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Abstract

A generalized model for bubble coalescence and breakup has been developed,
which is based on a comprehensive survey of existing theories and models. One
important feature of the model is that all important mechanisms leading to bubble
coalescence and breakup in a turbulent gas-liquid flow are considered. The new
model is tested extensively in a 1D Test Solver and a 3D CFD code ANSYS CFX for
the case of vertical gas-liquid pipe flow under adiabatic conditions, respectively. Two
kinds of extensions of the standard multi-fluid model, i.e. the discrete population
model and the inhomogeneous MUSIG (multiple-size group) model, are available in
the two solvers, respectively. These extensions with suitable closure models such as
those for coalescence and breakup are able to predict the evolution of bubble size
distribution in dispersed flows and to overcome the mono-dispersed flow limitation of
the standard multi-fluid model.

For the validation of the model the high quality database of the TOPFLOW L12
experiments for air-water flow in a vertical pipe was employed. A wide range of test
points, which cover the bubbly flow, turbulent-churn flow as well as the transition
regime, is involved in the simulations. The comparison between the simulated results
such as bubble size distribution, gas velocity and volume fraction and the measured
ones indicates a generally good agreement for all selected test points. As the
superficial gas velocity increases, bubble size distribution evolves via coalescence
dominant regimes first, then breakup-dominant regimes and finally turns into a
bimodal distribution. The tendency of the evolution is well reproduced by the model.
However, the tendency is almost always overestimated, i.e. too much coalescence in
the coalescence dominant case while too much breakup in breakup dominant ones.
The reason of this problem is discussed by studying the contribution of each
coalescence and breakup mechanism at different test points. The redistribution of
the gaseous phase from the injection position at the pipe wall to the whole cross
section is overpredicted by the Test Solver especially for the test points with high
superficial gas velocity. Besides the models for bubble forces, the simplification of
the Test Solver to a 1D model has an influence on the redistribution process.
Simulations performed using CFX show that a considerable improvement is
achieved with comparison to the results delivered by the standard closure models.
For the breakup-dominant cases, the breakup rate is again overestimated and the
contribution of wake entrainment of large bubbles is underestimated. Furthermore,
inlet conditions for the liquid phase, bubble forces as well as turbulence modeling are
shown to have a noticeable influence, especially on the redistribution of the gaseous
phase.



Kurzfassung

Es wurde ein verallgemeinertes Modell flr Blasenkoaleszenz und -zerfall entwickelt,
das auf einer umfangreichen Recherche bestehender Theorien und Modellen basiert.
Ein wichtiges Merkmal des Modells ist, dass alle wichtigen Mechanismen, die in
einer turbulenten Blasenstromung zu Koaleszenz und Zerfall fuhren konnen,
berlcksichtigt werden. Das neue Modell wurde ausfuhrlich jeweils in einem 1D
Testsolver und dem 3D-CFD-Code ANSYS CFX fur den Fall einer vertikalen Luft-
Wasser-Rohrstromung unter adiabatischen Bedingungen getestet. Zwei Varianten
fur Erweiterungen des Standard-Multi-Fluid-Modells, das diskrete Populationsmodell
und inhomogene MUSIG (MUltiple-Size-Gruppe) Modell, stehen in den Solvern zur
Verfugung. Mit geeigneten SchlieBungsmodellen fur Blasenkoaleszenz und -zerfall,
sind sie grundsatzlich in der Lage die Entwicklung der Blasengrdfienverteilung in
dispersen Stromungen vorherzusagen und die Beschrankung des Standard-Multi-
Fluid-Modells auf mono-disperse Stromungen zu Uberwinden.

Fir die Validierung des Modells wurde die hochwertige Datenbasis der TOPFLOW-
L12-Experimente fur Luft-Wasser-Stromungen in einem vertikalen Rohr genutzt.
Eine groRe Auswahl von Messpunkten, die die Blasenstromung, die turbulente-
aufgewiihlte Strdmung sowie den Ubergangsbereich abdecken, wurde in den
Simulationen einbezogen. Der Vergleich zwischen den Simulationsergebnissen fir
BlasengrolRenverteilungen, Gasgeschwindigkeiten und dem Gasvolumenanteil sowie
den experimentellen Daten zeigt eine allgemein gute Ubereinstimmung fir alle
ausgewahlten Messpunkte. Mit zunehmender Gas-Leerrohrgeschwindigkeit ist die
Entwicklung der BlasengroéfRenverteilung zuerst von Koaleszenz dominiert, dann von
Zerfall und fuhrt schliel3lich zu bi-modalen Verteilungen. Die jeweilige Tendenz wird
in den Simulationen richtig wiedergegeben, allerdings fast immer Uberschatzt, d.h. in
dem von Koaleszenz dominierten Fall wird die Koaleszenzrate Uberschatzt, in dem
von Zerfall dominierten Fall ist die Zerfallsrate zu grof3. Die Ursachen werden durch
die Untersuchung des Beitrags der einzelnen Koaleszenz- und Zerfallsmechanismen
fur verschiedene Messpunkte diskutiert. Die Umverteilung der Gasphase von der
Einspeisung an der Wand Uber den gesamten Rohrquerschnitt wird im Testsolver
insbesondere flr groRe Gasleerrohrgeschwindigkeiten Uberschatzt. Neben den
Modellen fur die Blasenkrafte hat die Vereinfachung des Testsolvers auf ein 1D-
Modell einen Einfluss auf die Umverteilung. Die mit CFX durchgefihrten
Simulationen zeigen, dass eine erhebliche Verbesserung der Ergebnisse im
Vergleich zu den StandardschlieBungsmodellen flr Blasenkoaleszenz und -zerfall
erzielt wird. FUr die durch Zerfall dominierten Falle wird die Zerfallsrate wiederum
Uberschatzt und der Beitrag des Blaseneinfangs in die Nachlaufstromung einer
grolRen Blase zur Koaleszenz wird unterschatzt. Daruber hinaus haben die
Eintrittsbedingungen der flissigen Phase, Blasenkrafte sowie Turbulenzmodellierung
einen spurbaren Einfluss auf die Ergebnisse, vor allem auf die Umverteilung der
Gasphase.



Acknowledgements

This work has been carried out at the Institute of Safety Research, Helmholtz-
Zentrum Dresden-Rossendorf, Germany within the framework of a project funded by
the German Federal Ministry of Economics and Technology, project number 150
1348. Many people have contributed to the success of this project by their constant
support and inspiration. | would like to take this opportunity to express my sincere
gratitude to all of them for their constant support, discussion and valuable suggestion.

First of all | would like to thank my supervisor Professor Uwe Hampel for accepting to
be my “Doktorvator’. Furthermore, many thanks go to Professor Frank-Peter Weil}
for giving me the possibility to carry out this work. He always supported my work and
guaranteed excellent working conditions as director of the Institute of Safety
research.

| am deeply indebted to my internal advisor Dr. Dirk Lucas of Helmholtz-Zentrum
Dresden-Rossendorf, Germany, whose patience, encouragement and constant
guidance helped me during my research work and helped me to finish my work in
time. For me, he has always been a constant source of inspiration and motivation. |
have learned many things from him and | hope this work partially satisfy his
expectation.

| am proudly thankful to all the scientist of the Department of Accident Analysis,
especially Heads of the Department, Dr. Ulrich Rohde and subsequently Dr. Séren
Kliem, for supporting me in all the administrative issues, as e.g. the part-time work at
home after the birth of my son and the prolongation of my contract.

| would like to acknowledge my colleagues of the CFD group especially Dr. Eckhard
Krepper and Pavel Apanasevich for their valuable suggestions and discussions,
Swapna Singha Rabha and Dr. Gregory Cartland-Glover for checking and improving
the English language of my thesis. | am also grateful for my colleagues of the
TOPFLOW experiment group for providing the experimental data and supporting me
in using the data for my work.

Besides, | would like to extend my gratitude to all support staff at the Institute of
Safety Research for their assistance, especially the secretaries, Claudia Losinski,
Petra Vetter, Annett Richter and special thanks to the computer administrator
Torsten Berger.

| am most thankful to the German Federal Ministry of Economics and Technology for
funding my research work through the program of competence maintenance in
nuclear technology.

Finally, a great thanks to my husband Wenxing, for his love and continuous support,
and my children Ye and Lei.

