronic devices [13] and optically active nanostructure ar-

rays [14, 15]. Another approach uses nanodot formation under normal incidence sputter-

ing of layer stacks to create isolated magnetic islands for magnetic storage media [16,17].

1



2 CHAPTER 1. INTRODUCTION

In addition, rippled substrates are becoming popular as templates for thin film deposi-

tion. It was shown that nanorippled substrates induce additional magnetic anisotropies

in ultrathin single-crystalline [18] and poly-crystalline [19] metal films. Moreover, the

self-organized alignment of physical-vapor deposited metal nanoparticles on nanorippled

substrates was recently observed, leading to large arrays of nanoparticle chains exhibiting

polarization-dependent plasmon absorption [20]. With the same technique, also arrays of

metallic nanowires could be produced [21]. Most of these applications crucially depend

on certain properties of the template patterns such as a high degree of order in the case of

storage media [16] or a well defined ripple wavelength that fits to the growth conditions of

the nanoparticles [20]. A precise control of the pattern properties in turn requires detailed

knowledge of the pattern formation process and the contributing mechanisms. Up to now,

however, this knowledge is still incomplete.

Although several possible origins of the ripple patterns like ion-induced local stresses

or initial surface defects have been suggested in the years following their discovery [3],

no conclusive explanation could be found until 1988. In this year, Bradley and Harper

developed a continuum model [22] to describe the formation of the ripple patterns based

on the so-called micro-roughening instability [23]. It was already shown by Sigmund [23]

that the local erosion rate of a surface under ion bombardment is higher in depressions

than on elevations. This curvature dependence of the sputter yield induces an instability

of the surface against periodic disturbances which leads to an amplification of all initial

modulations. In the presence of a competing smoothing process like surface self-diffusion,

however, a wavelength selection is observed with the most unstable mode growing the

fastest [22].

The resulting linear continuum equation, the so-called Bradley-Harper (BH) equation,

is able to reproduce some of the main experimentally observed features of the formation

and early evolution of the patterns like their orientation with respect to the ion beam

and the exponential growth of the ripple amplitude. For long sputtering times, however,

certain experimental observations such as the saturation of the ripple amplitude cannot

be explained within the framework of the linear model. This disagreement was attributed

to a growing influence of nonlinear terms that dominate the morphology at later times.

Hence, in 1995, Cuerno and Barabási derived a nonlinear continuum equation of the

Kuramoto-Sivashinsky (KS) type to describe the ion-induced formation of periodic surface

structures [24]. In the early time regime, this equation behaves like the linear BH equation.

At a certain transition time, however, the nonlinear terms start to control the evolution
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of the surface [25]. When entering this nonlinear regime, the amplitude of the ripples

saturates as observed experimentally. However, a transition to kinetic roughening with

a loss of lateral order is observed in this regime [25, 26]. Whereas such a transition has

been observed in a few experiments [27], other studies report a stabilization of the regular

patterns at high fluences [28, 29]. Another feature of the experimental pattern evolution

that could not be reproduced by the KS equation is the occasionally observed coarsening of

the pattern wavelength [8,10,11,30–33]. In order to overcome these discrepancies, several

other nonlinear models based on the KS equation have been proposed [34–38]. These

models all show a similar behavior in their linear regime and make different predictions

only for the surface evolution in the nonlinear regime corresponding to rather long sputter

times. Therefore, a distinct demand for high fluence experiments has developed which

investigate the evolution of the surface morphology in the nonlinear regime in order to

identify the continuum model that describes the given experimental system.

A common way to identify the proper continuum model for describing an interface

during a certain growth or erosion process is the analysis of its dynamic scaling behavior

[39]. In many cases, an evolving surface exhibits spatial and temporal fluctuations that

follow certain scaling relations similar to those observed in equilibrium critical phenomena

[40,41]. Thus, similar to the case of equilibrium systems, critical scaling exponents can be

determined in surface growth or erosion that then characterize the rough surface in space

and time. Based on the determined scaling exponents, a particular growth or erosion

system can be assigned to a certain universality class and, therefore, to a certain (linear

or nonlinear) continuum equation that is able to describe the given system [39].

In the case of surface erosion by ion sputtering, however, this dynamic scaling approach

is hindered by the fact that most of the current nonlinear continuum equations show a

rather complex behavior and exhibit a truly rich parameter space. Therefore, although

their general ability to describe ion-induced pattern formation has been demonstrated, the

detailed behavior of the different models in the nonlinear regime is yet to be investigated.

Even basic properties like the number of fixed points and the value of the corresponding

critical scaling exponents are often not definitely known [42]. Especially when it comes to

anisotropic systems (corresponding to oblique ion incidence), these models become even

more complex due to the increased number of parameters and are, therefore, usually even

less studied. Nevertheless, experimental studies that explore the nonlinear regime and in-

vestigate the dynamic scaling behavior of the surface in detail provide important insight

in the formation mechanism and yield information about the relevance of the single linear
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and nonlinear terms that may or may not contribute to the surface evolution. This way,

experimentally determined scaling exponents are important for the verification of current

or future continuum models. On the other hand, also further systematic numerical inves-

tigations of the nonlinear surface evolution in the different continuum models, especially

in the anisotropic case, are needed in order to map the behavior of these equations in para-

meter space. This can prove useful for the explanation of some recent and rather peculiar

experimental observations like the appearance of ordered dot patterns under oblique ion

incidence [12,43] or the rotation of ripple patterns with increasing fluence [44].

In this work, the nonlinear evolution of nanoscale ripple patterns induced by low-

energy ion sputtering has been investigated in simulation and experiment. Chapter 2

summarizes the theoretical basics of ion sputtering and ion-induced pattern formation.

It also provides an overview of the various continuum equations currently available to

describe the formation and evolution of regular patterns during ion sputtering. Chap-

ter 3 is devoted to the nonlinear morphology evolution in the anisotropic KS equation.

The stochastic anisotropic KS equation with and without damping has been integrated

numerically and different aspects of the surface morphology, namely the rotation of the

ripple patterns and the coarsening of the ripple wavelength have been studied. Chapter

4 provides a brief overview of the dynamic scaling concept in surface growth and erosion.

The experimental methods for sample preparation and characterization are described in

chapter 5. In chapter 6, the nonlinear regime of the pattern evolution during high-fluence

sub-keV ion sputtering of silicon is explored ex-situ and in-situ by atomic force microscopy

and X-ray scattering, respectively. From these measurements, the coarsening of the rip-

ples as well as the dynamic scaling behavior of the surface morphology is evaluated and

compared to the predictions of different nonlinear continuum models. The last chapter

gives some final remarks and conclusions.



Chapter 2

Ion-induced Pattern Formation

If a solid surface is bombarded with energetic ions, surface material will be removed. This

mechanism is called sputtering. The ions penetrating into the target surface are slowed

down and lose their kinetic energy and momentum in elastic and inelastic collisions with

target nuclei and electrons, respectively. For kinetic energies below 1 keV as used in

the experiments of this work, however, the momentum and kinetic energy of the ions is

transferred to the target atoms in nuclear collisions mainly and inelastic collisions play

only a minor role [45]. A target atom taking part in one of these collisions receives some

of the ion’s kinetic energy and momentum and can, therefore, be set in motion. If such an

atom receives enough energy, it can induce further collisions with other target atoms, thus

increasing the number of moving atoms. This situation is then called collision cascade [45].

For typical ion fluxes, the collision cascades do not overlap in space and time and can

therefore be treated independently. Within one collision cascade, it may happen that a

target atom receives momentum directed towards the surface. If the kinetic energy of

such an atom is high enough to overcome the surface binding energy, it will leave the

surface and be sputtered away. Under continuous irradiation, the surface will be eroded

as a whole.

When bombarding a crystalline non-metallic surface, e.g. a semiconductor, one can

observe an additional effect. The number of generated defects in the crystal increases

with the number of ion impacts. Therefore, for a large number of ion impacts, the crystal

structure of the surface becomes unstable and the whole surface gets amorphized [45].

For single crystalline Si surfaces bombarded at energies of a few hundred eV at room

temperature, this amorphisation is observed already after the impact of about 1015 ions

5



6 CHAPTER 2. ION-INDUCED PATTERN FORMATION

per cm2 [45]. For higher fluences, the surface can be treated as fully amorphous.

2.1 Sigmund’s theory of sputtering

A sub-keV ion penetrating a solid surface loses its kinetic energy mainly in nuclear colli-

sions with target atoms. The energy loss per unit path length, or stopping power, is then

given by
dE

dz
= −NSn(E) (2.1)

with the atomic density N of the solid and the nuclear stopping cross section Sn(E). E

is the initial kinetic energy of the penetrating ion.

The nuclear stopping cross section Sn(E) depends on the interaction potential used to

model the collision between ion and target atom. With the power approximation of the

Thomas-Fermi potential as a common choice, Sn(E) reads [46]

Sn(E) =
1

1−m
Cmω1−mE1−2m. (2.2)

Here, m accounts for the Coulomb screening of the nuclei due to the electrons in the solid

and ranges from 0 to 1. In the lower-keV and upper eV region, m = 1/3 is commonly

assumed, whereas m should be close to zero in the eV region [46]. Cm and ω are constants

that incorporate the atomic parameters of the projectile and target species:

Cm =
π

2
λma2

TF

(
Mp

Mt

)m (
2ZpZte

2

aTF

)2m

, (2.3)

ω =
4MpMt

(Mp + Mt)
2 .

Mp,t is the atomic mass and Zp,t the atomic number of the projectile and the target atom,

respectively. λm is a dimensionless function of m with values ranging from λ1 = 0.5 to

λ0 ∼ 24 and aTF is the Thomas-Fermi screening length.

The average number of sputtered atoms per incident ion is given by the sputtering

yield Y . For linear collision cascades, i.e. for a sufficiently small number and isotropic

distribution of binary collisions within one cascade [45], the sputtering yield Y is propor-

tional to the energy FD(z) deposited per unit depth in the surface at z = h by a certain

ion at the lateral position (x, y),

Y (E, θ, x, y) = ΛFD(E, θ, x, y, z = h) (2.4)
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with the ion energy E and the angle of incidence θ. Λ is given by

Λ =
Γm

8(1− 2m)

1

NCmE1−2m
sb

. (2.5)

Here, Esb is the surface binding energy and Γm a function of m given by

Γm =
m

d
dx

[ln Γ(x = 1)]− d
dx

[ln Γ(x = 1−m)]
. (2.6)

Because the majority of the sputtered particles originates from secondary collisions

with low energy (< 50 eV) recoils, Sigmund suggested m = 0 for equation (2.5) [46],

resulting in Γ0 = 6/π2. Therefore, equation (2.5) becomes

Λ =
3

4π2

1

NC0Esb

, (2.7)

with C0 = 0.0181 nm2 [46].

For a plane and homogeneous surface, the deposited energy does not depend on the

lateral position of the ion impact and is given by

FD(E, θ) = αNSn(E), (2.8)

with α being a dimensionless function of the angle of incidence θ and the mass ratio

Mt/Mp [46]. Then, the sputtering yield becomes

Y (E, θ) =
4.2

nm2

αSn(E)

Esb

. (2.9)

2.2 Sputtering of rough surfaces: the Bradley-

Harper model

If a surface is bombarded with a homogeneous flux of ions j, then the over all energy

deposited in a given point A of the surface is the sum of the energy deposited in this point

due to all surrounding ion impacts. Therefore, with equation (2.4), the local erosion rate

in point A is given by the integral over all contributing events [23]

v(A) =
Λ

N

∫ ∫
φ(r)ED(r)dxdy (2.10)
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Figure 2.1: Contour plot of the deposited energy in the x-z plane according to equation

(2.12) with a = 3 nm, σ = 0.9 nm, µ = 0.5 nm, and E = 500 eV. The surface at z = 0 is

indicated by the broken line.

where φ(r) is the flux of incoming ions j corrected for the local angle of incidence and

ED(r) is the energy deposited per unit volume at r = (x, y, z). ED(r) is related to FD(z)

of equation (2.4) by [23]

FD(z) =

∫ ∫
ED(r)dxdy. (2.11)

The spatial distribution of the deposited energy ED(r) can be approximated by a

Gaussian,

ED(r) =
E

(2π)3/2σµ2
exp

(
−(z + a)2

2σ2
− x2 + y2

2µ2

)
. (2.12)

Here, µ and σ represent the lateral and longitudinal width of the distribution, respectively,

and a is the mean penetration depth of the ion. A contour plot of the energy distribution

is shown in Fig. 2.1.

For a rough surface sputtered with an uniform flux of ions, the energy deposited in the

surface is not constant but rather depends on the lateral position r. To some extent, this

is caused by the angular dependence of the ion flux at the surface. In addition, however,

the energy deposition into the surface depends on the local shape of the surface. This
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A

A'

B

B'

Figure 2.2: Schematic drawing of the energy deposition in rough surfaces, see text.

lateral variation of the energy deposition causes a lateral variation of the local erosion rate

and, therefore, a change of the surface morphology with sputtering time [23]. A closer

inspection of the underlying mechanisms reveals that the local erosion rate is higher in

troughs than on crests. This is demonstrated in Fig. 2.2 where ions penetrate into a surface

region with positive (Fig. 2.2 left) and negative (Fig. 2.2 right) curvature, respectively.

The Gaussian distribution of the deposited energy is centered at the mean penetration

depth a of the ions and indicated by the (broken) lines of constant energy. From Fig. 2.2

it is obvious that the distance from the surface point A where the sputtering occurs to

the contributing impact at B is shorter than the distance A′ − B′. Therefore, the over

all deposited energy and also the erosion rate is larger in points with positive curvature

(A) than in those with negative curvature (A′). Obviously, the surface becomes unstable

and the initial surface roughness gets amplified. This mechanism is called surface micro-

roughening [23].

In order to explain the formation of periodic ripple patterns during sputtering, Bradley

and Harper have calculated the integral (2.10) under the assumption of large radii of

curvature Rx and Ry [22]. Then, the time evolution of the continuous surface height
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function h(x, y, t) is given by

∂h

∂t
= −v(ϕ, Rx, Ry)

√
1 + (∇h)2 (2.13)

with ϕ being the angle between the direction of the ion beam and local surface normal [24].

The projected direction of the ion beam is parallel to the x axis. Equation (2.13) can

then be expanded in terms of derivatives of the surface height [24]. To first order in the

surface curvature, Bradley and Harper obtained

∂h

∂t
= −v0 + γ

∂h

∂x
+ νx

∂2h

∂x2
+ νy

∂2h

∂y2
. (2.14)

Here, v0 is the erosion velocity of the planar surface, γ causes a lateral movement of the

structures, and the micro-roughening instability is incorporated by the coefficients νx,y.

These coefficients are given by the following relations [34]:

v0 = Fc, (2.15)

γ = F
s

f 2

[
a2

σa
2
µc

2
(
a2

σ − 1
)
− a4

σs
2
]
, (2.16)

νx = Fa
a2

σ

2f 3

[
2a4

σs
4 − a4

σa
2
µs

2c2 + a2
σa

2
µs

2c2 + a4
µc

4
]
, (2.17)

νy = −Fa
c2a2

σ

2f
, (2.18)

with

F =
jEΛa

σµN
√

2πf
e−a2

σa2
µc2/2f , (2.19)

f = a2
σs

2 + a2
µc

2,

aσ =
a

σ
, aµ =

a

µ
,

s = sin θ , c = cos θ.

When sputtering a surface at finite temperature, atoms will diffuse on the surface

leading to a relaxation of the surface. This effect can be introduced by adding a term

proportional to the fourth derivative of the surface height to equation (2.14), resulting

in [22]
∂h

∂t
= −v0 + γ

∂h

∂x
+ νx

∂2h

∂x2
+ νy

∂2h

∂y2
−K∇4h. (2.20)
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In the Bradley-Harper (BH) equation (2.20), K is the relaxation rate due to thermally

activated surface self-diffusion [22],

K =
Ds%nd

N2kBT
, (2.21)

with the surface self-diffusivity Ds, the surface free energy per unit area %, the areal

density of diffusing atoms nd, the Boltzmann constant kB and the temperature T .

The behavior of equation (2.20) shall be analyzed by calculating its Fourier transform.

Be h̃(k, t) the Fourier transform of the surface height function h(r, t) with the wave vector

k = kxex + kyey and r = (x, y). Then, equation (2.20) can be written as

∂h̃(k, t)

∂t
=

[
−

(
νxk

2
x + νyk

2
y

)
−K

(
k2

x + k2
y

)2
]
h̃(k, t). (2.22)

Integration of equation (2.22) yields

h̃(k, t) = h̃0(k) exp (Rkt) , (2.23)

with the growth rate Rk = −
[
νxk

2
x + νyk

2
y + K

(
k2

x + k2
y

)2
]
. Therefore, spatial frequencies

k with positive Rk grow exponentially in amplitude, whereas those with negative Rk decay

exponentially with time. Because of the positive value of K, surface roughening occurs

only for negative νx,y. The maximum value of Rk is reached for

kc =

√
|min (νx, νy) |

2K
. (2.24)

Therefore, the Fourier component of the initial roughness spectrum with the wave number

kc will grow fastest, resulting in a wavelike surface pattern with a periodicity

λ =
2π

kc

= 2π

√
2K

|min (νx, νy) |
. (2.25)

For νx < νy and νx > νy, the wave vector of the observed pattern is kc = kcex and

kc = kcey, respectively. The angular dependence of νx,y for a certain set of microscopic

parameters is shown in Fig. 2.3. At an angle of θ ∼ 70◦, one observes a change from

νx < νy to νx > νy what corresponds to a rotation of the observed ripple pattern from

normal to parallel with respect to the projected direction of the ion beam. Such a rotation

has been observed in several experiments [1, 27, 30, 47, 48]. Some other predictions of the

BH equation, however, are in contrast to certain experimental observations:
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Figure 2.3: νx,y versus angle of incidence θ, calculated for 500 eV Ar+ irradiation of Si

with j = 5× 1015 cm−2s−1, a = 3 nm, σ = 0.9 nm, µ = 0.7 nm, and Y = 3.

• The amplitude of the ripples should grow exponentially without saturation. In

experiments, however, saturation of the ripple amplitude at a constant value is

observed after an initial exponential increase [49,50].

• From equations (2.25), (2.17), and (2.18) it follows that λ ∝ j−1/2. In contrast,

some experimental studies report the ripple wavelength λ to be constant with the

ion flux j [51].

• Furthermore, from the same equations λ follows to be a function of the ion energy

E and the penetration depth a, which again is a function of E. Therefore, one

expects the ripple wavelength to decrease with the ion energy as λ ∝ E−p [52].

However, this behavior is only observed at relatively high temperatures [53]. At low

and moderate temperatures, several studies report the ripple wavelength to increase

with energy [29,54,55].

• Equations (2.25) and (2.21) indicate a dependence of λ on the sample temperature.

Again, such a dependence of the wavelength was only observed at elevated temper-

atures whereas λ was found to be constant at room temperature and below [56].

Another study found λ to be relatively constant with temperature even up to about
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200◦C [57].

• Equation (2.25) implies that the ripple wavelength λ is independent on the ion

fluence Φ and should, therefore, be constant with sputtering time. Several experi-

ments, however, show an increase of λ with fluence [8,30–33,44]. This phenomenon

is usually referred to as coarsening.

Several attempts have been made in order to overcome these deficiencies of the BH

equation and shall be discussed in the following.

2.3 Higher order extensions of the Bradley-Harper

equation

2.3.1 Kuramoto-Sivashinsky equation

In the series expansion of equation (2.13), Bradley and Harper considered only linear

terms. Cuerno and Barabási, however, took the expansion to lowest nonlinear order

resulting in [24]

∂h

∂t
= −v0 + γ

∂h

∂x
+ νx

∂2h

∂x2
+ νy

∂2h

∂y2

+
ζx

2

(
∂h

∂x

)2

+
ζy

2

(
∂h

∂y

)2

−K∇4h + η. (2.26)

The additional nonlinear terms in this equation are nonconserved Kardar-Parisi-Zhang

(KPZ) nonlinearities [39,58] that incorporate the dependence of the local erosion velocity

on the absolute value of the surface slopes (not to be confused with the dependence on

the local incident angle). Their coefficients are given by [34]

ζx = F
c

2f 4

[
a8

σa
2
µs

4
(
3 + 2c2

)
+ 4a6

σa
4
µs

2c2 − a4
σa

6
µc

4
(
1 + 2s2

)
−f 2

(
2a4

σs
2 − a2

σa
2
µ

(
1 + 2s2

))
− a8

σa
4
µs

2c2 − f 4
]
, (2.27)

ζy = F
c

2f 2

[
a4

σs
4 + a2

σa
2
µc

2 − a4
σa

2
µc

2 − f 2
]
. (2.28)

In order to account for the stochastic arrival of the ions, the Gaussian white noise term

η, defined as

〈η(r, t)η(r′, t′)〉 = 2Dηδ
d(r− r′)δ(t− t′), (2.29)
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was added. Here, Dη is the strength of the noise and d the dimension of the surface.

Equation (2.26) is an anisotropic stochastic generalization of the so-called Kuramoto-

Sivashinsky (KS) equation which was originally proposed to describe chemical waves [59]

and the propagation of flame fronts [60]. For short sputtering times, this equation behaves

like the linear BH equation with an exponential increase of the ripple amplitude and

constant ripple wavelength. Then, at a certain transition time

tc ∝
K

ν2
x,y

ln

(
νx,y

ζx,y

)
, (2.30)

the surface enters a nonlinear regime and a saturation of the ripple amplitude as in the

experiments is observed [25]. However, numerical analyses of the noisy KS equation in

1+1 and 2+1 dimensions show that the saturation of the ripple amplitude is accompanied

by a transition to kinetic roughening [25,26]. In this regime, the surface does not exhibit

any lateral order.

In the asymptotic limit of long times and large lateral scales, the linear coefficients

νx,y in equation (2.26) are assumed to renormalize to positive values [26, 42]. Then,

the asymptotic behavior of equation (2.26) should be described by the anisotropic KPZ

equation [26,42,58]

∂h

∂t
= ν∗

x

∂2h

∂x2
+ ν∗

y

∂2h

∂y2
+

ζx

2

(
∂h

∂x

)2

+
ζy

2

(
∂h

∂y

)2

+ η (2.31)

with ν∗
x,y > 0. Although this renormalization has already been demonstrated for the KS

equation in 1 + 1 dimensions, it is not clear yet whether this assumption also holds in

2 + 1 dimensions [42].

2.3.2 Damped Kuramoto-Sivashinsky equation

The KS equation is able to reproduce the observed saturation of the ripple amplitude.

However, it also predicts a transition to kinetic roughening that (although observed in few

experiments [27]) is in contrast to several experimental reports of a pattern conservation

at high fluences [28,29].

Inspired by the observation of stationary patterns in numerical simulations of the

isotropic damped KS (dKS) equation by Paniconi and Elder [61], Facsko et al. adopted

this equation for normal incidence ion sputtering [35]. The isotropic dKS equation is

frequently used to describe different processes like compact electrodeposition growth [62]
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or directional solidification [61]. For oblique ion sputtering, however, the anisotropic dKS

equation must be applied:

∂h

∂t
= −v0 − κh + γ

∂h

∂x
+ νx

∂2h

∂x2
+ νy

∂2h

∂y2

+
ζx

2

(
∂h

∂x

)2

+
ζy

2

(
∂h

∂y

)2

−K∇4h + η. (2.32)

This equation differs from the undamped KS equation (2.26) just by the additional damp-

ing term −κh with κ being a damping coefficient that enters the effective growth rate of

the ripple amplitude R∗
kc

= Rkc − κ. This damping term induces smoothing of all spatial

frequencies and, therefore, prevents kinetic roughening.

In the case of sputter erosion, the damping term in equation (2.32) violates the transla-

tional invariance of the surface in the erosion direction. However, translational invariance

can be restored by replacing the term −κh by −κ(h− h̄) with h̄ being the mean height of

the surface and thus transforming equation (2.32) into a nonlocal dKS equation [35] which

again, as has been demonstrated [63], can be exactly mapped to a local dKS equation.

The physical meaning of κ, however, is still not clear in the case of sputter erosion.

The dKS equation has been extensively studied in numerical simulations [35, 63–66].

It is not only able to show stationary patterns in the long-time limit but also to reproduce

other features of experimental patterns like certain pattern defects [35] or the formation

of structured islands [66]. However, no evidence for wavelength coarsening as observed in

several experiments [8, 10, 11,30–33] has been found yet [65].

2.3.3 General continuum equation

Although equation (2.26) includes KPZ-like nonlinearities, other higher order terms are

neglected [24]. The most general nonlinear equation that results from the expansion of

equation (2.13) is given by [34]

∂h

∂t
= −v0 + γ

∂h

∂x
+

∑
i=x,y

{
−νi

∂2h

∂i2
+ ζi

(
∂h

∂i

)2

+ Ωi
∂2

∂i2
∂

∂x
h+

ξi

(
∂h

∂x

) (
∂2h

∂i2

)}
+

∑
i,j=x,y

{
−Dij

∂2

∂i2
∂2

∂j2
h

}
−K∇4h + η. (2.33)
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The coefficients of the additional linear and nonlinear terms then read

Ωx = −Fa2 3

6f 2

s

a2
µ

[
f 2 − fa4

σc
2 −

(
a2

µ − a2
σ

)
c2

(
f + a4

σs
2
)]

, (2.34)

Ωy = Fa2 1

6f 4

[
−3sf 2

(
f + a4

σs
2
)

+ a2
σc

2
(
3a2

σsf + a6
σs

3
)
f

+2
(
a2

µ − a2
σ

)
c2

(
3f 2s + 6a4

σs
3 + a8

σs
5
)]

, (2.35)

ξx = Fa
a2

σsc

2f 5

[
−6a8

σs
6 + a8

σa
2
µs

4
(
4 + 3c2

)
− a8

σa
4
µc

2s4 + a6
σa

4
µc

2s2
(
4− 6s2

)
+a6

σa
2
µs

4
(
−3 + 15s2

)
+ a4

σa
4
µ3c2s2

(
4 + 3s2

)
−a4

σa
6
µ3c4

(
1 + s2

)
+ a2

σa
6
µc

4
(
9− 3s2

)
− 3a8

µc
6
]
, (2.36)

ξy = Fa
a2

σsc

2f 3

[
−a4

σa
2
µc

2 + a4
σs

2
(
2 + c2

)
− a4

µc
4 + a2

σa
2
µc

2
(
3− 2s2

)]
(2.37)

Dxx = F
a3

24

1

f 5

[
−4

(
3a2

σs
2f + a6

σs
4
)
f 2 + a2

σc
2
(
3f 2 + 6a4

σs
2f + a8

σs
4
)
f

+2
(
a2

µ + a2
σ

)
c2

(
15a2

σs
2f 2 + 10a6

σs
4f + a10

σ s6
)]

, (2.38)

Dyy = F
a3

24

1

f 5

3a2
σ

a2
µ

[
f 4c4

]
, (2.39)

Dxy = F
6a3

24

1

f 5

f 2

a2
µ

[
−2

(
a2

σs
2
)
f 2 + a2

σc
2
(
f 2 + a4

σs
2f

)
+2

(
a2

µ − a2
σ

)
c2

(
3a2

σs
2f + a6

σs
4
)]

. (2.40)

Actually, the ξ and Ω terms in equation (2.33) have already been derived in reference

[24] but were neglected since their influence on the asymptotic scaling of the surface was

assumed to be of minor importance. The terms with the coefficients Dij enter equation

(2.33) in the form of diffusion-like terms proportional to the fourth derivative of the height

function and thus lead to an additional anisotropic smoothing of the surface. Therefore,

this relaxation mechanism is usually called effective or ion-induced surface diffusion (ISD)

[67]. However, it is important to note that ISD results from preferential erosion during

the sputtering which appears as a reorganization of the surface and does not involve any

mass transport along the surface. Thus, ISD is strictly speaking no diffusion mechanism.