Yixiang Liao






Contents

Contents
1 T OAUCTION e e e e e e e e e e e et e e e e e e e e e et e e e e e e e e e ee e aaeeeeeeeenannnas 1
1.1 Background and motivation for the thesis............ccccooooiiiiii, 1
1.2 Aim and tasks Of thisS theSiS ........ooooieeeeeeee e 3
1.3 OUNE OFf thE tNESIS ..o e 4
2 SHALE OF O QI ettt e e e e e e e e e e e e e e e e e e e e e —aaeeeeeeaeaaaa—_ 6
2.1 Standard Eulerian multi-fluid model ............ooooeeeeeeeeeeeeeeee e 6
2.2 Modern extensions of the multi-fluid model ..............cooooiiiiieeiiieee, 6
221 Four-field multi-fIuid MOAEL........eeeeeeeeeieeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeeeeeeeeeeees 7
2.2.2 Population balance equation model .............ccccvveeriiieiiiiiiiieeee e 7
2.2.3  Transport equation for interfacial area density .........ccoceeveeveeereevienienennenieneenne. 7
224 MEthOd OF INOIMIENES ..eeveeeee et e e e e e e e e e aeeeeeeeeeeennnas 8
2.2.5 The inhomogeneous MUSIG model ..........ccooviiiiiiiiiniiiienieeeeeee e 8
2.3 C0oaleSCENCE MOUEIS .......oooiiieieeeeeeee et e e 10
2.3.1 Mechanisms leading to bubble coalescence ...........ccecvvveeeiieecieeecieeeieecieeeee 10
232 COllISION fTEQUENCY ...euvieiiieiiieiieeieeeite ettt ettt ettt e et e e teesebeeseesnbeeseesanaens 11
233 CoalesCeNCe ETfICIENCY .. .ccuiiiiiiieciiieeiie et e sree e 19
2.4 Breakup MOAEIS. ... 28
2.4.1 Mechanisms leading to bubble breakup..........ccccocovveeiiiieiiiiieiieeeeeeeeee 28
242 Breakup freqUENCY ....ccviiiiiiiiieiieie ettt ettt et ens 30
243 Daughter bubble size diStribUtion ...........cccveeeiieeiiieeiiieciee e 45
2.5 ConcluSioNS aNd AISCUSSIONS ......oeeieeeeeeeeeeee e e e e e 53
2.5.1 Mechanisms and models for bubble COalESCENCE ......evvveeeeeeeeeeeeeeeeeeeeeeeeeeene 53
2.5.2 Mechanisms and models for bubble breakup...........ccccvveviiiiiiiiiiiiieeee 55
3 A generalized model for coalescence and breakup...........ccceevieeviieniieiiienieiieeece e 56
3.1 Coalescence frEQUENCY ...........cccueiieieeiieieeee ettt ae e 56
3.1.1 COllISION fTEQUENCY ...euvieiiieiiieiie ettt ettt ettt et e et esteesebeebeesnaeeseesanaens 56
3.1.2 CoalesCeNCe ETfICIENCY ....ccuiiieiiieeiiieeiie et eree e 60
3.1.3 Final expression for the coalescence frequency..........ccoccvevieriienieniiienicenneenen. 62
3.2 Breakup frEQUENCY .......oci ot 64
3.2.1 EXEENSIONS .ot 65
322 Final expression for the breakup frequency.........ccccoeecviieiiiieciieccieiceeeeee 68
3.3  Characteristics of the NEW MOEN ...........oeeeiieeeeeeeeeee e, 68
3.3.1 COllISION fTEQUENCY ...evvieiiieiiieeiie ettt ettt ettt ettt e et e eteesereebeesnaeeseesasaens 69
3.3.2 CoalesCeNCe ETfICIENCY ....ccuiiieiiieeiiieeiie et eree e 73
3.33 Total coalescence frEqUENCY .......cccveerieeiiieriieiieriie ettt 76
334 Breakup freqUENCY ...cccviiieiieciiecee et 79
3.3.5  Daughter size diStribUtion ..........ccceevciieriiiriiieiieeiieieee e 80
34 SUIMIMAIY .ottt ettt e et e b e et e e seestaesseessesseesseessesseensesseans 83
4 Strategy for model test and validation .............ccceeeiiiiiieriieiienie e 84

41 Interfacial fOrce MOAEIS .........oooo oo e e e e e eeaeas 85




Contents

4.2  Two-phase turbulence modeling..........cccooovieiiiiiiiiccee e 89
4.2.1 General aPPIOACH .....cocviiieiiece s 89
4.2.2  BIT source term moOdelS..........cceeriiiiiieiiieiienie ettt ens 90

4.3 SOIVET ..ot 93
43.1 The Multi Bubble Size Class Test SOIVET.......ccoiiiiiiiiiiiiiieieeieceeee 93
4.3.2  ANSYS 12.1 CEX-SOIVET.cuiiiiiiiiiiiiiiniieieeieeteteee sttt 96

4.4  Experimental database...........cccoooiiiiiiiiiiiieeceeee e 97
44.1 REQUITEIMENTS ...ttt ettt ettt ettt st e e b e seneenseas 98
4.4.2 TOPFLOW air-water experiment in a vertical pipe .......cccceeevveeeeieeecnieesneeenene. 99

5 Validation of the new model in frame of Test SOIVer.........ccccieviiiiiiiniiiiieieceeeeeee, 104

5.1  Extensions of the Test SOIVer ... 104
5.1.1 Turbulence MOdEIING .......cceeeeiiieeiiece e 104
5.1.2  Cross-sectional averaged gas void fraction............cceeveeiienieeciienienieeiieeins 107
5.1.3 Cross-sectional averaged gas VEIOCILY .....ccveveevieeriieeiiie et 109

5.2  Parameter study by using CFD resultS...........ccooooieiiiiiiicieeeeeeee 111
5.2.1 SINEIE-Phase flOW.....c.uiiieiiieciie e 111
5.2.2  TWO-PhASE TlOW ..cueeiiiiiiiieiiecie ettt ettt eeanaens 114

5.3 Implementation and test of available models ............c.cccoeeviiiiieiicciccec, 117
5.3.1 TESE CASES .uvveeenitieeitee ettt ettt et ste e et e et e et e e st e e st e e sabaeesbteesbeeesabeeenns 117
532 RESULLS ...t 118

5.4 Implementation and test of the new model ............c..cooveoiiioiicieiieeeeee, 126
54.1 Cross-sectional averaged bubble size distribution at Level R ........................ 126
5.4.2 Evolution of bubble size distribution along the pipe ........ccceeveevvvierceeenniens 127
543 Evolution of average bubble size along the pipe .........ccccevvvvevieeiieiieniieienne 129
5.4.4 Radial gas volume fraction profile at Level R.........cccooveiieiiiieiiiiiees 132
5.4.5  Evolution of radial gas volume fraction profiles along the pipe...........c........ 133
5.4.6 Radial gas veloCity profile ........ccccvieiiieeiiieciie et 135
54.7  Influence of turbulent disSpersion fOrce.........cceovireiierieriiienieeiieieeieeee s 136
54.8 Influence of 1ift fOrCe .....ccuoiiiiiii e 137
54.9  Influence of wall lubrication force............ccoevuiiviieiieiieiiiiieceeee s 138
5.4.10 Contribution of each coalescence and breakup mechanism ...............ccccneee. 139
5.4.11 Contribution of the mechanism of wake-entrainment ...............ccccoeeeveeniennnns 140
5.4.12  Influence of two-phase turbulence modeling.............ccccceeevvieeciiincieencieee. 141

5.5 DISCUSSIONS ..ottt sttt 155

6  Validation of the new model in ANSYS 12.1 CFX-SolVer.....ccccooiiiiiniiiiiiiiiiieieeee, 157

T S 1= (0] o 1= SRRSO 157
6.1.1 MeESh dEtailS .....oeeiiiiiieiieie e e 157
6.1.2 Boundary CONditions .........c.eeecuiieeiiiieiiiieciee et e 159
6.1.3 INitial CONAILIONS ...cvvieniieiiiieiie ettt ettt eaae e 160
6.1.4 CONVETZENCE CTITETIA ...uvvieeuriieeireeeieeesieeesieeesteeessreeessseeessseeesaeesssseessseeessseeenns 160
6.1.5  Discretization of bBubble SIZe..........cccuieiiiiiiiiiiieiieiieeee e 160

0.2 RESUIS ..o 161
6.2.1 Evolution of bubble size distribution along the pipe .........cccccceeviierienirenenne. 161
6.2.2 Evolution of radial gas volume fraction profile along the pipe........................ 167