This is also displayed by the fact that the coefficient Dxx might even become negative at

large incident angles, leading to an additional instability of the surface [67].

Since ISD does not depend on the temperature (cf. equations (2.38) - (2.40)), this

smoothing mechanism is able to explain the temperature independence of the wavelength

at low temperatures where thermal diffusion can be neglected. In this case, the ripple
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wavelength is given by

λISD = 2π

√
2Dxx,yy

|min (νx, νy) |
. (2.41)

From equations (2.17), (2.18), (2.38), and (2.41) it follows that the wavelength at low

temperatures does no longer depend on the ion flux. Moreover, with a ∝ E2m [45], we

find λISD ∝ Ep and, therefore, an increase of λISD with the ion energy. At high tem-

peratures, however, thermal diffusion becomes the dominating smoothing mechanism and

the wavelength follows from equation (2.25). Hence, with the incorporation of ISD into

equation (2.33), one is able to explain the experimentally observed flux and temperature

independence of the wavelength, as well as its increase with ion energy. However, the flu-

ence dependence of the ripple wavelength as observed in some experiments [8, 30–33,44],

still cannot be explained by the general continuum equation.

In the special case of normal ion incidence, the general continuum equation (2.33)

is reduced to the isotropic stochastic KS equation with γ = ξx = ξy = Ωx = Ωy = 0,

νx = νy, ζx = ζy, and Dxx = Dyy = Dxy/2. For off-normal incidence, however, equation

(2.33) has a highly nonlinear character with a rich parameter space which might lead to

rather complex morphologies and dynamic behaviors. Although some general features of

equation (2.33) have been studied [34], its detailed behavior, and especially the role of

the additional nonlinearities with the coefficients ξx,y, is still to be investigated.

2.3.4 Hydrodynamic model

In order to overcome the inability of the KS-type equations (2.26), (2.32), and (2.33) to

predict ripple coarsening, Muñoz-Garćıa and co-workers recently developed a new non-

linear model following a hydrodynamic approach [38]. In this approach, Muñoz-Garćıa et

al. considered two coupled fields

∂h

∂t
= −Γex + Γad, (2.42)

∂R

∂t
= (1− φ)Γex − Γad + K∇2R, (2.43)

where h and R represent the surface height function and the thickness of the mobile

surface adatom layer, respectively. Here, φ̄ = (1 − φ) is the fraction of eroded adatoms

that become mobile, Γex is the curvature dependent erosion rate and Γad is the rate of



18 CHAPTER 2. ION-INDUCED PATTERN FORMATION

addition to the immobile bulk. Γad is given by

Γad = γ0

[
R−Req

(
1− γ2x

∂2h

∂x2
− γ2y

∂2h

∂y2

)]
, (2.44)

with the mean nucleation rate for a flat surface γ0, the variation in the nucleation rate

with the surface curvatures γ2x,y, and the thickness of the layer of mobile atoms generated

thermally without bombardment Req. Γex follows from microscopic derivations [68],

Γex = α0

[
1 + α1x

∂h

∂x
+∇

(
α2∇h

)
+

∂

∂x
∇

(
α3∇h

)
+∇

(
α4∇∇2h

)
+

∂

∂x
h∇

(
α5∇h

)
+∇h

(
α6∇h

)]
. (2.45)

The coefficients αi of equation (2.45) are 2 × 2 diagonal matrices, except α4 =[
α4xx α4xy

α4yx α4yy

]
. In the framework of Sigmund’s theory of sputtering, these coefficients can

be related to those of the general equation (2.33) so that α0 = v0, α1x = −γ/v0, α2x,y =

−νx,y/v0, α3x,y = −Ωx,y/v0, α4ij = −Dij/v0, α5x,y = −ξx,y/v0, and α6x,y = −ζx,y/v0.

Equations (2.42)-(2.45) can be approximated by performing a multiple scale expansion

with a subsequent adiabatic elimination of R. This results in an equation similar to the

general continuum equation (2.33) but with additional conserved KPZ nonlinearities [38]:

∂h

∂t
= −v0 + γ

∂h

∂x
+

∑
i=x,y

{
−νi

∂2h

∂i2
+ ζ

(1)
i

(
∂h

∂i

)2

+ Ωi
∂2

∂i2
∂

∂x
h

+ξi

(
∂h

∂x

) (
∂2h

∂i2

)}
−

∑
i,j=x,y

{
Kij

∂2

∂i2
∂2

∂j2
h + ζ

(2)
ij

∂2

∂i2

(
∂h

∂j

)2
}

. (2.46)

The coefficients of the hydrodynamic model differ from those of the general equation and
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are given by [68]

γ = −φα0α1x, (2.47)

νx = φα0α2x −
α2

0

γ0

φ̄φα2
1x, (2.48)

νy = φα0α2y, (2.49)

ζ
(1)
i = −φα0α6i, (2.50)

Ωi = α0

[
−φα3i

(
φ̄K

γ0

− φReqγ2i

)
α1x

]
, (2.51)

ξi = φα0α5i, (2.52)

Kij = KReqγ2i + α0

[
φα4ij −

(
Kφ̄

γ0

− φReqγ2i

)
α2j

]
, (2.53)

ζ
(2)
ij = −α0

(
φ̄K

γ0

− φReqγ2i

)
α6j. (2.54)

The main novelty of the hydrodynamic model is the incorporation of redeposition of

eroded material to the surface with the parameter φ controlling the amount of redeposited

atoms. A key feature of the coupled two-field model is the presence of ripple coarsening

which is probably induced by the conserved KPZ nonlinearity [38, 69]. Depending on

the ratio between the coefficients of the conserved and the nonconserved KPZ terms,

i.e. ζ
(1)
i and ζ

(2)
ij , very different time dependencies of the ripple wavelength have been

observed, ranging from marginal logarithmic to strong power-law coarsening. Moreover,

in agreement with some experiments [8,10,11,31], the observed coarsening is interrupted

at certain times and the wavelength saturates at a constant value [38].



Chapter 3

Pattern Evolution in the Anisotropic

Kuramoto-Sivashinsky Equation

Both the stochastic and the deterministic Kuramoto-Sivashinsky (KS) equation in one and

two dimensions have been studied extensively during the last two decades, numerically

as well as analytically. Most of these studies were either dedicated to investigate the

scaling behavior of the surface in the asymptotic case [24, 26, 42, 70, 71], or focused on

rather special phenomena of the surface evolution like the appearance of rotated ripple

structures [25,72,73]. However, no detailed picture of the nonlinear surface evolution in the

KS equation is provided yet, especially for the anisotropic case. In this chapter, numerical

integrations of the anisotropic stochastic KS equation with and without damping are

presented. For all the simulations, the spatial discretization introduced by Lam and Shin

for the nonlinear terms [74] has been used with periodic boundary conditions. In the

simulations, the influence of the strength of anisotropy and the applied damping on the

surface morphology in the nonlinear regime has been investigated systematically.

3.1 The role of anisotropy: ripple rotation

Although most experimental studies on ion-induced pattern formation were performed

under oblique ion incidence [52], only few theoretical studies [25, 72, 73] focused on the

corresponding anisotropic KS (aKS) equation. These few studies showed that for long

times, the initial ripple pattern vanishes and the surface enters kinetic roughening as

in the isotropic case. For even longer times, however, the appearance of rotated ripple

20
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structures was observed under certain conditions [72].

In recent experiments on off-normal low-energy ion sputtering of Si(111) at high tem-

peratures, i.e. in the presence of isotropic thermal diffusion, Brown and Erlebacher indeed

observed a rotation of the initial ripple pattern with fluence [44, 53]. At low fluences, a

periodic ripple pattern oriented normal to the direction of the incident ion beam formed

on the surface. At intermediate fluences, however, another ripple pattern rotated by

90◦ overlayed the initial one, resulting in a tetragonal pattern of dot-like features. At

even higher fluences, the initial pattern vanished and only the rotated pattern with a

significantly larger wavelength remained.

Similar to these experimental observations, numerical integrations of the KS equation

with and without noise showed the formation of new rotated ripples long after the initial

pattern had vanished in the special case of ζxζy < 0 [25, 72, 73]. These ripples represent

one-dimensional solutions of equation (2.26) for which the nonlinearities precisely cancel

and are, therefore, called cancellation modes. The angle of rotation is obtained by moving

to a rotated coordinate system that cancels the nonlinear terms in the transverse direction

and is given by φc = tan−1
√
−ζx,y/ζy,x [34, 72]. However, the experimentally observed

rotation of the ripple pattern by 90◦ does not agree with the predicted angle of rotation

which under these experimental conditions is expected to be φc ∼ 25◦ [44]. Therefore, the

observed ripple rotation is not related to the appearance of cancellation modes and must

be of different origin. This stresses the importance of a systematic analysis of the surface

evolution in the nonlinear regime of the aKS equation.

In order to study the influence of anisotropy on the surface morphology, it is convenient

to transform equation (2.26) into a minimal equation. As a first step, by introducing a

co-moving frame of reference, the erosion velocity of the flat surface v0 is omitted. Then,

the term γ∂h/∂x which just causes a lateral drift of the pattern can be eliminated by the

transformation h(x, y, t) → h(x − γt, x, t). Under the assumption of isotropic diffusion,

the aKS equation is then given by

∂h

∂t
= νx

∂2h

∂x2
+ νy

∂2h

∂y2
+

ζx

2

(
∂h

∂x

)2

+
ζy

2

(
∂h

∂y

)2

−K∇4h + η. (3.1)

Finally, rescaling the time by (ν2
x/K)t → t, the lateral scales by

√
|νx|/Kx → x, the

height by −(ζx/2νx)h → h, and the noise by −(ζxK/2ν3
x)η → η leads to the minimal

equation

∂h

∂t
= −∂2h

∂x2
− aν

∂2h

∂y2
+

(
∂h

∂x

)2

+ aζ

(
∂h

∂y

)2

−∇4h + η (3.2)
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with the new coefficients aν = νy/νx and aζ = ζy/ζx. These two coefficients aν and aζ

control the strength of the linear and the nonlinear anisotropy, respectively.

The numerical integration of equation (3.2) was performed on a grid with 200 × 200

lateral nodes with ∆x = ∆y = 1. The integration step was ∆t = 0.01 and the noise

amplitude was fixed at Dη = 0.01.

Fig. 3.1 shows the simulated morphologies for constant aν = 0.1 and different values

of aζ at three different times. At short times (left column), a periodic ripple pattern

forms for all three aζ values. The amplitude of the ripples grows exponentially until

the surface enters the nonlinear regime and undergoes kinetic roughening. Here, the

initial ripple patterns vanish. For aζ = 0.5, the resulting stationary morphology in this

regime is rather isotropic (see Fig. 3.1(b,c)). For a lower aζ value of 0.1, however, the

stationary morphology exhibits a significant anisotropy (see Fig. 3.1(e,f)). Lowering aζ

even further to 0.0001, one observes a similar anisotropic morphology at t = 200 (Fig.

3.1(h)). At t = 1000, however, this anisotropic morphology has developed a periodicity

and a new ripple pattern with larger wavelength now dominates the surface morphology.

This pattern is rotated by 90◦ with respect to the initial pattern.

In these simulations, aζ = ζy/ζx was always positive. Therefore, the observed rotated

ripple patterns cannot be explained by cancellation modes. In addition, they appear

only for a rather strong nonlinear anisotropy aζ � 1. This can be interpreted in the

following way [75]. In the asymptotic case of long times, it has been shown that the

one-dimensional KS equation renormalizes to the one-dimensional KPZ equation with a

positive linear coefficient ν∗ [42]. Then, the surface instability is lost and the morphology

undergoes kinetic roughening. The same is assumed for the two-dimensional isotropic KS

equation [42]. In the case of the aKS equation with aζ close to zero, one can expect that

this renormalization is still valid in the x-direction, resulting in a positive ν∗
x. In the y-

direction, however, the nonlinearity is so weak that the transition to the nonlinear regime

is strongly delayed (cf. equation (2.30)). Therefore, at the time when the x-direction is

already renormalized to a ν∗
x > 0, the y-direction does not yet renormalize and ν∗

y = νy

remains negative. Then, a∗ν = ν∗
y/ν

∗
x < 0 leads to a new linear instability in the y-direction

that causes the formation of another ripple pattern rotated by 90◦. These ripples then

grow exponentially in time until also the y-direction renormalizes and the ripple amplitude

saturates. According to equation (2.30), the time tc2 of this saturation should follow the
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Figure 3.1: Morphology for aν = 0.1 and aζ = 0.5 (first row), aζ = 0.1 (second row), and

aζ = 0.0001 (third row) at t = 20 (left), 200 (center), and 1000 (right).

relation

tc2 ∝
1

a2
ν

ln

(
aν

aζ

)
. (3.3)

Therefore, tc2 should scale both with aν and aζ . In addition, the wavelength of the rotated
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Figure 3.2: Evolution of the global two-dimensional interface width W for (a) different

values of aζ with aν = 0.1 and (b) different values of aν with aζ = 0.001. All units are

arbitrary.

pattern should follow from equation (2.25),

λy = 2π

√
2

aν

. (3.4)

Fig. 3.2(a) depicts the evolution of the global two-dimensional interface width W (see

chapter 4.1, equation (4.1)) for different values of aζ at constant aν . As soon as the initial

ripple pattern has formed, the ripple amplitude and, therefore, also W grows exponentially

with time. When entering the kinetic roughening regime at tc1, W saturates. For a rather

large aζ of 0.5, W remains rather constant after this saturation. For aζ = 0.1, however,

a short exponential increase can be observed for t & 100, indicating the formation and

growth of the rotated pattern. At tc2 ≈ 200, however, the growth is interrupted and W
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Figure 3.3: Transition time tc2 vs. (a) aζ for aν = 0.1 and (b) aν for aζ = 0.001. The solid

lines represent fits according to equation (3.3) with a prefactor as the fitting parameter.