6.2.3 Evolution of radial gas velocity profiles along the pipe........ccccccvvevverirenncnnne. 169




Contents

6.2.4  Influence of liquid inlet CONAItiONS ........eevuiieiieriiieiieiieeieeee e 170

6.2.5 Influence of wall lubrication fOrce..........cccvveriieeriiieeiiie e 172

6.3 Influence of two-phase turbulence modeling..........c..cccooveiieiiiicciiciccee, 174
6.4  Comparison with the predictions by standard closure modeils........................ 180
6.5 Comparison with the results of Test SOIVEr...........cccooooiieiiiiiiiiiieceee, 183
6.6 Influence of interphase drag force..........ccoveieiiiiciciceeeee 185
B.7  DISCUSSION ...ttt ettt et ettt e eaeeste e e eseebeeneesneenee 185

A ©03 3 1e] L3 T ) o USRS 187
8 INOMCNCIATUIE .....vieiieciiteiie et ettt et s e et e sabe e bt e s sbeenbeeesseenseessseenseas 191
L ] {3 <) 4 7SS 195

1O LISt Of PUDHICAIONS ooieeeiiiieieeeeeeeeee e 204




Contents




Introduction

1 Introduction

Two-phase flow refers to any fluid flow consisting of two phases or a liquid
immiscibility. One can classify them according to the state of the two phases or
components, e.g. gas-liquid, gas-solid, liquid-liquid and liquid-solid. Of the four types
of two-phase flows, it is gas-liquid flows, which will be discussed in this work. These
flows are the most complex since they combine the characteristics of a deformable
interface and the compressibility of the gaseous phase [1].

1.1 Background and motivation for the thesis

The range of gas-liquid flow applications in today’s technology is immense.
Examples can be found in nuclear reactors, chemical reactors, food production, gas
and oil pipelines and automotive industry. In the design and optimization of light
water-cooled nuclear reactors, e.g. BWR (Boiling Water Reactor) and PWR
(Pressurized Water Reactor), basic understanding of gas-liquid flow is of special
importance to guarantee the safety of the system. For example, under normal
operation conditions of BWR plants, saturated steam is produced in the reactor core
and directly used to drive a turbine. On the other hand, modern PWR benefits from
the effective heat transfer coefficient achieved by nucleate boiling in the reactor core
although steam driving the turbine is produced in a steam generator outside the core.
Furthermore, knowledge of gas-liquid flow is indispensible when considering
postulated accidents in the nuclear system. For example, one of the most severe
accidents in a PWR plant is the loss of coolant (LOCA), where the re-circulating
coolant may flash into steam. The involved processes are extremely complex and
have been one of the main focus areas for the research in gas-liquid flows for many
decades [1].

Since nuclear experimentation at full scale or with entire systems is only possible in
a limited number of cases, numerical simulations play an important role in the
research of complex gas-liquid flow situations that arise in a normal or accident
situation. The traditional system codes, which have been successfully used for this
purpose for many years are based on empirical correlations that are specific for
certain two-phase flow regimes. These regime-dependent empirical correlations are
implemented into 1D system codes where the boundaries between regimes are
specified through static regime transition criteria. Such an approach, however, does
not represent the flow dynamics since the static flow regimes are neither able to
predict the change of flow regime along the flow path in the case of stationary flows
nor the time and space dependent flow structure in the case of transient flows [2]. As
it is known in gas-liquid flow, the distribution of interfacial structure can take any
possible flow regime. Taking vertical pipe flow as an example possible regimes are
bubbly flow, slug flow, churn-turbulent flow, wispy annular flow and annular flow. The
particular flow regime that is observed to occur is dependent on the properties and
flow parameters of the phases, pipe size and orientation, configuration of the inlet
and so on. Moreover, the flow regimes continuously evolve along the flow path via
various bubble dynamic mechanisms such as bubble coalescence and breakup.
Sommerfeld [3] pointed out that in gas-liquid flow, if the volume fraction of gas
exceeds c.a. 3% collision and coalescence between bubbles becomes important. As
a result, the flow regime changes from homogenous mono-dispersed bubbly flow to
heterogeneous poly-dispersed flow. On the other hand, bubbles are subject to
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destroying stresses from the surrounding continuous liquid phase. When the
destroying force is larger than the restoring force such as surface stress, the bubble
will deform and break up into small bubbles. In conclusion, in order to obtain
accurate predictions for the transient evolution of flow regime, it is necessary to
develop more sophisticated numerical methods than system codes.

The considerable increase in the available computational power and tools allows the
use of CFD (Computational Fluid Dynamics) codes to approach local phenomena in
much greater detail. In the CFD simulations of gas-liquid flows there are three basic
numerical methods discussed in the literature, that is, Direct Numerical Simulation
(DNS), Euler-Lagrange (E-L) and Euler-Euler (E-E) methods. The three methods
differ in the scale range that is explicitly solved. The DNS or interface resolving
method is at the lowest level of time and length scale. It aims to resolve all
interactions between two phases and needs no turbulence and interfacial exchange
models. The main difficulty of the DNS method is the highest computational load,
and as a result numerical methods of this type have been applied mostly to flows
around a single bubble or to systems involving only a relatively small number of
bubbles or particles. Another difficulty is the moving phase-interface whose shape is
a part of the solution. To keep the interface numerically sharp, i.e. to avoid any
artificial smearing of the interface during the computation, special numerical
algorithms have to be developed. Nowadays mainly three types of methods are used,
the volume-of-fluid method (VOF), the level-set method (LS) and the front-tracking
(FT) method [4].

For systems at intermediate scale, the E-L or discrete bubble approach can be used
where the liquid phase is solved by phase-averaged equations while bubbles are
modelled by point force distributions at the discrete location of bubbles and the
equation of motion is solved by Newton’s second law. This method is particularly
suited to study the effect of bubble-bubble and/or bubble-wall interactions and it
provides for closure for bubble-bubble interactions since the scale of distances
between bubbles is explicitly solved. However, contrary to the DNS approach, the
flow field at the scale of an individual bubble is not resolved, and therefore closure
laws for bubble-liquid interaction, e.g. bubble forces, have to be provided [5]. The
major disadvantage of the Euler-Lagrange approach is the complexity of the
interfacial coupling, since the coupling between two different solvers, i.e. the Eulerian
and Lagragian solver, is difficult. Therefore, numerical simulations of this type are
often done by one-way coupling where the effects that the presence of bubbles may
have on the liquid phase are neglected. As a result, the Eulerian velocity field of
liquid can be computed independently of trajectories of bubbles. Furthermore, such a
method is still limited to dilute gas-liquid flows otherwise a statistical approach is
used as an approximation where a computation parcel contains thousands of real
bubbles.

Finally, the E-E or continuum approach is at the largest time and length scales where
both the gas and liquid phase are solved by phase-averaged equations and the
macroscopic effect of interactions between phases is modelled by constitutive
equations. Since it is the most computationally efficient this numerical method is
particularly suited to model gas-liquid flows in industrial scale equipments. Another
advantage of the Euler-Euler model is that instead of limiting to dilute bubbly flow it
can be used to compute any flow regime provided that adequate closure relations
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about bubble-bubble and bubble-liquid interactions are known. Nevertheless, the
reliance on closure models is exactly a weak link in this approach. To date, more
effort is still required to develop phenomenological closure models for bubble forces,
turbulence generated by the bubble and bubble dynamics such as bubble
coalescence and breakup.

1.2 Aim and tasks of this thesis

This work is aimed at developing a generally applicable closure model for bubble
coalescence and breakup in the framework of the E-E approach. The goal of the new
model is to take into account all important mechanisms that lead to bubble
coalescence and breakup in turbulent gas-liquid flow.

In the last half century, numerous achievements have been made in the theoretical
analysis and modeling of bubble coalescence and breakup processes.
Correspondingly, a number of theories and models were proposed. Nevertheless,
they are found to be the weakest point in the modeling of poly-dispersed flows [6] [7].
There are still some obstacles to be overcome such as the superposition of different
mechanisms, determination of critical conditions, and insufficient knowledge about
two-phase turbulence modeling. As it is known, bubble coalescence and breakup
rates depend on turbulence parameters since turbulence is one important promoting
reason for it. Up to now no mature turbulence modeling approaches for two-phase
flows exists, i.e. when bubble coalescence and breakup models are used in CFD
codes, their input parameters are often not well defined. Many CFD codes consider
the bubble induced turbulence by modifying the turbulent viscosity, e.g. using the
model of Sato et al. [8]. This method might result in a satisfactory simulation of
velocity fields, but it hardly reflects the influence of bubbles on the turbulent kinetic
energy and dissipation rate.