All units are arbitrary.

saturates at a slightly higher value. With decreasing aζ , this saturation is further delayed

as tc2 increases. A similar behavior is observed for the dependence of W on aν given in Fig.

3.2(b) with tc2 increasing with decreasing aν . Both these dependencies agree qualitatively

with the expected behavior of tc2 from equation (3.3). In addition, also the growth of the

amplitude of the rotated ripples is affected by aν . This can be interpreted as resulting

from the νy dependence of the growth factor Rk∗y = f(νy) (cf. equation (2.23)).

A quantitative comparison between the simulated and the analytical dependence of tc2

on aζ and aν is shown in Fig. 3.3(a) and (b), respectively. Here, the square symbols give
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Figure 3.4: Wavelength λy of the rotated pattern vs. aν determined from the simulations

for aζ = 0.001 (squares) and calculated using equation (3.4) (circles). The error bars are

smaller than the symbol size. All units are arbitrary.

the value of tc2 as determined from the simulations and the solid lines represent fits of

the data according to equation (3.3). In both cases, the simulated tc2 values are in good

agreement with the analytical prediction of equation (3.3). A comparison between the

wavelength λy of the rotated ripple pattern in dependence of aν and the corresponding λy

values as calculated from equation (3.4) is given in Fig. 3.4. Again, both data sets agree

fairly well.

The here presented data supports the above assumption that the observed rotated

ripple pattern actually results from the fact that the renormalization of the aKS equation

occurs earlier in the x than in the y-direction. However, in order to confirm this hypothesis,

analytical evidence is needed.

Comparison of the above simulations with the experimental results of Brown et al. re-

veals striking similarities [44,53] like the observed 90◦ rotation and the larger wavelength

of the rotated patterns. Therefore, a strong nonlinear anisotropy with aζ � 1 can be as-

sumed for the experimental system investigated in references [44] and [53]. Also transient

morphologies of two-dimensional features similar to those observed in the experiments can

be achieved in the simulations of the aKS equation by tuning the aν and aζ coefficients
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Figure 3.5: Morphology transition with intermediate two-dimensional features obtained

for aν = 0.7 and aζ = 0.001 at t = 17 (a), 27 (b), and 37 (c).

in a way, that the growth of the rotated ripples sets in before the initial pattern has fully

vanished. Such a transition is shown in Fig. 3.5 for aν = 0.7 and aζ = 0.001.

One experimental finding that cannot be explained by the here presented simulations

is the coarsening of both the initial and the rotated ripple pattern as observed by Brown

et al. [44,53]. Wavelength coarsening is generally considered as a truly nonlinear feature.

However, in the aKS simulations, the initial ripple pattern forms in the linear regime

and gets destroyed when the ζx nonlinearity becomes active. Therefore, no coarsening of

the initial pattern can be expected. The rotated pattern also forms in a linear regime

without the possibility of wavelength coarsening. When also the ζy nonlinearity becomes

active, the ripple amplitude saturates but the rotated pattern does not immediately get

destroyed by kinetic roughening. However, no coarsening of the remaining pattern has

been observed.

3.2 The role of damping: ripple coarsening

The isotropic KS equation with damping could successfully explain the experimentally

observed formation of hexagonally ordered dot patterns under normal incidence ion sput-

tering [9,35,63,66]. However, the isotropic dKS equation failed to reproduce the coarsening

of the dot periodicity as observed in some experiments [10,11,65].

The anisotropic dKS (adKS) equation (2.32) has been studied less intensively and
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mainly for rather special cases like structuring with multiple ion beams [65] or to explain

the experimentally observed transition from ripple to dot patterns [64]. In this section, a

detailed study of the adKS equation is presented with special emphasis on the role of the

applied damping. In contrast to the isotropic case, moderate ripple coarsening is observed

in a certain parameter range.

In order to reduce the number of simulation parameters, equation (2.32) has been

transformed to a minimal equation by applying the same procedure as described in the

previous section. The resulting minimal equation is given by

∂h

∂t
= −aκh−

∂2h

∂x2
− aν

∂2h

∂y2
+

(
∂h

∂x

)2

+ aζ

(
∂h

∂y

)2

−∇4h + η (3.5)

with aν and aζ as defined in equation (3.1) and aκ = (K/ν2
x)κ.

Equation (3.5) has been numerically integrated on a grid consisting of 300×300 lateral

nodes with ∆x = ∆y = 1 and ∆t = 0.01. The noise amplitude was Dη = 0.01. To study

the influence on the damping on the surface morphology, aν = 0.1 and aζ = −1 have been

used in the simulations. For these parameters, the growth rate of the ripple amplitude is

Rkc = 0.25. Therefore, for aκ > 0.25, the effective growth rate R∗
kc

= Rkc − aκ becomes

negative and ripple formation is suppressed.

The surface morphology at three different stages of the evolution is shown in Fig. 3.6

for aκ = 0 (first row), 0.10 (second row), and 0.20 (third row). One can clearly see the

influence of the damping term on the pattern evolution. In the beginning, ordered ripple

patterns form for all three values of aκ but with different amplitude (Fig. 3.6, left column).

At t = 50, however, the pattern has already vanished for aκ = 0 (Fig. 3.6(b)), whereas

ripple patterns of different quality are still visible for aκ = 0.10 and 0.20 (Fig. 3.6(e,h)).

With increasing time, the quality of these ripple patterns decreases and increases for

aκ = 0.10 and 0.20, respectively, until a steady state is reached (see Fig. 3.6(f,i)). At the

same time, the periodicity of the ripples is slightly increasing for aκ = 0.10 whereas it

remains rather constant for aκ = 0.20. In the case of aκ = 0, no steady state is observed

and the surface roughens continuously. For long integration times (Fig. 3.6(c)), one can

even observe the formation of cancellation modes in the undamped equation.

The two-dimensional global interface width W has been calculated from the simulated

morphologies and is shown in Fig. 3.7. For aκ = 0, W grows exponentially with time

until a transition to a power law growth occurs when the surface enters the nonlinear

regime at tc ∼ 25. For aκ 6= 0, this power law growth is suppressed and W saturates when
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Figure 3.6: Morphology for aν = 0.1, aζ = −1, and aκ = 0 (first row), 0.10 (second row),

and 0.20 (third row) at t = 20 (left), 50 (center), and 500 (right).

entering the nonlinear regime at tc. With increasing aκ, tc is shifted to later times and

the saturation value of the interface width decreases.

The evolution of the ripple patterns has been studied by evaluating the one-

dimensional power spectral density or structure factor Sx(kx) (see chapter 4.1, equation

(4.6)) in the x direction, i.e. across the ripples. Fig. 3.8 shows Sx(kx) calculated at dif-
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Figure 3.7: Evolution of W (t) for aν = 0.1, aζ = −1 and different values of aκ. All units

are arbitrary.

ferent times from the simulated morphologies for aκ = 0 (Fig. 3.8(a)), 0.10 (Fig. 3.8(b)),

and 0.20 (Fig. 3.8(c)), respectively. In the linear regime at t = 10, for all three values

of aκ the Sx(kx) curves exhibit a BH-like peak that corresponds to the wavelength λ of

the formed ripple pattern and grows exponentially with time. In the nonlinear regime,

however, certain differences can be observed. For aκ = 0 (Fig. 3.8(a)), the peak decays

rather fast until it has completely vanished already at t = 60. During this decay, the

peak shape is changing and the peak maximum shifts slightly to lower kx values. On the

contrary, for κ = 0.20 (Fig. 3.8(c)), the peak gets narrower and higher order peaks ap-

pear, indicating an increased ordering of the ripples. Here, the peak position is constant

in time. For intermediate aκ values as shown in Fig. 3.8(b), however, the peak position is

slightly shifting to lower kn values until a steady state is reached at long times.

Fig. 3.9 gives the ripple wavelength λ as a function of time for the different aκ values.

The wavelength for the different morphologies was determined from the position of the

local maximum of the structure factor curves. In the linear regime, λ remains constant

for all values of aκ. When entering the nonlinear regime at tc, a rapid increase of λ

is observed for aκ = 0 shortly before the periodic ripple structure is lost due to kinetic

roughening. However, in Fig. 3.6(b), one can see that the resulting surface is not randomly
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Figure 3.8: Structure factors Sx(kx) in x direction at six different times for aκ = 0 (a),

0.10 (b), and 0.20 (c). All units are arbitrary.

rough but still exhibits anisotropic structures, the remains of the ripple pattern. The

characteristic length of these structures is significantly larger than the ripple wavelength

which indicates that coarsening is also present in the undamped case but masked by
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Figure 3.9: Evolution of λ for different values of aκ with aν = 0.1 and aζ = −1. All units

are arbitrary.

the kinetic roughening of the surface. With increasing aκ, the ripple pattern is getting

stabilized in the nonlinear regime and the transition to kinetic roughening occurs later. For

aκ = 0.04, the morphology enters a steady state at t ∼ 100 with a remaining ripple pattern

of constant periodicity. A further increase of aκ leads to a decrease of the saturation value

of λ. For aκ ≥ 0.20, nearly no coarsening occurs and λ remains approximately constant

for all times.

Fig. 3.10 shows the exponents of ripple coarsening n for the different aκ values as

determined from power law fits of the wavelength data in the coarsening regime. With

increasing aκ, the coarsening exponent decreases from n ∼ 0.47 at κ = 0.02 to n ∼ 0 at

κ ≥ 0.24. With few exceptions [32], this range covers the coarsening exponents observed

in most experimental studies (cf. e.g. references [29,30,33,76]).

Since no wavelength coarsening has ever been observed in simulations of the well

studied isotropic dKS equation [35, 62, 63, 66], an anisotropy effect appears to be a likely

explanation for the ripple coarsening found in the current simulations. In order to verify

this assumption, the strength of the linear and the nonlinear anisotropy has been varied

at constant damping aκ = 0.04. The linear anisotropy parameter aν was found to have

no influence on the coarsening of the ripples. The nonlinear anisotropy parameter aζ ,

however, strongly affects to evolution of the ripple wavelength as can be seen in Fig. 3.11.
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Figure 3.10: Coarsening exponent n as function of aκ for aν = 0.1 and aζ = −1. All units

are arbitrary.
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are arbitrary.
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The strongest coarsening is observed for aζ = −1. For aζ < −1, cancellation modes

superpose the ripple pattern so that the wavelength cannot be determined reliably. With

increasing aζ , however, the coarsening gets weaker and the final wavelength decreases.

At aζ = 1, nearly no coarsening is observed anymore and the wavelength remains rather

constant.

This aζ dependence indicates that the observed coarsening in the adKS equation indeed

results from a purely nonlinear anisotropy effect which accounts for the absence of dot

coarsening in the isotropic case, i.e. aν = aζ = 1. In addition, the fact that no coarsening

has been observed in the few previous adKS studies [64,65] can be explained by the narrow

range −1 ≤ aζ < 1 in which ripple coarsening takes place.

Compared to the hydrodynamic model developed by Muñoz-Garćıa and coworkers [38],

the ripple coarsening in the adKS equation is a rather small effect. In the hydrodynamic

model, the ripple wavelength was found to increase up to a factor of about 6 [69], whereas

in the present simulations the increase of the wavelength was only about 70% at max-

imum (cf. Fig. 3.9). Nevertheless, the numerical work presented here demonstrates the

applicability of the anisotropic dKS equation to ion erosion systems in the presence of

ripple coarsening. However, in order to understand the origin of ripple coarsening in this

equation, further analytical studies of the adKS equation are needed. In addition, be-

cause of the strong influence of the damping coefficient κ on the coarsening behavior, the

correct determination of κ for an experimental system remains a crucial task. Therefore,

a comprehensive understanding of the physical origin of the damping term in ion erosion

is necessary.



Chapter 4

Dynamic Scaling Theory

Because of the high demand for surfaces with tailored physical properties for various

technological applications, much effort has been spent on the investigation and quantita-

tive description of different (positive and negative) surface growth processes [39,77,78]. In

many cases, the surface morphology was found to exhibit spatial and temporal fluctuations

which obey scaling relations similar to those of equilibrium critical phenomena [40,41]. As

in the case of these phenomena, scaling exponents can be determined which characterize

the fluctuations of the surface and do not depend on microscopic details of the system

under investigation. Based on these scaling exponents, a particular growing surface can

be assigned to a certain universality class and, therefore, to a certain continuum model

that is able to describe the system under investigation [39]. In the following, the relevant

scaling concepts of rough surfaces will be briefly summarized.