Due to all the difficulties, the models at hand for bubble coalescence and breakup
are only validated for certain cases. No model is available which is applicable for a
wide range of flow situations.

In general, all of the models available in literature have one or more following
shortcomings:

e Only turbulence is considered while other mechanisms are neglected without
further validation

e Bubble-eddy collision are assumed and detailed information about the size,
shape as well as energy of eddies is required

e Turbulence parameters are not correctly calculated, e.g. simple empirical
correlations are used and the influence of bubble-induced turbulence is not
considered

e Integrals over the size or/and energy of turbulent eddies are included, which
restricts the computation speed dramatically and make the model more
difficult to implement into CFD codes

e Most breakup models need to assume a separate daughter size distribution
function (e.g. Beta function, Normal function), which usually has no physical
meaning
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In a word, further effort is required to develop and validate suitable closure models
for bubble coalescence and breakup.

Accordingly, the main tasks of this work are:

(1) Extensive literature research on available theories and models for bubble
coalescence and breakup

(2) Implementation and testing of some typical models taken from literature in
the Multi Bubble Size Class Test Solver [2] with help of TOPFLOW
experimental data [9]

(3) Theoretical development of a new model framework for bubble
coalescence and breakup which are aimed to overcome the limitations in
the existing models

(4) Implement and test of the new model framework in the Multi Bubble Size
Class Test Solver [2]. The calculated results of bubble size distribution,
mean bubble size as well as gas volume fraction and velocity were
compared with the TOPFLOW experimental data [9]

(5) Implement and test the new model framework in CFX. The predicted
bubble size distributions were compared with those delivered by the
standard closure models in CFX and by the Test Solver

(6)  Study via the Test Solver and CFX, the influence of two-phase turbulence
modeling on the results of turbulence parameters as well as bubble size
distribution, gas volume fraction as and velocity fields

1.3 Outline of the thesis

The remainder of this thesis consists of six chapters. Brief overview of these
chapters follows:

Chapter 2: In this chapter state of the art of basic theory regarding simulation of
poly-dispersed gas-liquid flows is reviewed. The information is confined to Eulerian
multi-fluid model and those subjects that are relevant for the prediction of local
bubble size distribution. Information is presented about the following items: (a) the
limitation of the standard Eulerian multi-fluid model, (b) the extended Eulerian multi-
fluid model for taking into account the evolution of local bubble size or interfacial
area density distribution, (c) status of closure models for bubble coalescence and
breakup, (d) discussion about limitations and possible improvements of existing
models.

Chapter 3: A new generalized closure model is proposed for bubble coalescence
and breakup. The underlying theory and the advantage of the extended model are
introduced. The characteristics of the collision frequency, coalescence efficiency,
breakup frequency and daughter bubble size distribution predicted by the new model
are analyzed

Chapter 4: The strategy for the test and validation of the new model is discussed.
The presented information includes (a) the reason for the choice of a vertical upward
flow configuration, (b) closure models for interfacial forces and bubble-induced
turbulence, (c) the requirement for experimental data and the review on available
databases, (d) advantages and examples of TOPFLOW experimental data [9], (e)
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solvers, i.e. Test Solver and ANSYS 12. 1 CFX-Solver, used for the validation
calculations

Chapter 5: Models for bubble coalescence and breakup are tested in the Test Solver
by using TOPFLOW experimental data [9]. Firstly, the original Test Solver is
extended and validated with the results obtained by the CFX solver for some crucial
parameters such as turbulence parameters. Then, some typical models for bubble
coalescence and breakup taken from the literature are tested by the prediction on
the bubble size distribution and mean bubble diameter. The new model is
extensively tested by predicting the evolution of (a) bubble size distribution, (b) radial
gas volume fraction profile, (c) radial gas velocity profile, and the influence of (d) the
non-drag forces, i.e. the turbulent dispersion force, the lift force and the wall
lubrication force, (e) the two-phase turbulence modeling approaches.

Chapter 6: The new model is implemented and validated in the commercial ANSYS
12.1 CFX-Solver. The mesh information, boundary condition and convergence
criteria are introduced. The predicted results are compared with the TOPFLOW
experimental data [9], the results predicted by the standard models used by the CFX
Solver for bubble coalescence and breakup as well as the results obtained by the
Test Solver. The influence of the liquid inlet conditions, interphase drag force, wall
lubrication force as well as the two-phase turbulence modeling methods is reviewed.

Chapter 7: Conclusions and the recommendations for the future research are given
in this chapter.
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2 State of the art

In this chapter, the state of the art of Eulerian multi-fluid model and the
corresponding constitutive models for the modelling of poly-dispersed bubbly flows
are discussed.

2.1 Standard Eulerian multi-fluid model

A general form of the Eulerian multi-fluid fundamental equations for bubbly flows at
adiabatic conditions is [10]:

Mass conservation:

%(aapa)+v-(aapaﬁa)=8a Eq. 2-1

Momentum conservation:

0 ~ S,
—la,pu, )+V-ia,p (U U,

= V.[aa,ua (Vﬁa +(VL7a )T )} -a, Vp +a,p, g +/|;/a

where dq, Pa, Ma» Uas Pa represent void fraction, density, viscosity, velocity and
pressure of the phase a, respectively, and g is the gravitational acceleration.

Source terms Sy represent the mass transfer between gaseous phases due to
bubble breakup and coalescence processes and the momentum transfer caused by
bubble breakup and coalescence is neglected. M, is the interfacial momentum
transfer per unit time (interfacial force) between gaseous and liquid phases, which is
taken into account by drag and non-drag forces. That means that the sum of
interfacial forces for phase a is given by:

M, =Fop+Faro+Far+Faw Eq. 2-3

a

At the right hand side of the Eq. 2-3 are drag force, turbulent dispersion force, lift
force and wall lubrication force, respectively. Since bubble forces depend not only on
the velocity field but also on bubble size and turbulence, further constitutive models
or extensions are needed to capture local bubble size evolution and turbulence
parameters.

2.2 Modern extensions of the multi-fluid model

With the standard multi-fluid model presented above in a strict sense only mono-
dispersed flows with single-value bubble size can be simulated. In a real dispersed
flow, often a spectrum of bubble sizes is present (poly-dispersed flow). Moreover, the
bubble size is not spatially and temporarily constant if bubble coalescence and
breakup occurs. To overcome this restriction, the standard multi-fluid model is often




State of the art

extended in the modern simulation of poly-dispersed flow. In general, there are five
different extension approaches under development.

2.21 Four-field multi-fluid model

The first approach is the four-field multi-fluid model, which was firstly proposed by
Lahey and Drew [11]. The main difference between the extended and standard multi-
fluid model is that in the extended model each of the two fluids maybe either
continuous or dispersed in different regions of space. The four fields are therefore
given by continuous liquid, continuous gas, dispersed liquid and dispersed gas.
Mass and momentum conservative equations are solved for each of the four fields.
This model seems to be very promising for slug flow or annular flow regimes
especially with phase transfer. However, it is not ideal for the modelling of bubble-
bubble interactions in a poly-dispersed flow, since the dispersed gas is still treated in
a mono-dispersed way.

2.2.2 Population balance equation model

Another promising concept to overcome the mono-dispersed flow limitation of the
standard multi-fluid model is the Population Balance Equation Model (PBEM), which
is based on the introduction of population classes. In the PBEM, an additional
transport equation analogous to Boltzmann’s transport equation is introduced to
trace the evolution of local bubble number density. By considering source or sink
terms caused by bubbles entering and leaving a control volume through different
mechanisms, the number density transport equation can be written as [12] ~ [14]

on(V.7.t) " .
— Y, -[u(v,r,f)-n(l/,r,f)] =S Eq. 2-4
where n, u, V, r, t, are bubble number density, convective velocity, bubble volume,
spatial and temporal coordinate, respectively. On the right hand side of the equation
are source or sink terms caused by different mechanisms.

The equation can be solved by dividing the internal coordinate (here is the volume of
bubbles, V) into N classes. This discretization method called method of classes or
spectral method. Each of these classes is treated as a dispersed phase with single
size and separate velocity field. A mass and momentum conservative equation is
respectively solved for each class leading to 2(N+1) equations in adiabatic condition.
If discretization is fine enough, the size-dependent source term processes can be
well modelled by this approach, however, it can consume extensive computer
resources. In order to capture the effect of the transient change of bubble size at low
computational costs, a variety of approximate methods have been proposed such as
interfacial area transport equation (IATE), method of moments (MOM), and multiple-
size group model (MUSIG).

2.2.3 Transport equation for interfacial area density

The method of interfacial area transport equation (IATE) was first proposed by Ishii
and his co-workers [15] [16]. It is based on the intuition that in a two-phase flow the
interfacial area density is of importance, since it determines directly the interfacial
transfer processes. Therefore, similarly to the PBEM method, a transport equation is
introduced to trace the evolution of interfacial area density. Instead of a globally

7
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mono-dispersed flow in the standard multi-fluid model a local equivalent bubble size
can be obtained from the interfacial area density if the shape of the bubble is
specified. The equivalent bubble size is adopted for the calculation of interfacial
transfer terms in the extended multi-fluid model. On the other hand, the velocity of
the dispersed phase in the multi-fluid model is used as the convective velocity of
interfacial area density in the transport equation. In contrast to the PBEM model, this
method is much more efficient since no additional mass and momentum
conservative equations are introduced. However, it can only model a change of
bubble size but not a change of bubble shape since the shape of bubble has to be
specified for the calculation of equivalent bubble size. Recently, the concept of two-
group IATE has been proposed by Ishii and his co-workers [17] ~ [19] as a more
general model. In this approach bubbles are divided into two groups, i.e. the
spherical/distorted bubble group and the cap/slug bubble group. For each group a
separate transport equation is solved for interfacial area density. In addition a mass
equation and a momentum conservative equation are needed to be solved for each

group.

In a way similar to the PBEM method, different phenomena create or absorb
interfacial area, such as bubble coalescence and breakup. They are taken into
account through source terms on the right hand side of the transport equation.
Nevertheless, these size-dependent source terms can hardly be predicted correctly
by an assumption of one or two size groups.

2.2.4 Method of moments

The method of moments (MOM) solves the evolution of the bubble size distribution
by tracking the time dependence of bulk properties, i.e., moments of the distribution
function. Transport equations are solved for some lower-order moments and the
corresponding bubble size distribution is approximately reconstructed from the
prognostic moments. One of the main limitations in the MOM is the closure problem.
In the traditional MOM the evolution of lower-order moments usually cannot be
expressed by the moments themselves due to size-dependent source terms. As an
alternative, McGraw [20] developed the so-called quadrature method of moments
(QMOM), which is based on the approximation of the unclosed terms by means of n-
points Gaussian quadrature. The main limitation of QMOM is the assumption of
spatial homogeneity. In other word, the convective term is neglected in the transport
equation of moments. Recently, the QMOM is extended to handle inhomogeneous
cases where each prognostic moment is transported by its own velocity, the so-
called DQMOM method [21]. In DQMOM, the transport equations are solved directly
for the abscissas and weights of the quadrature approximation instead of moments.
Another difficulty of the moment model is the reconstruction procedure. The chosen
prognostic moments must fulfil certain conditions in order to ensure the existence of
a function for the corresponding bubble size distribution [22].

2.2.5 The inhomogeneous MUSIG model

The last method discussed here is the multiple-size group model (MUSIG), which is
similar to the PBEM. The MUSIG model was firstly proposed by Lo [23], in which a
mass conservative equation is solved for each bubble size group while a common
velocity field is assumed for all size groups. With this simplification, up to 60 classes
can be taken into account. However, the performance of this so-called homogeneous
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MUSIG model is limited to convection dominated bubbly flows or bubbles with small
inertia, since it is based on the assumption of a homogeneous velocity field applied
to all bubble size classes. Alternatively, an inhomogeneous MUSIG model is
presented by Krepper for poly-dispersed flow [7]. As shown in Figure 2.1, in the new
MUSIG model, the gaseous phase is divided firstly into N phases/velocity groups,
where each group is characterized by its own velocity field. Furthermore, each
velocity group j is divided into a number of sub-size groups M;, j=1, 2, ..., N. The
PBEM considering coalescence and breakup is applied to the sub-size groups, k=1,
2, ..., ZM;. Therefore, the inhomogeneous MUSIG model is able to take into account
the heterogeneous velocity fields of bubbles with different size and at the same time
it allows sufficient size groups to model the process of coalescence and breakup
accurately with acceptable computation cost.

Velocity groups : Vi : V2 VN
F1.N : ' -

Size fractions : : : : :
k=1..ZM, S e B o —t—+—
d;

1‘ dmi 't‘deI dmi+m2 dsmy

bubble
breakup

Figure 2.1 Schematic view of the inhomogeneous MUSIG model [24]

Defining fy as the size fraction of the sub-size group k, we have

M

j N
fka/. =a,; ;fk =1; Z;a/. =aq, Eq. 2-5
= J=

.

where j is the velocity group that the sub-size group k belongs to (see Figure 2.1)
and agq is the volume fraction of the whole gaseous phase.

The inhomogeneous MUSIG model solves the transport equations for all size
fractions fi.

%(/"/O‘/fk)Jr v (p/a/fkﬁf) =5, Eq. 2-6

In adiabatic situation, the source term Sy accounts for: (i) the birth of bubbles of size
k due to breakup of bubbles of larger size and coalescence of bubbles of smaller
size, Bpk, Bek; and (ii) the death of bubbles of size k due to both break up and
coalescence encountered in this size group, Dk, Dck.

S, =B, -D,, +B,-D, Eq. 2-7
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These rate terms may further be expressed as

B, =pa,y Q(d,d)f, Eq. 2-8
i>k
D, pja/ZQ( da,)f, Eq. 2-9
d’+d}?
Bck=(p/. /) ;;r( )X,,kﬁfW Eq. 2-10
1
(p/ /) ZF( )? e Eq. 2-11

where Q and I are breakup and coalescence kernel functions, respectively.

From the above it can be seen that in order to trace the spatial and temporary
evolution of bubble size by using the different extended methods of the multi-fluid
model, kernel functions for bubble coalescence and breakup must be known. Bubble
coalescence and breakup has been a subject of many theoretical and experimental
investigations over the past years. A variety of theories and models were proposed
in the literature for the calculation of bubble coalescence and breakup rate in gas-
liquid flow. Since detailed information about the difference between bubble-bubble
coalescence and drop-drop coalescence is still missing, mechanisms and models for
these two cases are usually assumed to be transferable from one to another.

2.3 Coalescence models

Compared to breakup processes, bubble coalescence is considered more complex
[25], since it involves not only interactions of bubbles with the surrounding liquid, but
also those between bubbles themselves once they are brought together by the
external flow.

2.3.1 Mechanisms leading to bubble coalescence

It is obvious that the collision of bubbles is the premise of coalescence between
them. The collision between bubbles is caused by relative motion, which may be
caused by a variety of mechanisms, i.e. the flow conditions in the external flow. At
least five sources of velocity difference between bubbles can be distinguished in a
turbulent gas-liquid flow:

i) turbulent fluctuations in the surrounding liquid
i)  velocity gradients in the bulk flow

iii)  shear rate inside eddies

iv) size-dependent rise velocities

v)  wake interactions

After colliding, bubbles can either coalesce or separate without coalescing. For the
calculation of the probability of coalescence during a collision event, there are in
general three kinds of theories discussed in the literature, i.e. film drainage model,
energy model and critical approach velocity model. The first is the most popular one.
Shinnar and Church [26] stated that after colliding two bubbles may cohere together
and they be prevented from coalescing by a thin film of liquid trapped between them.

10
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Attractive forces between the interfaces drive the film to drain out until it collapses,
and coalescence follows. According to the film drainage model, coalescence will
occur only if the interaction time exceeds the time needed for the intervening film to
drain out down to the critical rupture thickness. However, in reality the duration of
collisions is limited due to the relative motion between two colliding bubbles.

In contrast, Howarth [27] believed that the attraction force between two colliding
interfaces is usually of molecular nature and it is too weak in comparison with the
turbulent dynamic force to control the coalescence probability. Howarth [27] argued
that whether coalescence will occur or not, it depends on the impact of collisions.
During “energetic collisions”, when the approach velocity of the two colliding bubbles
exceeds a critical value, immediate coalescence without liquid film capturing and
thinning will be the dominant mechanism.