4.1 Dynamic scaling concepts

A growing surface is characterized in space and time by its so-called global interface width

W (L, t) =

〈〈[
h (r, t)− h̄(t)

]2
〉1/2

L

〉
η

(4.1)

which describes the fluctuations of surface heights around the mean height h̄(t) =

〈h(r, t)〉L. Here, 〈...〉L denotes spatial averaging over the whole system of size L and 〈...〉η
denotes averaging over different realizations of the noise which in the case of experimental

systems corresponds e.g. to an average over different identically processed samples.

35
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In many growth processes, the global interface width is observed to satisfy the dynamic

scaling Ansatz of Family and Vicsek (FV) [39,79],

W (L, t) = tα/zf
(
L/t1/z

)
(4.2)

with the roughness exponent α, the dynamic exponent z, and the scaling function

f(u) ∝

{
const. if u � 1,

uα if u � 1.
(4.3)

For long times t � Lz, the surface enters a stationary regime in which the correlation

length ξ(t) ∝ t1/z has exceeded the system size L. Then, the surface morphology is

characterized by the roughness exponent α. In the limit of short times t � Lz, the

behavior of the surface is characterized by the so-called growth exponent β = α/z.

For experimental systems, the global interface width is usually not accessible because

of the large system sizes that can easily exceed the centimeter range. Therefore, the

so-called local interface width

w(l, t) =

〈〈[
h (r, t)− h̄(t)

]2
〉1/2

l

〉
η

(4.4)

calculated over an observation window of size l � L is often used to evaluate the dynamics

of a rough surface. In the presence of FV dynamic scaling as in equation (4.2), the local

interface width of a self-affine surface, i.e. a surface without any characteristic length scale

besides the system size, should exhibit the same scaling behavior as the global interface

width [80]. Then, at small length scales l � ξ, w(l, t) ∝ lα. At long distances l � ξ,

the local width scales with time as w(l, t) ∝ tβ. For non-self-affine surfaces, however, the

local and the global interface width may exhibit different scaling behaviors [80, 81].

In experimental as well as theoretical studies, the so-called height-height correlation

function is frequently used to investigate the dynamic scaling behavior of growing surfaces.

The height-height correlation function is defined as

C(l, t) =
〈〈

[h(l + r, t)− h(r, t)]2
〉

L

〉
η

(4.5)

and scales as the square of the local interface width, C(l, t) ∝ w2(l, t). Alternatively, the

scaling behavior of a surface can also be studied in momentum space by evaluating its

power spectral density or structure factor which is related to the height-height correlation

function as

S(k, t) =
〈
h̃(k, t)h̃(−k, t)

〉
η

=
1

2

∑
l

(
δ(k− 0)− eikl

)
C(l, t) (4.6)
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with the Fourier transform of the surface height h̃(k, t) and the spatial frequency k. In

the case of FV scaling, the structure factor can be expressed by the relation [39]

S(k, t) = k−(2α+d)s(kt1/z), (4.7)

with

s(u) ∝

{
const. if u � 1,

u2α+d if u � 1.
(4.8)

Here, d represents the dimensionality of the surface which is e.g. d = 2 if S was calculated

from a two-dimensional surface and d = 1 if S was calculated from a one-dimensional

surface or one-dimensional cuts of a two-dimensional surface. Compared to equation (4.2),

the structure factor has the advantage that only the long wavelength modes contribute to

its scaling what minimizes the influence of finite-size effects or sampling related artifacts

[39].

4.2 An example: the Edwards-Wilkinson equation

In general, the dynamic scaling exponents of a continuum equation can be determined

under the assumption of self-affinity by rescaling the equation in space and time. For

nonlinear equations like the KS equation that cannot be solved in closed form, however,

one usually has to use approximation methods like the dynamic renormalization group

approach [42]. Therefore, in this section, the analytic determination of the dynamic

scaling exponents shall be demonstrated by the example of the linear Edwards-Wilkinson

(EW) equation [39].

The EW equation was the first continuum equation used to study the growth of sur-

faces by particle deposition. It only consists of a linear and a noise term and has the

form [39]
∂h(x, t)

∂t
= ν∇2h(x, t) + η(x, t). (4.9)

If the surface described by this equation is self-affine, then rescaling it both laterally and

vertically by x→ x′ ≡ bx and h → h′ ≡ bαh, respectively, should result in a surface that

is statistically indistinguishable from the original one [39]. In addition, since the interface

width also depends on the time, the time has to be rescaled by t → t′ ≡ bzt.

The delta-correlated noise term in equation (4.9) is defined by

〈η(x, t)η(x′, t′)〉 = 2Dηδ
d(x− x′)δ(t− t′). (4.10)
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Rescaling this relation results in

〈η(bx, bzt)η(bx′, bzt′)〉 = 2Dηδ
d(bx− bx′)δ(bzt− bzt′). (4.11)

By using the property of the delta function δd(ax) = a−dδd(x), one obtains

〈η(bx, bzt)η(bx′, bzt′)〉 = 2Dηb
−(d+z)δd(x− x′)δ(t− t′). (4.12)

Therefore, by rescaling equation (4.9) one finds

bα−z ∂h

∂t
= νbα−2∇2h + b−(d+z)/2η. (4.13)

Multiplying both sides of equation (4.13) by bz−α leads to

∂h

∂t
= νbz−2∇2h + b−d/2+z/2−αη. (4.14)

In order to ensure the scale invariance of the EW equation, each term on the right-hand

side of equation (4.14) must be independent of b. Therefore, α = (2 − d)/2, z = 2, and

β = α/z = (2− d)/4. Note that these results are valid for the EW equation in arbitrary

dimensions d.

4.3 The dynamic scaling behavior of the KS equation

A growing surface that is described by a more complex continuum equation like the

KS equation might exhibit not only one but several spatial and temporal regimes which

are governed by the individual terms present in the corresponding equation. In these

regimes, the surface roughness will thus exhibit a certain spatiotemporal behavior that

is characteristic for the contributing terms. Therefore, by analyzing the dynamic scaling

behavior of a growing surface in space and time, one can gain information about the

contributing linear and nonlinear terms in the corresponding continuum equation.

In numerical integrations of the KS equation in 1 + 1 dimensions, Cuerno and co-

workers have identified the signatures of the contributing terms from the evolution of

the global interface width W [26]. At very short times, W was found to grow with an

exponent βη = 0.5 corresponding to random erosion dominated by the noise term η.

Then, a crossover to βMBE = 0.38 was observed which is the growth exponent of the

linear molecular beam epitaxy (MBE) equation in 1 + 1 dimensions,

∂h

∂t
= −K

∂4h

∂x4
+ η. (4.15)



4.3. THE DYNAMIC SCALING BEHAVIOR OF THE KS EQUATION 39

Table 4.1: Dynamic scaling exponents of the different universality classes contributing to

the evolution of the KS equation in 1 + 1 dimensions.

Name Equation α β z Reference

Random deposition/erosion ∂th = η 1/2 [39]

Linear MBE ∂th = −∂4
xh + η 3/2 3/8 4 [80]

Edwards-Wilkinson ∂th = ∂2
xh + η 1/2 1/4 2 section 4.2

Kardar-Parisi-Zhang ∂th = ∂2
xh + |∂xh|2 + η 1/2 1/3 3/2 [58]

Thus, in this regime, the surface morphology is governed by the surface diffusion term.

The linear MBE growth is followed by a regime that is dominated by the BH instability

resulting in the exponential growth of the interface width. Then, a transition to EW

scaling occurs with βEW = 0.25. Finally, in the nonlinear regime, the 1 + 1 dimensional

KS equation renormalizes to the KPZ equation and W grows with βKPZ = 1/3 [26, 42].

The scaling exponents of the relevant universality classes that contribute to the dynamical

evolution of the KS equation in 1 + 1 and 2 + 1 dimensions are summarized in table 4.1

and 4.2, respectively.

In addition to this complex dynamical behavior, depending on the initial parameters

and boundary conditions, the system might get attracted to different so-called fixed points

that determine different asymptotic states. Therefore, for different experimental parame-

ters, the surface might exhibit different sets of scaling exponents in the asymptotic state

corresponding to different fixed points. For example, the anisotropic KPZ equation (2.31)

Table 4.2: Dynamic scaling exponents of the different universality classes contributing to

the evolution of the isotropic KS equation in 2 + 1 dimensions.

Name Equation α β z Reference

Random deposition/erosion ∂th = η 1/2 [39]

Linear MBE ∂th = −∇4h + η 1 1/4 4 [39]

Edwards-Wilkinson ∂th = ∇2h + η 0 0 2 section 4.2

Kardar-Parisi-Zhang ∂th = ∇2h + |∇h|2 + η 0.38 0.24 1.6 [39]
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is known to have two different fixed points [24]. For ζxζy > 0, the asymptotic scaling

behavior is characterized by a nonlinear isotropic KPZ fixed point whereas ζxζy < 0 leads

to logarithmic EW scaling. Moreover, also the system’s approach towards the asymptotic

state may depend on the boundary conditions, resulting in different transient scaling expo-

nents. Thus, it is rather difficult to determine (all) the correct dynamic scaling exponents

of a given system, especially for an experimental one.

4.4 Scaling of anisotropic surfaces

Anisotropic surfaces may exhibit an even more complex dynamic scaling behavior than

isotropic ones since the anisotropy of the surface is reflected in the correlation function

(4.5) [82–84]. Therefore, different roughness exponents αx,y can be expected for correla-

tions measured in the x and the y direction, respectively. Rescaling along the x direction

in the stationary state, i.e. when neglecting any time dependence, then leads to [83]

C(x, y) ∝ bαxC(b−1x, b−χxy) (4.16)

with the anisotropy exponent χx = αx/αy accounting for the different rescaling factors

along the two directions. Equivalently, rescaling along the y direction will result in

C(x, y) ∝ bαyC(b−χyx, b−1y) (4.17)

with χy = 1/χx = αy/αx. Thus, the scaling behavior of the anisotropic surface in real

space is determined by the two independent exponents αx and αy.

In momentum space, however, similar definitions can be applied to the scaling of the

structure factors of one-dimensional cuts along the x and the y direction what then leads

to [84]

S(kx) ∝ k−(2α̃x+2−χx)
x , (4.18)

S(ky) ∝ k−(2α̃y+2−χy)
y (4.19)

with the two independent roughness exponents in momentum space α̃x,y. Then, the

relation between the roughness exponents in momentum and in real space is given by [84]

α̃x = αx −
1− χx

2
= αx −

1− αx/αy

2
(4.20)

α̃y = αy −
1− χy

2
= αy −

1− αy/αx

2
. (4.21)
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Therefore, the dynamic scaling behavior of the surface is described by four different rough-

ness exponents that characterize the surface along the x or the y direction in momentum

or real space. Only in the case of χx = χy = 1, i.e. isotropic scaling in real space with

αx = αy, α̃x = αx and α̃y = αy.

Equations (4.16) - (4.21) imply that the roughness exponents in momentum space can

be calculated from the real space exponents determined from real space measurements.

However, substituting equations (4.20) and (4.21) into equations (4.18) and (4.19) leads

to

S(kx) ∝ k−(2αx+1)
x , (4.22)

S(ky) ∝ k−(2αy+1)
y . (4.23)

Therefore, in the case of kx,yt
1/z � 1, the real space exponents can be determined from

momentum space measurements by evaluating the one-dimensional structure factors in

the x and the y directions, respectively.



Chapter 5

Experimental Techniques

In the experiments of this work, commercially available epi-polished Si(100) wafers with

a native surface oxide have been bombarded with sub-keV Ar+ ions. The sample sur-

faces have been characterized ex-situ (chapters 6.1 and 6.2) and in-situ (chapter 6.3) by

atomic force microscopy and grazing incidence small angle X-ray scattering (GISAXS),

respectively. The ion beam was extracted from a Kaufman type ion source mounted in a

vacuum chamber with a base pressure of ∼ 10−8 and ∼ 10−7 mbar for the ex-situ investi-

gation and the in-situ investigation, respectively. Note that the very same ion source has

been used in the ex-situ and the in-situ experiments. The sample temperature during the

experiments was always below 200◦C so that no recrystallisation of the amorphous layer

is expected. The applied ion flux was determined by measuring the ion current on the

sample and ranged from 3.5× 1014 to 3.5× 1015 cm−2s−1. Within this range, no influence

of the flux on the surface morphology was observed. No suppression of secondary electrons

has been performed since previous measurements [85] indicated only a minor importance

of secondary electron emission under the current experimental conditions. In addition,

since the here presented experiments investigate the evolution of the surface morphology,

the results of this work are not affected by the absolute fluence values. In the following,

the working principles of the Kaufman ion source and the atomic force microscope as

well as the fundamentals of grazing incidence small angle X-ray scattering shall briefly be

described.

42
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Figure 5.1: Schematic drawing of the Kaufman ion source.

5.1 Kaufman ion source

In this work, a high-flux Kaufman type ion source [86,87] has been used for the sputtering.

This type of ion source was originally developed for electric space propulsion and has

become a standard ion source in many industrial processes, e.g. in ion beam assisted

deposition [88] or surface smoothing [89]. The main components of the Kaufman ion

source are shown in Fig. 5.1. A hot tungsten filament emits electrons into the discharge

chamber that is flooded with a noble or inert gas. These electrons are accelerated towards

an anode ring by applying a positive voltage, the so-called discharge voltage Udis, between

filament and anode. The electrons are confined by a magnetic multipole field in which

they move on spiral trajectories. This prevents the electrons from reaching the anode

except by diffusion. Neutral gas atoms get ionized due to collisions with the energetic

electrons and a plasma is created in the discharge chamber. From this plasma, ions are

extracted through a double grid system consisting of the screen and the accelerator grid.