However, the experimental findings of Doubliez [28] and Duineveld [29] showed that
small approach velocities lead to high coalescence efficiency. According to these
results, in the recent work of Lehr et al. [30] [31], a so-called critical approach
velocity model was introduced. If the approach velocity is smaller than a critical value,
the coalescence efficiency is set as 1.0 otherwise the efficiency is equal to the ratio
of the critical velocity to the approach velocity.

In summary, the coalescence process consists of two subprocesses, i.e. collision
and coalescence. For the calculation of coalescence frequency or specific
coalescence rate, a general physical model is obtained by multiplying the collision
frequency h(d;, d;) with a coalescence efficiency A(d;, d;):

r(d.d,)=h(d,d,)i(d.d,) Eq. 2-12

The collision frequency is determined by bubble size and the mechanism causing
relative motion between bubbles. On the other hand, the coalescence efficiency
depends on the feature of the colliding interface, flow conditions in the liquid film as
well as the theory telling whether coalescence occurs. There are a large number of
models available in the literature for the calculation of collision frequency and
coalescence efficiency, respectively. Some representable theories and models are
illustrated in Figure 2.2 on the next page.

2.3.2 Collision frequency

As mentioned already there are a variety of mechanisms that promote collisions
among bubbles. For the calculation of the collision frequency caused by different
mechanisms, different models should be employed.

Turbulent random motion-induced collisions

The random motion of bubbles caused by turbulent fluctuation is usually assumed to
be similar to the case of gas molecules’ movement. Following the classical kinetic
gas theory, the frequency of turbulence-induced collisions can be interpreted as the
effective volume swept by the two approaching bubbles per unit time [55], i.e.

h(d,.d,)=Su Eq. 2-13

i rel

11



State of the art

where S; is the cross-sectional area of the two colliding bubbles and calculated as:

S =%(d, +d,) Eq. 2-14

y

Coalescence Frequency

|
v v

Physical model '=h-A Empirical model

|
v v
Coalescence Efficiency, A || Collision Frequency, h Examples: [32]~[35]

|
v v

— : Turbulence-induced
Empirical model Physical model > Collision: [31] [36]~[39]
I v
Critical velocity Energy-model Viscous shear-induced
model ™| Collision: [40]
! Examples: [41] ~
Examples: [30] [31] Ly [43] ' R Captured in turbulent
v eddies: [16] [25]
Film drainage model
] ,| Buoyancy-induced
Collision: [36]

Nondeformable Surface (Rigid Particles)
immobile interfaces [25] [44] [45] )
Deformable Surface N Wake-entrainment:
- immobile interfaces [25] [46] ~ [48] [39] [52]~[54]
- partial mobile interfaces [25] [44] [48] ~ [51]
- fully mobile interfaces [25] [36] [46] [50]

Figure 2.2 Classification of theories and models for coalescence frequency

In order to determine the approach velocity u, in Eq. 2-13 it is assumed that
bubbles always take the velocity of an eddy of equal size [56] ~ [59]. As a result, the
turbulence-induced relative velocity between two bubbles with size d; and d; is
approximated by the mean-square root of two equivalent eddy-velocities:

12

U = (uti2 + utjz) Eq. 2-15

where uy is the velocity of eddy with size d;.

For the determination of eddy velocity u;, the inertial subrange of isotropic turbulence
is frequently assumed. Thus, by applying classical turbulence theories one can get:

12
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u

2=¢,(sd)” Eq. 2-16
where C4 is an empirical constant and often assumed to have a value of about 2.0
except that 8.2 used by Martinez-Bazan et al. [59].

Finally, the collision frequency can be expressed as [57] [58]:

12

h(d,d,)=C, 7 (d,+d, NCART RS Eq. 2-17

Although Eq. 2-17 is widely used, some modifications were proposed in most recent
work. Firstly, the effect of size ratio between bubbles and eddies is considered, while
in the original model bubbles are always assumed to be in the inertial turbulence
subrange and have the same velocities as equal-sized eddies. According to Colin et
al. [60], eddies are not efficient to move the bubbles if a bubble is larger than the
integral length scale of the turbulence l.. As a result, turbulence-induced collisions
may occur only in the following two cases

c ( d+d)"

Case 1: (d, </,; d,<1,), u, =——=| ¢ / Eq. 2-18
1.61 2
C, 13

Case 2: (d,</,; d,>1,), u,, = 161(50’,) Eq. 2-19

where the coefficient, Ci, takes into account the velocity difference between bubbles

and eddies, while the factor 1/+/1.61 considers the deceleration during the approach
process due to an increase in the virtual mass of bubbles.

The second modification is to consider the existence of bubbles reducing the free
space for bubble movement, which can cause an increase in collision frequency. The
effect can be described by multiplying the collision frequency in Eq. 2-17 with a
factor y. Different expressions used for the factor y in the literature are summarized
in Table 2.1 and its dependence on gas volume fraction ag4 is shown in Figure 2.3.

Table 2.1 Different expressions used for the factor y

References Factory Ao
Wu et al. [39] RE (am;m _%1,3) 0.8
1
Hibiki and Ishii [61] [62] m 8?2(1) Eg;}
Wang et al. [37] [38] amam—_% 0.8

* maximum possible gas holdup
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Figure 2.3 Dependence of factor y on gas volume fraction aq

From Table 2.1 and Figure 2.3, one can see that all the expressions have a similar
form, which give a small value for dilute flow and approach infinity when the packing
of bubbles arrives at the maximum value.

The last modification one can find in the literature is the decreasing factor 11 which is
introduced to reflect the limited range of turbulent fluctuations affecting the motion of
the bubbles. Wu et al. [39] and Wang et al. [37] suggested that when the mean
distance between bubbles is larger than the average turbulent path length, no
collision should be counted.

Wu et al. [39] proposed the following expression for the factor IT:

= {1 —exp (—63 hht ﬂ Eq. 2-20
b

where hy is the average size of eddies that drive bubbles together, and hy; is the
mean distance between bubbles.

By assuming the average size of eddies to be of the same order as the bubble size,
the final form for the factor I derived by Wu et al. [39] for one-group case is:

asa,”
H = {1 - eXpL—C“ 611/3—;11/3}:| Eq 2-21

max g
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where C4 is an adjustable parameter that depends on the properties of the fluid. Wu
et al. [39] used a value of 3 for the air-water system. Furthermore, amax is defined as
the maximum packing density of the bubbles and a value of 0.8 was applied.

Recently, Wang et al. [37] [38] employed a different correlation by considering that
11 should approach unity when the ratio hy/htj is small and approach zero at large

ratios:
/7 6
I1=exp —(LJ Eq. 2-22
ht,,].

where the mean relative turbulent path length scale of bubbles hyj; and the mean
distance between bubbles hyj is calculated by,

12

Py =089(d2+d2)", h,, =k(n+n)"

bt,jj b.j
respectively.

On the other hand, Lehr et al. [31] assume that the effective range of turbulent
fluctuation obeys a normal distribution with A=d as the mean value. The factor I'1 has
the following expression:

13 132
= exp“%} } with o = 0.6 Eq. 2-23
a
g

Finally, the modified form for collision frequency can be rewritten as:

12

h(d.d,)=Csy11-(d,+d,) (a2 +d )" & Eq. 2-24

The turbulence-induced collision frequency of two equal-sized bubbles calculated
from various models is illustrated in Figure 2.4. It shows that the collision frequency
always increases with an increasing bubble size. This is because both the cross-
sectional area and the relative velocity increase with the bubble size. The main
difference lies in the calculation of the relative velocity uw, and the modification
factors, y, . The model of Prince and Blanch [36] predicts a smaller collision
frequency, which might be caused by not considering the cross-sectional area of the
moving bubble. Chesters [25] calculates the relative velocity as ure < (d4+d2)" (see
Eq. 2-18 and Eq. 2-19), while others use the common expression in Eq. 2-17, i.e. Uy
o (d4%3+d,%%)"2. On the other hand, the model of Wang et al. [37] [38] considers the
modification factors, vy, I, and gives a small collision frequency for small bubbles,
since the mean distance between small bubbles is larger than between bigger
bubbles if the bubble number density is the same. If the mean distance between two
bubbles is larger than their average relative turbulent path, the collision frequency
decreases exponentially. Other discrepancies result from the coefficient C; in the
calculation of eddy velocity see Eq. 2-16.
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Figure 2.4 Dependence of turbulent collision frequency on bubble size
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Velocity gradient-induced collisions
In contrast to the mechanism of turbulent-fluctuation, velocity-gradient, eddy-capture,
buoyancy as well as wake effects are normally neglected in the existing models.

As pointed out by Friedlander [40], bubbles in a uniform, laminar shear flow may
collide with each other because of velocity gradients, which also prevail in the bulk of
a turbulent flow. By assuming that the streamlines are straight and the bubble motion
rectilinear, an expression was proposed for the frequency of shear-induced collisions
in a uniform laminar flow,

3
4(d, 9, .
h(d,,d/.):§(?+?j v Eq. 2-25

where y is the shear rate in the bulk flow. Theoretically, the Eq. 2-25 can be applied

to any collision case resulting from a velocity gradient. For example, Prince and
Blanch [36] used it to describe the gross liquid circulation induced by high gas rates
in an air-sparged bubble column. For a turbulent flow, collisions induced by the
velocity gradient in the bulk flow can also be described by Eq. 2-25.

Eddy shear rate-induced collisions

According to Chesters [25], when the bubble size is much smaller than the size of
the energy-dissipating eddies that are found in a turbulent flow, the force governing
the collision will be predominantly viscous. In other words, the bubble velocity will be
very close to the velocity of the continuous phase flow field. It is the same case when
the density difference is negligible [16]. Under this condition, the collision frequency
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will be determined mainly by the local shear of the flow inside turbulent eddies, which
can be described in a similar way as a uniform laminar shear flow, see Eq. 2-25.

3
- d,
h(d.,d.)=0.618 9 % Ty Eq. 2-26
P 2 2

In analogy to y the term +&/v is the characteristic shear strain-rate in the smallest

eddy [63]. In contrast to laminar shear, V¢/v is often referred as turbulent shear
rate, and we call this collision mechanism here as eddy-capture.

Buoyancy-induced collision

According to Prince and Blanch [36], bubble-bubble collision may result from the
difference in rise velocities of the bubbles having different sizes. The calculation of
buoyant collision frequency is consistent in the literature. A typical model is given by
Friedlander [40] as:

u,-u,

h(d.d,)=S,

U

Eq. 2-27

which has the same form as turbulent collisions in Eq. 2-13. The term S;; is also the
same as Eq. 2-14. The unique difference is that the relative velocity in this case is
calculated from the terminal rise velocities. For the calculation of v,, Prince and

Blanch [36] used the expression of Clift et al. [64], while the Fan-Tsuchiya equation
[65] used in [37], [38].

Wake-entrainment

During the free-rise of gas bubbles through the liquid an amount of liquid is inevitably
carried up and accelerated behind the bubbles, which is known as wake effect. In the
last few decades, it has been realized that the wake plays a significant role in the
interaction between bubbles [66]. When bubbles enter the wake region, they will be
accelerated and collide with the preceding one [67], who generates the wake. In the
experimental investigation of Stewart [68], the wake was found to be the sole driving
force and mechanism for bubble interaction. Wake-induced collisions result in
coalescence primarily between pairs of large cap bubbles in fluids sufficiently
viscous to keep their wakes laminar.

Unlike the previous mechanisms, the description of the wake interaction does not yet
have a consistent method and each model is quite different from one another. For
the transition from bubbly to slug flow regimes, Kalkach et al. [54] used a linear
instability analysis of the extended multi-fluid model including the population balance
equation. The coalescence rate caused by wake entrainment was calculated based
on the work of Bilicki and Kestin [67].

According to Kalkach et al. [54], the collision frequency between a trailing bubble in
the wake and its leading bubble can be defined as the volume it has to occupy at
time t-dt to group with the leading bubble at time t, per unit time. By using the
correlation of Schlichting [69] for the velocity distribution in the wake, they derived
the collision frequency as:
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h(d.d,)=C,(d*+d?)(d +d,) Eq. 2-28

where Cg has a unit of rate per unit area and contains a number of unknowns.

By taking into account the wake interaction, swarm effect and bubble shape, Colella
et al. [52] developed a novel model especially tailored for the bubble-bubble
interactions in bubble columns:

h(d. d/.):u i Eq. 2-29

where Uy is the relative velocity between the two colliding bubbles. V%% is the

volume influenced by the wake of a bubble with size d;, which is assumed to have a
conical shape according to Nevers and Wu [70]. The base of the cone is the cross-
sectional area of the leading bubble, while the height was assumed to be 5 times of
the base diameter on the basis of experimental results. hy 12 is the mean distance
between bubbles in the considered system. In addition, the swarm effect was
considered with the equation of Richardson and Zaki [71].

Wu et al. [39] proposed the basic modeling concept of bubble coalescence due to
wake entrainment in a vertical pipe by assuming a homogeneous flow. Hibiki and
Ishii [61] modified the model for a two-group model to formulate the bubble
coalescence between spherical and cap bubbles due to wake entrainment, which
was recently extended by Wang et al. [37] [38] to the multi-group case:

h(d,.d,)=Cdlu, Eq. 2-30

where the constant C; depends on the geometry and size of the wake region. A
value of 15.4 was used by Wang and his coworkers.

Since the relative velocity between the leading and following bubbles in the wake
depends not only on the relative velocity between the leading bubble and the
continuous phase ur, the wake geometry, but also the drag coefficient Cp, Hibiki et
al. [72] further refined their model by including the term of Cp"?, but only for one-
group case:

h(d.d)=C,Cpd%u, Eq. 2-31

Since the wake length and geometry is further dependent on flow conditions and
fluid properties, the determination of the constant C; and Cg is a tough problem. For
the case of homogenous air-water upward flow in a small pipe (DN9), Hibiki et al. [72]
used a value of about 0.984 for Cg. For a medium pipe, C; was adjusted to 0.23 in
[62] for the case of a spherical bubble entrained by a cap bubble, while for the
entrainment between two cap bubbles the value has to be reduced to one
thousandth. That means that the coalescence rate of a small bubble entrained by a
large cap bubble is higher than the coalescence between two cap bubbles. However,
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the work of Stewart [67] shows that coalescence due to wake-entrainment requires
bubbles of approximately similar size. Recently, Wang et al. [37] extended the model
of Hibiki [62] to a multi-group model. They applied the extended model to bubble
columns and adopted a quite large value for C.

In conclusion, bubble collision in a turbulent flow can be promoted by a variety of
mechanisms. Note that no existing model takes all of the mechanisms into account.
At the same time, it is difficult to decide which mechanism plays the most important
role in a certain case. Generally speaking, if the size of the bubble is inside the
inertial subrange of turbulence, it will be exposed to eddies’ stresses from all
directions and the random motion will be the most important. If the bubbles are
smaller than the Kolmogorov dissipation scale, the slip velocity is negligible and the
relative velocity will be determined mainly by local turbulent characteristics, e.g.
turbulent shear, while the laminar shear, i.e. the mean velocity gradient, affects the
relative motion of bubbles with all sizes. Furthermore, the buoyancy mechanism
becomes more significant with increasing density differences. The mechanism of
wake entrainment is the most ambiguous one. It is the dominant interaction
mechanism of cap bubbles and accounts for the transition from bubbly to slug flow.
As for the modification factors, y, I, in Eq. 2-24 and C; in the model of Colin et al.
[60], further investigations are indispensable.

2.3.3 Coalescence efficiency

As discussed in §2.3.1, there are at least three kinds of theories or models proposed
for the calculation of coalescence efficiency or probability. They are the energy
model, the critical approach velocity model and the film drainage model, see Figure
2.2

1. Energy model

The energy model was originally proposed by Howarth [27] [40]. It was confirmed by
the optical records of coalescence in liquid-liquid dispersions [73] [74], which found
that significant fraction of collisions result in immediate coalescence and the
probability increases with increasing energy of collision, which was called “energetic
collisions”. On the basis of the pioneering work, Sovova [43] developed a model by
relating the kinetic collision energy Eyin to the interfacial energy E. of the drop:

/I(d,,d/.):exp(—cg ?J Eq. 2-32

kin

The interfacial energy of drops is proportional to the surface tension and drop
surface area,

E = a(l/,?’3 + |//?’3) Eq. 2-33

while the kinetic collision energy Eyi, is assumed to be correlated with the average
volume and the relative velocity of the two interacting drops:

Ek,-n=%pg|7-u 2 V=W (VY Eq. 2-34

rel
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where the turbulent relative velocity u is calculated according to Eq. 2-15 and Eq.
2-16.