Each grid consists of hexagonally ordered holes of 1 mm diameter and has an opening

aperture of two inches in diameter. The grids as well as the anode ring are made of
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carbon.

The energy of the extracted ion beam (represented by the so-called beam voltage

Ub) is determined by the sum of Udis and the voltage Uscr applied to the screen grid,

Ub = Udis + Uscr. By applying a negative voltage Uacc to the accelerator grid, ions get

extracted from the plasma and are accelerated towards this grid. The value of Uacc affects

the shape and the divergence of the ion beam. However, in the current experiments, no

influence of Uacc on the surface morphology has been observed. The same holds also for

the discharge voltage Udis. Therefore, in the experiments of this work, Uacc was fixed

at −200 V and Udis at ∼ 100 V. The working pressure in the vacuum chamber during

operation was ∼ 2× 10−4 mbar.

From the working principle of the Kaufman ion source, it is clear that the extracted

ion beam is contaminated with tungsten from the filament and carbon from the grids.

In addition, if the sample is smaller that the beam diameter, sputtered material from

the sample holder or the vacuum chamber might get deposited on the sample surface

leading to additional metal contaminations. However, for the samples of the current

work, Rutherford backscattering spectroscopy (RBS) measurements showed only minor

contaminations of less than one monolayer on the sputtered surfaces.

5.2 Atomic force microscopy

Since its invention in 1986 by Binnig et al. [90], the atomic force microscope (AFM) has

become a popular tool for the investigation of nanoscale and atomic features on various

surfaces [91,92]. An AFM essentially consists of a very sharp tip mounted on a cantilever

that is scanned across the sample surface. In virtually all AFM systems, piezoelectric

scanners with high lateral precision are used [93]. When approaching the surface, the tip

becomes subject to several attractive and repulsive interatomic forces [92]. This results

in a macroscopic bending of the cantilever. In commercial AFM systems, this bending is

usually measured by the deflection of a laser beam that is reflected from the backside of

the cantilever.

Depending on the type of force that is acting on the tip, one usually distinguishes

three operation types in atomic force microscopy. When the AFM is operated in contact

mode, the tip is so close to the sample surface that the interaction between tip and

surface is strongly influenced by the short distance repulsive forces caused by the Pauli

exclusion. However, due to capillary or adhesive forces, the net interaction can still be of
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attractive nature. In the non-contact mode, the cantilever is vibrated near its resonant

frequency with an amplitude up to some ten nanometers. Since the distance between tip

and surface is slightly larger than the amplitude, the interaction is fully governed by long

range attractive van der Waals forces. Depending on sample and tip, however, electrostatic

and magnetic forces (attractive and repulsive) may also contribute. Force variations result

in changes of the resonant frequency or the vibration amplitude and can, therefore, be

detected. Intermittent-contact or tapping mode atomic force microscopy is similar

to the AFM operation in the non-contact mode, except that the vibrating cantilever is

brought closer to the surface. Thus, at the bottom of each travel, the tip probes also the

repulsive forces; it ’taps’ the surface.

All the AFM measurements of this work have been performed in air using a

MultiModeTM scanning probe microscope with a NanoScope IV controller from Veeco

Instruments in tapping mode. Images were usually taken with 1024 points per scan line.

PointProber Plus tips (PPP-NCLR) for non-contact and tapping mode operation from

NANOSENSORSTM have been used. These tips are shaped like polygon based pyramids

of 10 to 15 µm height. The tip apex has a radius typically smaller than 7 nm and a

half cone angle of less then 10◦. The cantilevers are made of highly doped silicon with a

reflective aluminum coating on the detector side and have a nominal length of 225 µm.

In order to determine the dynamic scaling behavior of the imaged surface, the one-

dimensional structure factors in the direction normal and parallel to the ion beam, re-

spectively, have been calculated from the AFM images according to equation (4.6). This

is demonstrated in Fig. 5.2 which shows the AFM image of a sputtered Si(100) surface

(Fig. 5.2(a)) and the corresponding structure factor curves Sn,p(kn,p) (Fig. 5.2(b)). The

Sn(kn) (Sp(kp)) curve was obtained by calculating the one-dimensional structure factor of

every row (column) of pixels of the image in Fig. 5.2(a) and subsequent averaging over the

single rows (columns). In order to minimize the influence of measurement artifacts, the

structure factor curves used in the scaling analysis of chapter 6.2 have then been averaged

over six AFM images taken at different positions on the surfaces of up to five identically

treated samples.

5.3 Grazing incidence small angle X-ray scattering

The in-situ investigations of the surface evolution have been performed at the bending

magnet beam line BM5 at the European Synchrotron Radiation Facility (ESRF) in Greno-
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Figure 5.2: (a) AFM image of Si(100) surface sputtered with 500 eV Ar+ ions under 67◦

incidence at a fluence of 5 × 1017 cm2. The white arrow gives the beam direction. (b)

Corresponding one-dimensional structure factor curves in the direction normal (red) and

parallel (blue) to the direction of the ion beam, respectively.

ble, France. The BM5 beam line is dedicated to the fabrication and characterization of

super-smooth surfaces, thin films, and multilayers for the application in X-ray optics.

Therefore, this beam line is equipped with a sophisticated setup for the in-situ and real-

time investigation of surfaces during their processing under high-vacuum conditions. A

scheme of the experimental setup as used in the present work is given in Fig. 5.3. In this

geometry, the ripples form normal to the direction of the ion beam and, therefore, parallel

to the direction of the incident X-ray beam.

The GISAXS technique measures diffuse scattering at rough surfaces under grazing

incident and exit angles. It is not sensitive to the crystalline structure of the surface

but only to the contrast in electron density and, therefore, to variations of the refractive

index. This way, information about correlations in the surface roughness can be obtained.

The experiments of this work have been performed at a fixed incident angle of θ = 0.3◦

with respect to the surface and an X-ray energy of 17.5 keV. The diffuse scattering has

been monitored using a cryogenically cooled charge coupled device (CCD) camera with

1024 × 256 pixels and a pixel size of 19 µm. In order to avoid saturation of the camera,

the specular beam has been blocked by a beam stop.

Fig. 5.4 shows a scattering diagram as recorded after sputtering a Si(100) surface with
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Figure 5.3: Experimental setup at the ESRF beam line BM5 with ion source IS, beam

stop BS, and transmission detector TD.

1.7× 1018 500 eV Ar ions per cm2 under 67◦ incidence. One can clearly see the satellite

peaks that correspond to the spatial frequency kc of the ripple pattern. From such a

scattering diagram, one-dimensional cuts Sn,p of the two-dimensional structure factor of

the surface can be extracted in the direction normal and parallel to the ion beam. For

this, intensity cuts Πn,p of the scattering diagram have been taken along the lines shown

in Fig. 5.4. In the direction parallel to the ion beam, the cut Πp (white line in Fig. 5.4) is

directly proportional to the structure factor Sp. In the direction parallel to the ion beam,

however, the cut Πn (black line in Fig. 5.4) is related to the structure factor Sn by [94]

Πn (θs) =
p3 |(1− ε) g (θ) g (θs)|2

16π sin(θ)
Sn (kn) (5.1)

with the scattering angle θs, the wave number p of the incident X-ray light, the spatial
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beam stop

Figure 5.4: Scattering diagram of Si(100) after sputtering with 500 eV Ar+ ions under

67◦ ion incidence at a total fluence of 1.7× 1018 cm−2.

frequency kn, the dielectric function of silicon ε, and the function

g (θ) =
2 sin(θ)

sin(θ) +
√

ε− cos2(θ)
. (5.2)

For an anisotropic surface, the so extracted one-dimensional cuts of the two-

dimensional structure factor follow the same scaling relations as the one-dimensional

structure factors [84]. Thus, one can determine the dynamic scaling properties of the

surface in the direction normal and parallel to the ion beam, respectively, as described

in chapter 4. However, this approach has the disadvantage that different regions in k

space are probed in the different directions. Therefore, the one-dimensional local inter-

face widths cannot be measured reliably. Nevertheless, the two-dimensional local interface

width w can be easily estimated from the total integrated scattering (TIS) by the rela-

tion [95]

w(t) ∼ 1

2p sin(θ)

√
TIS(t)

RΣ(t)
(5.3)

with RΣ being the total Fresnel reflectivity. One should note, however, that this method

for determining w is very sensitive to the alignment of the sample and the X-ray beam

and, therefore, causes rather large uncertainties of the w values.



Chapter 6

High-Fluence Ion Sputtering of

Silicon Surfaces

In the linear regime of pattern evolution, all the current nonlinear continuum models

described in section 2.3 behave similar to the linear BH equation. For the nonlinear regime,

however, the different models make different and sometimes contradictory predictions.

Therefore, a distinct demand for high fluence experiments has developed which investigate

the evolution of the surface morphology in the nonlinear regime. In this chapter, the

morphology evolution of silicon surfaces during high-fluence low-energy ion sputtering

shall be presented and discussed with respect to different nonlinear continuum models.

6.1 Formation of two ripple modes

In order to study the evolution of the surface morphology during high-fluence ion sput-

tering, Si(100) samples were sputtered with Ar ions of 300 and 500 eV energy at different

fluences. The angle of incidence was θion = 67◦ with respect to the surface normal. The

applied fluence ranged from 5× 1016 to 1× 1020 cm−2 and from 1× 1017 to 5× 1019 cm−2

for 500 and 300 eV, respectively. Fig. 6.1(a-c) shows corresponding AFM images obtained

after 300 eV bombardment: at low fluence (Fig. 6.1(a), Φ = 1 × 1017 cm−2), the surface

exhibits a pattern of shallow ripples oriented normal to the ion beam projection. In the

following this pattern is called normal pattern. The two-dimensional Fourier transform

(FFT) of this image (see inset of Fig. 1(a)) shows two clearly separated side peaks. The

position of the side peaks corresponds to the periodicity of the pattern, yielding a nor-

49
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Figure 6.1: AFM images of Si(100) after sputtering with 300 eV Ar+ ions at fluences

Φ = 1× 1017 (a,d), 5× 1017 (b,e), and 1× 1019 cm−2 (c,f). Intensity scales are 7 nm (a),

10 nm (b), 16 nm (c), 8 nm (d), 13 nm (e), and 28 nm (f). The white arrows indicate

the beam direction. Insets: corresponding FFT ranging from -75 to +75 µm−1 (a-c) and

from -4 to +4 µm−1 (d-f).

mal wavelength λn ∼ 20 nm. With increasing fluence (Fig. 6.1(b), Φ = 5 × 1017 cm−2),

corrugations overlay the normal pattern and get more pronounced until they become the

dominating feature of the surface (Fig. 6.1(c), Φ = 1 × 1019 cm−2). At higher fluences,

the surface reaches a steady state with reduced order and quality of the normal ripples.

Larger area AFM scans (Fig. 6.1(d-f)) reveal that the corrugations overlaying the nor-

mal pattern become anisotropic with increasing fluence and finally form a quasi-periodic

pattern at high fluences, which is oriented parallel to the beam direction (Fig. 6.1(f)). This

pattern is referred to as parallel pattern. Although the parallel pattern exhibits a much

lower degree of order, side peaks can be identified (indicated by the white arrows) in the
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Figure 6.2: Evolution of (a) normal wavelength λn and (b) parallel periodicity λp at 300 eV

and 500 eV. The solid lines in (a) represent power law fits, yielding coarsening exponents

of n = 0.085 ± 0.006 and n = 0.084 ± 0.007 for 500 eV and 300 eV, respectively. The

dotted lines represent logarithmic fits.

FFT, as shown in the inset of Fig. 6.1(f). The side peaks indicate the quasi-periodicity of

the parallel pattern and their position yields a much larger spatial periodicity of λp ∼ 900

nm.

In Fig. 6.2(a) the fluence dependence of the normal wavelength λn, determined from

the FFT of each AFM image, is depicted. It can be seen that λn increases with the

fluence Φ until it saturates at Φ ∼ 1019 cm−2. The solid lines in Fig. 6.2(a) represent
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Figure 6.3: Ratio of parallel to normal periodicity λp/λn over fluence for 300 eV and 500

eV.

power law fits, λn ∝ Φn, with a coarsening exponent n ∼ 0.08. Note, however, that

the data can as well be fitted by logarithmic functions, λn ∝ log Φ (dotted lines in Fig.

6.2(a)). In addition, λn decreases with ion energy, indicating that ion-induced diffusion is

the dominating smoothing process (cf. chapter 2.3.3). This is also in agreement with the

observed independence of λn of the ion flux. The first parallel ripples with distinguishable

periodicity were observed at Φ = 5 × 1018 and Φ = 2.3 × 1018 cm−2 for 500 and 300

eV, respectively. The evolution of λp is shown in Fig. 6.2(b). Again, coarsening with

increasing Φ is observed. Fig. 6.3 depicts the ratio of the periodicities λp/λn. This ratio is

quite constant in the investigated fluence range, indicating that both ripple modes exhibit

similar coarsening behavior.

The evolution of the local interface width w as obtained from the AFM images is shown

in Fig. 6.4. For both ion energies, w increases following a power law until it saturates at

high fluences. For the higher energy, this saturation is reached earlier. This can probably

be attributed to the higher erosion rate at this energy. Interestingly, the value of the

saturated interface width is significantly larger for the lower energy. A similar behavior

has already been observed for oxygen sputtering of silicon [96]. For both energies, power

law fits yield a similar growth exponent β ∼ 0.27.

One should note that the local interface width is not determined by the amplitude of
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Figure 6.4: Local interface width w vs. fluence. The solid lines represent power law fits,

yielding growth exponents of β = 0.28 ± 0.03 and β = 0.27 ± 0.02 for 500 eV and 300

eV, respectively.

the normal ripple pattern but rather by the larger corrugations and the parallel pattern,

respectively. This is shown in Fig. 6.5 that depicts the evolution of the ripple amplitude

a, defined as the half of the average peak-to-peak height of the ripples, for the case of 500

eV sputtering. In the low fluence regime, the amplitude a is increasing from initially 0.4

nm to a maximum value of about 0.8 nm at Φ ' 5× 1017 cm−2. For higher fluences, the

amplitude decreases again and finally saturates at a value of asat ' 0.6 nm. A similar

overshooting before saturation has already been observed in previous experiments under

normal ion incidence [28] and simulations of the anisotropic KS equation [25]. Comparison

with the evolution of the local interface width as given in Fig. 6.4 shows that the local

interface width still increases long after the ripple amplitude has saturated.

There are several studies investigating the evolution of ion-induced ripple patterns on

silicon. For near-normal ion incidence, Ziberi et al. observed the formation of ripples

with constant wavelength [29]. On the contrary, other experiments showed no pattern

formation at low incidence angles [8, 33, 97] what agrees with the current experimental

observations where the surface remained flat at near-normal incidence. Nevertheless,

studies of the hydrodynamic model of ion erosion (see chapter 2.3.4) pointed out that
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Figure 6.5: Evolution of the ripple amplitude a versus fluence for 500 eV.

the coarsening of the ripple wavelength depends on the values and relative signs of the

nonlinear coefficients and, therefore, also on the angle of incidence [38,69].

Although similar morphologies as presented here were found in experiments done

under nearly identical conditions at low and intermediate fluences by Alkemade et al.,

stronger coarsening of the ripples was observed [31]. However, O+
2 ions have been used

for the sputtering. This affects the chemistry of the Si surface and could therefore also

influence the dynamics of the patterns. Other studies of the evolution of rippled silicon

surfaces at low [98] and high [33] ion energies report the formation of faceted, sawtooth-

like structures at high fluences that probably result from geometrical shadowing. The

corrugations observed in the present experiments, however, do not exhibit a sawtooth-like

shape. This indicates that shadowing effects do not play a role in this experimental system

(67◦ incidence, ∼ 1.5 nm ripple height). This is in agreement with general geometrical

considerations [99].

In recent experiments performed at elevated temperature (i.e. with isotropic thermal

diffusion dominating the surface relaxation), Brown et al. observed transient topographies

on the crystalline Si(111) surface [44,53]. In a transition regime, an initial ripple pattern

oriented normal to the beam direction is superposed by a parallel ripple pattern. The

normal pattern soon vanishes, resulting in a pattern rotation. In contrast to these findings,
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no transition regime is observed in the experiments presented here. Even for the highest

fluence of 1× 1020 cm−2 both patterns are still present. Moreover, the normal pattern is

not expected to decay any further at higher fluences because the surface enters a steady

state already at a fluence of 1019 cm−2. In the high temperature experiments, exponential

coarsening of both ripple modes was observed and attributed to the step edge dynamics

of the crystalline surface [53]. In contrast and as described above, the experiments of

the present work were performed at moderate temperature, leading to an immediate

amorphization of the Si surface due to ion impact. Therefore, this interpretation offers

no suitable explanation for the present findings. The here presented observations rather

suggest that coarsening of both normal and parallel ripples is an inherent feature of the

sputtering process.

6.2 Anisotropic scaling behavior

In order to further characterize the surface morphology, the dynamic scaling behavior of

the Si surface during sputtering at 500 eV has been investigated. For this, the structure

factor S(k, t) =
〈
h̃(k, t)h̃(−k, t)

〉
η

of the surface has been evaluated at the different

fluences. Since the observed surface morphology is highly anisotropic, the one-dimensional

structure factor Sn,p(kn,p) has been calculated in the direction normal and parallel to the

projected direction of the ion beam, respectively, as described in section 5.2.

In Fig. 6.6(a), the structure factor curves in the direction normal to the ion beam,

Sn(kn), are depicted for different fluences. At large values of kn, the Sn curves all collapse.

The slope m (in the log-log plot) of the curves in this regime is about −4, corresponding

to a roughness exponent of 1.5 (cf. equation (4.22)). At small kn values, however, Sn(kn)

increases with fluence and a second scaling regime develops. The roughness exponent in

this long-range scaling regime is αn = 0.76 ± 0.04. For high fluences Φ > 1019 cm−2,

the Sn curves collapse also at low kn. However, at lowest kn values, a slight rounding of

the structure factor curves is observed even for the highest fluence applied. This might

indicate that the large-scale morphology has not fully saturated yet.

The structure factor Sp(kp) calculated in the direction parallel to the ion beam is given

in Fig. 6.6(b). In this direction, for Φ ≥ 5 × 1016 cm−2, a peak appears at the spatial

frequency k∗
p corresponding to the wavelength λ of the ripple pattern. For kp � k∗

p, the

data is consistent with a slope m = −4. With increasing fluence, the ripples coarsen and

the position of the peak is shifting to smaller kp values. As in the direction normal to
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Figure 6.6: Structure factors Sn,p(kn,p) in the direction normal (a) and parallel (b) to the

ion beam for Si(100) sputtered at different fluences. The straight solid lines correspond

to Sn,p ∼ km
n,p.

the ion beam, the structure factor increases with fluence for kp � k∗
p and again shows a

power-law behavior at high fluences. Here, the roughness exponent was determined to be

αp = 0.41 ± 0.04. As in the n direction, the Sp curves of the highest fluences exhibit a

slight rounding at lowest kp.

Note that the apparent power law behavior of the Sn,p curves at low kn,p for the lowest

fluence given in Fig. 6.6(a,b) originates from the virgin Si substrate. With increasing

fluence, however, the influence of the substrate vanishes.
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Figure 6.7: Collapsed structure factor curves at low fluences in the direction normal

(a) and parallel (b) to the ion beam, respectively. The collapses were obtained using

αn,p = 1.5 and zn,p = 4.5. The straight solid lines have a slope m.

From equations (4.7) and (4.8) it follows that plotting the rescaled structure factor

S(k, t)k(2α+1) versus kt1/z for the different times, all curves should collapse into a single

one. In this way, the dynamic exponents zn,p can be measured by using the previously

determined roughness exponents αn,p. Fig. 6.7(a,b) shows the collapsed structure factor

curves for low fluences. In both directions, a good collapse is obtained for αn,p = 1.5 and

zn,p = 4.5. The low-kn,p slope of the collapsed structure factor curves should be given by

m = 2αn,p + 1 = 4. This behavior is reasonably well confirmed as can be seen from the
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straight solid lines in Fig. 6.7.

The observed peak in the structure factor Sp in the direction parallel to the ion beam

with the -4 slope at large kp values (cf. Fig. 6.6(b)) indicates the presence of a KS like

instability in this direction [26]. The orientation of the ripples with respect to the incident

ion beam is determined by the signs of the linear coefficients: the wave vector of the

observed ripple structure is parallel to the direction with the smallest negative ν (cf.

chapter 2.2). Therefore, for the here presented experiment νp < νn. Concerning the

value of νn, three cases can be distinguished, as follows from the exact form of S(k, t) for

the linear BH equation, that is accurate for small time and length scales. Note that in

principle the very short-distance behavior of equation (2.26) is dominated by the diffusion

term, inducing the scaling behavior of the linear MBE equation (4.15), whose exponent

values in (1+1) dimensions are αMBE = 3/2 and zMBE = 4 (cf. table 4.1).

(i) νn > 0. For a sizeable and positive νn the scaling behavior should cross over from

linear MBE to EW type [39], the power characterizing the Sn(kn) decay with kn clearly

departing from the −4 value at intermediate time and length scales.

(ii) |νn| ≈ 0. For |νn| close to zero, no transition to EW scaling will occur and the 1D

linear MBE exponents will be valid even for long times.

(iii) 0 > νn > νp. A negative νn value will introduce a second instability in the n

direction. Although the instability in the p direction will overcome this second instability

very soon, the corresponding structure factor Sn will exhibit a local maximum at k∗
n =√

|νn|/2D. However, for |νn| � |νp|, the local maximum might be too small to be

recognized in the structure factor curve.

The experimental Sn curves shown in Fig. 6.6(a) do not exhibit a local maximum.

The determined low-fluence behavior for the n direction Sn(kn) ∼ k−4
n as induced by the

diffusion term holds even at the highest applied fluence of Φ = 1× 1020 cm−2. Therefore,

the second case with |νn| ≈ 0 appears most likely.

The collapsed structure factor curves at high fluences are shown in Fig. 6.8(a,b). The

high-kn,p part of the curves was cut. In the n direction, again a good collapse is obtained.

In the p direction, however, the collapse is less perfect. This can be attributed to the

fact that the p direction is also the slow-scan direction of the AFM and, therefore, rather

sensitive to sampling related artifacts especially at long wavelengths. Nevertheless, the

obtained collapse is still reasonable as is indicated again by the straight black lines in Fig.

6.8(a,b) that have slopes of m = 2αn+1 = 2.52 and m = 2αp+1 = 1.82, respectively. After

the system reached its stationary state, one expects β = αn,p/zn,p = 0 (see equations (4.2)
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Figure 6.8: Collapsed structure factor curves for kn,p � k∗
p at high fluences in the direction

normal (a) and parallel (b) to the ion beam, respectively. The collapses were obtained

using αn = 0.76, zn = 8, αp = 0.41, and zp = 9. The straight solid lines have a slope m.

and (4.3)) and, therefore, very large effective zn,p values, zn,p → ∞. The data collapses

shown in Fig. 6.8, however, were obtained for zn = 8 and zp = 9. Although these values

are by a factor of 2 larger than the ones obtained at low fluences and large kn,p, they are

still of comparable magnitude and not close to infinity. This supports the interpretation

that the system is not saturated yet as already indicated by the rounding of Sn,p(kn,p, t)

at small kn,p for the highest fluences (cf. Fig. 6.6). However, no final conclusions on that

issue can be drawn from the current data set.
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Although the long-range scaling behavior of the anisotropic KS equation (2.26) is

still unexplored, two different long-time scaling regimes are expected depending on the

relative signs of the nonlinear coefficients ζn and ζp. For ζnζp > 0, an algebraic scaling

behavior similar to the KPZ equation (2.31) is expected whereas ζnζp < 0 might result

in isotropic logarithmic scaling [24, 34]. However, for ζnζp < 0 the appearance of rotated

ripples (so-called cancellation modes) has been observed (see chapter 3.1).

For the current experimental conditions, one would expect ζnζp < 0 (see equations

(2.27) and (2.28)). However, even for the highest applied fluence of Φ = 1 × 1020 cm−2,

neither the appearance of rotated ripple structures nor isotropic logarithmic scaling is

observed. On the contrary, for Φ ≥ 1019 cm−2, the morphology exhibits anisotropic

algebraic scaling at large length scales with αn = 0.76 ± 0.04 and αp = 0.41 ± 0.04.

Although these exponents agree fairly well with the exponents found for the isotropic

KS equation [70] (early-time regime) and the isotropic KPZ equation [39], respectively,

the strong degree of anisotropy in the system rather suggests that this similarity is just

coincidental.

In equation (2.26), the only term breaking the x → −x symmetry is the one with

parameter γ. However, in order to fully describe the nonlinear evolution of ion sputtered

surfaces, the general continuum equation (2.33) of ion erosion was derived by Makeev

et al. [34]. In this model, dispersive nonlinearities with coefficients ξn,p appear. Due to

the additional nonlinearities, this general equation has a rather complex parameter space

and different scaling behaviors may be expected depending on the nonlinear coefficients.

Although the dynamic scaling exponents of equation (2.33) still have to be clarified, ad-

ditional information from a different particular case of this equation is available [100].

Schmittmann et al. [84] have performed a renormalization group calculation for the (lin-

early stable) case in which νn,p > 0, while γ = Ωn = Ωp = ζn,p = 0. Remarkably, they find

parameter regimes in which the stationary state is characterized by strong anisotropy, in

the sense that χn,p 6= 1 and thus αn 6= αp (see chapter 4.4).

Another experimental observation that can be explained neither with the KS nor with

the general equation is the coarsening of the ripple wavelength. However, the recent

hydrodynamical model (cf. chapter 2.3.4) developed by Muñoz-Garćıa and coworkers is

able to show ripple coarsening at intermediate times [38, 68, 69]. In this model, the

additional conserved KPZ nonlinearities are seen to induce the coarsening of the ripples at

intermediate times. At long times, however, the nonconserved KPZ nonlinearities become

dominant and coarsening stops [68,69]. In this regime, the surface shows dynamic scaling
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at large lateral scales while conserving the ripple pattern at small scales [69]. Since the

transition to this regime is induced by the nonconserved KPZ terms, it is accompanied by

a saturation of the ripple amplitude [68,69]. In the present experimental results, however,

coarsening is observed even after the ripple amplitude has saturated (cf. Fig. 6.2 and 6.5).

This again might indicate the relevance of the additional nonlinearities ξn,p [100], whose

dynamical role has not been completely assessed (other than, e.g. their contribution to

ripple motion with a nonuniform velocity) [68], or perhaps the relevance of relaxation

mechanisms other than those considered in two-field models [101]. Nevertheless, one is

naturally led to considering the hydrodynamic model as a potential continuum description

of the present experiments.

6.3 Dependence on the angle of incidence

An important experimental parameter which is known to significantly influence the surface

morphology and evolution is the angle of ion incidence (see e.g. references [8] and [30]).

Recently, it was even shown that small variations in the angle of incidence can induce

a transition from ripple to tetragonally ordered dot patterns [43]. In addition, different

continuum models make certain predictions on the influence of the incident angle on

the dynamic scaling [24] and the coarsening behavior [38, 68] of the ripple morphologies.

Therefore, the dynamic scaling behavior of the Si(100) surfaces has been studied in-situ

during sputtering at slightly different incident angles. In these experiments, the Si(100)

samples have been sputtered with a constant (corrected) surface flux of 1.4 × 1015 Ar+

ions per cm2s. The ion energy was fixed at 500 eV and the incident angle θion was

varied between 65◦ and 69◦ with respect to the surface normal. The sputtering has been

performed in consecutive steps and the surface morphology has been characterized in-

between by grazing incidence small angle X-ray scattering (GISAXS).

The AFM images of the final surface morphologies after sputtering with the highest

fluences for three different incident angles are shown in Fig. 6.9. All three surfaces exhibit

qualitatively similar ripple patterns oriented normal to the direction of the ion beam.

The patterns are overlayed by larger features as observed in the ex-situ study (see section

6.1) indicating the presence of kinetic roughening at intermediate length scales. For

θion = 65◦ and 67◦ (Fig. 6.9(a,b)), also these structures appear similar. However, for

θion = 69◦ (Fig. 6.9(c)), the superposed structures are less pronounced and the ripple

patterns appears more regular. For even lager angles of incidence, the surface enters
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Figure 6.9: AFM images of the Si(100) surfaces after sputtering with the highest fluence at

different incident angles: (a) θion = 65◦, Φ = 1.4×1019 cm−2, (b) θion = 67◦, Φ = 1.6×1019

cm−2, and (c) θion = 69◦, Φ = 1.6× 1019 cm−2. Intensity scales are 8.5 nm (a), 9 nm (b),

and 13 nm (c). The white arrows indicate the beam direction.

a geometrical shadowing regime already at intermediate fluences in which the surface

morphology is dominated by faceted, sawtooth-like features similar to those reported in

literature [33,98].

In order to analyze the dynamic scaling behavior of the large scale surface morphology,

one-dimensional cuts of the two-dimensional structure factors of the sputtered surfaces

have been determined from the scattering diagrams as described in chapter 5.3. Fig. 6.10

shows structure factor curves for 65◦ ion incidence at different fluences. At low fluences,

the roughness of the sample is correlated within the whole kn range under investigation.

This correlation results from the initial surface of the virgin sample. With increasing

sputter time, however, another scaling regime develops at high kn whereas the power

spectrum is rounded at low kn values. This observation supports the previous assumption

based on the ex-situ AFM data (see section 6.2) that even for the longest sputter times

the system has not yet reached its stationary state. From the slope of the structure factor

at high kn, a roughness exponent αn = 0.81± 0.05 has been determined. In the direction

parallel to the ion beam (Fig. 6.10(b)), the Sp(kp) curves exhibit ripple coarsening as

indicated by the shift of the local maximum with increasing fluence. For low kp values,

again the development of a scaling regime is observed. The slope of the structure factor

curves at long times gives a roughness exponent αp = 0.04± 0.02.
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Figure 6.10: Structure factors obtained from the scattering diagrams for 65◦ ion incidence

in the direction normal (a) and parallel (b) to the ion beam. The straight solid lines

correspond to Sn,p ∼ km
n,p.

Fig. 6.11 depicts some structure factor curves Sn,p(kn,p) of the sample sputtered under

69◦ incidence at four different fluences. Qualitatively, these curves behave similar to

the ones obtained under 65◦ incidence (cf. Fig. 6.10). However, the roughness exponent

determined at highest fluences, αn = 0.46 ± 0.07, is significantly smaller than for 65◦

incidence and agrees fairly well with the roughness exponent obtained in the direction

parallel to the ion beam, αp = 0.49 ± 0.02. Therefore, the surface exhibits isotropic
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Figure 6.11: Structure factors obtained from the scattering diagrams for 69◦ ion incidence

in the direction normal (a) and parallel (b) to the ion beam. The straight solid lines

correspond to Sn,p ∼ km
n,p.

scaling of the large scale morphology for sputtering under 69◦ ion incidence.

In order to verify the accuracy of the methods for determining the scaling exponents

in-situ and ex-situ, the experiment for 67◦ incidence described in the previous sections

has been repeated and the scaling exponents have been measured in-situ as for the other

two incident angles θ = 65◦ and θ = 69◦. The so determined roughness exponents

αn = 0.72± 0.05 and αp = 0.42± 0.02 agree fairly well with the ones obtained under the
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Figure 6.12: Roughness exponents for all three incident angles in the direction normal

and parallel to the ion beam, respectively.

same experimental conditions from ex-situ AFM, αn = 0.76± 0.04 and αp = 0.41± 0.04,

as shown in section 6.2.

Fig. 6.12 summarizes the determined values of the roughness exponents αn,p for the

three incident angles. At θion = 65◦, a strong scaling anisotropy is observed with αn =

0.81± 0.05 and αp = 0.04± 0.02. At θion = 67◦, however, this anisotropy is substantially

reduced, and at θion = 69◦, the scaling of the surface becomes isotropic with αp ≈ αn =

0.46± 0.07.

The two-dimensional interface width w has been calculated from the total integrated

scattering (TIS) according to equation (5.3). Fig. 6.13(a) shows the evolution of w (nor-

malized to the interface width w0 of the the virgin substrate) for the three angles under

investigation. The relative interface width increases roughly with the power of the fluence

and is similar for all angles. The growth exponent β is approximately 0.20 for all three

angles. The evolution of the ripple wavelength λ, as determined from the position of the

local maxima of the Sp curves of all three angles, is depicted in Fig. 6.13(b). Within the

experimental errors, the same absolute values and time dependencies are observed. The

determined coarsening exponent is n ≈ 0.09.

Slight variations of the incident angle by ∆θion = ±2◦ do neither influence the rough-
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Figure 6.13: Evolution of the normalized interface width w/w0 (a) and the ripple wave-

length λ (b) for all three incident angles. The thick lines correspond to power law de-

pendencies with a growth exponent β = 0.2 (a) and a coarsening exponent n = 0.09 (b),

respectively.

ening dynamics of the surface nor the coarsening of the ripple wavelength. However,

the roughness exponents are strongly affected by these small variations. The observed

transition from anisotropic to isotropic scaling can be interpreted in terms of equilibrium

phase transitions [75]. At θion = 69◦, the system is neatly balanced at a fixed point sim-

ilar to the critical point in equilibrium systems [41]. In this fixed point, the anisotropy

exponents χx = χy = 1 (see chapter 4.4) with the critical roughness exponents becoming

αp ≈ αn = 0.46± 0.07. A slight variation of the incident angle (analogous to the temper-

ature in equilibrium phase transitions) will lead to a detuning of the system and cause it
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to get attracted no longer by this fixed point but by another one. For 65◦ ≤ θion < 69◦,

the system seems to be attracted to an anisotropic fixed point with anisotropic critical

exponents and χx 6= χy. However, since a rather smooth transition from isotropic to

anisotropic scaling is observed, the measured anisotropic roughness exponents are proba-

bly not the critical exponents of this fixed point but intermediate ones that will further

change with increasing time as the system approaches its asymptotic state. Nevertheless,

this observation indicates the presence of at least two different fixed points, an isotropic

and an anisotropic one, in this experimental system.

For the isotropic stochastic KS equation in 2+1 dimensions that corresponds to normal

ion incidence, analytical [42] and numerical [42,102] studies indicate the existence of two

different fixed points: a KPZ and an EW fixed point. Based on general considerations [24],

the presence of such an isotropic EW and an isotropic KPZ fixed point is expected also in

the anisotropic KS equation. In the case of its generalizations (cf. chapter 2.3), however,

the number of fixed points and the values of their corresponding critical exponents are

still to be investigated. Nevertheless, one should note that the experimentally measured

isotropic exponents αn,p = 0.46 ± 0.07 and β ≈ 0.20 ± 0.06 for 69◦ ion incidence agree

reasonably well with those of the isotropic KPZ equation, αKPZ = 0.38 and βKPZ =

0.24. This might indicate the existence of such an isotropic KPZ fixed point also in off-

normal ion erosion systems. Since the results of the ex-situ AFM investigation presented

in the previous section strongly support the hydrodynamic model of ion erosion as a

potential continuum description for the present experimental system, the existence of such

an isotropic fixed point can be used as a criterion for the verification of this assumption.

For this, however, future theoretical work is required in order to explore the dynamic

scaling behavior of this rather complex model.
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Conclusions

In this work, the evolution of amorphous surfaces during low-energy ion sputtering at

oblique incident angles has been studied in experiment and simulation. The temporal

surface evolution can be divided in two regimes. In the linear regime at short sputter

times, ordered ripple patterns form by self-organization and grow in amplitude. Then,

at longer times, a transition to a nonlinear regime occurs in which the ripple amplitude

saturates. The investigation of the surface evolution in this nonlinear regime was the

main focus of this work.

Since the various continuum models of ion erosion are quite well studied in the isotropic

but not in the anisotropic case, numerical integrations of the aKS equation have been per-

formed in order to investigate the influence of anisotropy on the surface morphology. For

a strong nonlinear anisotropy, a rotation of the formed ripple pattern by 90◦ was observed

for intermediate and long integration times. A similar behavior has also been found in re-

cent experiments on crystalline silicon surfaces performed at elevated temperature [44,53].

Comparison of the simulations with analytical predictions indicates that the observed ro-

tated ripple pattern actually results from the fact that the renormalization of the aKS

equation to the KPZ equation occurs earlier in the x than in the y-direction for such a

strong nonlinear anisotropy. This could also explain above mentioned experimental obser-

vations, although the simulations are not able to reproduce the experimentally observed

coarsening of the ripple wavelengths.

In addition, simulations of the anisotropic dKS equation have been performed. The

isotropic dKS equation is known to successfully reproduce the formation of hexagonally

ordered dot patterns but not the occasionally observed coarsening of the dots [65]. In the

68
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numerical integrations of the adKS equation presented in this work, however, coarsening

of the ripples is found. This is the first observation of wavelength coarsening in the

adKS equation. It appears to be a purely nonlinear anisotropy effect that occurs only

in a narrow range of the nonlinear anisotropy parameter and for rather low damping

values. Therefore, this coarsening effect is absent in isotropic dKS as well as in most

adKS simulations. Nevertheless, this result proves the applicability of the adKS equation

to systems that exhibit coarsening.

The evolution of silicon surfaces has been studied during sputtering with sub-keV Ar

ions under 67◦ incidence at fluences up to 1020 cm−2. At short lateral scales, ex-situ

AFM measurements of the sputtered surfaces revealed the formation of a nanoscale ripple

pattern oriented normal to the direction of the incident ion beam at low fluences. At

higher fluences, this initial ripple pattern is overlayed by larger corrugations that form

another ripple-like pattern oriented parallel to the beam direction at larger lateral scales.

Both of these ripple patterns show similar marginal coarsening of the wavelength. At low

fluences, the local interface width is determined by the ripple amplitude. At intermediate

and high fluences, however, it is determined by the larger corrugations. A power-law

growth of the two-dimensional local interface width is found with a growth exponent

β = 0.27± 0.02.

The dynamic scaling behavior of the sputtered surfaces has been investigated over

the whole fluence range. The main results of this ex-situ dynamic scaling analysis are

summarized below:

• The dynamic scaling behavior at low fluences and short lateral scales indicates the

presence of a KS like instability and a linear coefficient |νn| ≈ 0 in the direction

parallel and normal to the projection of the ion beam, respectively.

• At high fluences, the ripple wavelength saturates and the large scale morphology

of the surface exhibits a scaling anisotropy with the roughness exponents αn =

0.76 ± 0.04 and αp = 0.41 ± 0.04 in the direction normal and parallel to the ion

beam, respectively.

• The observed algebraic scaling behavior at high fluences and large lateral scales

does not agree with the aKS equation, which is expected to exhibit isotropic loga-

rithmic scaling [24] or rotated ripple structures [72] under the current experimental

conditions.
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• Although the dynamic scaling exponents of the recent hydrodynamic model [68] of

ion erosion are not known yet, the observed interrupted wavelength coarsening and

the anisotropic algebraic scaling indicates that this model might be able to describe

the present experiments. However, it remains to be seen whether the observation

that ripple coarsening continues after the saturation of the ripple amplitude can be

still accommodated by the dynamics of this model [100].

In further experiments, the dynamic scaling behavior of the silicon surfaces has been

studied in-situ during sputtering at slightly different incident angles by means of graz-

ing incidence small angle X-ray scattering. A rather smooth transition from strongly

anisotropic to isotropic scaling is observed for an increase of the incident angle from 65◦

to 69◦. This indicates the existence of at least one isotropic and one anisotropic fixed point

in this particular experimental system. The measured scaling exponents of the isotropic

fixed point, α = 0.46 ± 0.07 and β ≈ 0.20 ± 0.05, agree reasonably well with those of

the isotropic KPZ equation. Since the isotropic KS equation is expected to exhibit an

isotropic KPZ fixed point [42], this result might indicate the presence of such a fixed

point also in anisotropic erosion systems and could, therefore, be used in future works for

the verification of the assumption that the hydrodynamic model describes this particular

experimental system.
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fertigt.
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