Finally, the expression for coalescence efficiency ends up with:

Eq. 2-35

2 2 3 3
/ft(d/’d/)zexplcm G(d/ +d/)(d/ +d/ ) ]

2/13 43,43 2/3 2/3
pye”%dd 2 (d?° + ")

A similar model was derived recently by Simon [42] but he calculated the kinetic
energy from the momentum balance during the collision,

Ek/n o ,0g82/3 _(V/11/9 +Vj11/9) Eq. 2-36

He concluded the coalescence efficiency as:

0'(0’/2 + d/z)
ﬁ”(df’d/) = exp _Cﬂ pg82/3 (d/11/3 n 0'/1.1/3) Eq. 2-37

In the work of Sovova [43] the overall coalescence efficiency was further calculated
by combining the energy model in Eq. 2-35 with the film drainage model, which was
adopted afterwards by a few scientists [74] [75]:

Ad,.d,)=4(d,0,)+4,(d,.d,)-2(d,.d,) 4,(d,.d,) Eq. 2-38

where Ay and A; is calculated by the energy and the film drainage model,
respectively.

2. Critical approach velocity model

According to the energy model, coalescence will occur immediately when the
approach velocity exceeds a critical value at the instant of collision. However, the
experimental investigation of Doubliez [28] and Duineveld [29] gives a contradictory
conclusion that coalescence behavior favors gentle collisions. A simple expression
was used by Lehr et al. [30] [31] for the observed relationship between coalescence
efficiency and approach velocity:

/l(d,,dj)zmin{%ﬂ) Eq. 2-39

rel

where the critical velocity ucit is determined experimentally for a given system.

3. Film drainage model

According to the film drainage model, the coalescence efficiency of a collision
depends on two timescales, i.e. the contact time tcontact and film drainage time tgrainage -
The starting point of the theory is the work of Ross [76]. By assuming that the
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drainage and contact time are random variables, Ross applied the probability density
function of a normal distribution for the computation of coalescence efficiency:

f . 02 ) CZ ] _tra/na etconac
/l(d,,d/)=lexp[M]exp(%ﬂleﬂc{ﬁ foansge 2290 oon t} Eq. 2-40

2
2 contact contact 2 l‘contacf Ctdra/‘nagé‘

Later on Eq. 2-40 was simplified by Coulaloglou [77] to the following form by
assuming that the film drainage time is not distributed while the contact time remains
a random variable, i.€. Cdrainge = O:

)L(d,.,d/.) = exp{—MJ Eq. 2-41

contact

Although a few criticisms appear in the literature on the validity of the two timescales,
e.g. the assumption of random variables as well as a normal distribution [78], the film
drainage model is still the most popular approach. It has become the starting point of
almost all subsequent models. The main difference amongst the different models lies
in the expressions for the two timescales.

Film drainage time

According to Lee and Hodgson [79], various regimes of the film drainage process
may be distinguished according to the rigidity of particle surfaces (deformable, non-
deformable, see Figure 2.5) and the mobility of the contact interfaces (immobile,
partially mobile, fully mobile, see Figure 2.6). A great deal of analysis of these
regimes is to be found in the literature. Most of them use the lubrication theory,
which starts with the Navier Stokes Equation and the continuity equation, and ends
with a film-thinning equation. For simple boundary conditions such as constant
interaction force or approach velocity, the drainage time can be obtained by
integrating the thinning equation. For further details about the derivation and solution
of the film-thinning equation, the reader is referred to the dissertation of Hagesaether
[80].

F
A 4

(a) h (b)

Figure 2.5 Influence of particle surface rigidity on liquid film drainage flow [42]
(a) Nondeformable surfaces (b) Deformable surfaces
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(a) (c)

3 ijih ZNERS

Figure 2.6 Influence of particle surface mobility on drainage process [42]
(a) Immobile interfaces (b) Partially mobile interfaces (c) Fully mobile interfaces

When bubbles are highly viscous compared to the continuous phase or have very
small sizes (d<1 mm), at large distance their interfaces are slightly deformed and
behave nearly as rigid spherical particles. For two non-deformable spheres with
equal sizes, the drainage time can be derived by using the Poiseuille relation
according to Chesters [25]:

drainage 2 F /7

crit

¢ 3y In( L ) Eq. 2-42

If replacing the bubble radius r with an equivalent one req

_ 20
leq

- Eq. 2-43
r+,

The Eq. 2-42 can be extended to describe the case of unequal bubble sizes. Then it

becomes identical to the drainage time given by Davis et al. [44] and Jeffreys and
Davies [45] with the form:

2
r.r.
tdra/hage = 672#/ —Z_|In /70 Eq 2-44
F\rn+r h

crit

However, in most practical applications where large bubbles exist, the deformation of
the bubble surface during the collision must be considered [42]. The simplest model
for the film drainage between deformable interfaces is a so-called parallel model,
which assumes that the surfaces of the coalescing bubbles deform into two parallel
discs with radius R,, see Figure 2.5(b). However, during the experimental
investigation Derjaguin and Kussakov [81] found a dimple in the film, which implies
that there is a pressure gradient on the deformable interfaces. That means that it is
impossible to have a parallel plane film, since a flat film cannot support a gradient in
the pressure. In order to maintain this pressure gradient the film needs change to a
curved shape. A dimple can be defined as a reverse curvature so that a central lens

22



State of the art

of liquid is entrapped by a thin barrier ring. The dimple phenomenon was first
modeled by Frankel and Mysels [82]. However, although the dimple theory was
proposed and shown to be more close to the physical reality, the parallel model is
still the basis of most drainage models. It is acceptable with the consideration that
the film thickness is much smaller than its radius.

The classification of drainage regimes in the case of deformable particles depends
on the mobility. For immobile interfaces, film drainage is controlled by a viscous
thinning. The liquid is expelled from between these rigid surfaces by a laminar flow.
The velocity profile in the film is parabolic with no slip at the surface. The interaction
between the film drainage and the circulation inside particles is not coupled; see
Figure 2.6(a). Based on the preceding work of MacKay and Mason [47], Chesters
[25] derived the drainage time as Eq. 2-45 by assuming constant forces,

¢ _ 3uF rz( L 1} Eq. 2-45

drainage
% 1670’ h,’ h

which has the same form as the model of Chappelear [83], if the bubble radius r is
replaced by the equivalent radius req (See Eq. 2-43).

2
3uF ( dd, 1 1

L =t ad - Eq. 2-46
drainage 16wz[d,+d/) (/7 2 h(,z] a

crit

Based on Eq. 2-46 Coulaloglou and Tavlarides [56] developed a coalescence model
by assuming a constant initial and critical film thickness hy and hgit. It is one of the
most famous models for liquid-liquid dispersions.

The approximation of immobility of the film surface is applicable only to systems with
extremely high dispersed-phase viscosity or with a certain concentration of soluble
surfactant. In many liquid-liquid systems where the drainage process is
predominantly controlled by the motion of film surface, the contribution of the
additional flow within the film due to the prevailing pressure gradient is much smaller.
By assuming a quasi-steady creeping flow, Chesters [25] calculated the drainage
time for partially mobile interfaces using the following expression:

i, F 1 1
drainage ? 32| p _/7_ Eq 2-47
2(2710‘ [ r ) crit 0

Lee et al. [57] used the model of Sagert and Quinn [50] for the partially mobile case:

hcr/t 1
tyange = —3M 1R | dh Eq. 2-48

drainage o ghd [20//' +A/7 /(67[/73 ):|

By investigating the resisting hydrodynamic force during the film drainage process,
Davis et al. [44] concluded the relationship between the force F and the drainage
velocity dh/dt as:
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F Eq. 2-49

h \r+r | dt 1+1.69M +0.43/M>

2
_ayw,( n, ] an  1+0.38M

i J
where M characterizes the interfacial mobility. Based on Eq. 2-49, Tsouris and
Tavlarides [51] proposed a new coalescence model for drops in turbulent dispersions.

The drainage regime with fully mobile interfaces, e.g. bubbles in pure systems, is the
most complicated closure model. In this case, the drainage process is controlled by
both inertia and viscous forces. Using the parallel-flm model, Chesters [84]
proposed the following drainage equation:

12
H _|_o 9 exp| - “’ﬁ ~_ % withH=tink Eq. 2-50
at 3u,r dt R 3u,r 2

a

Since there is no analytical solution for the general expression in Eq. 2-50, two limits
are usually considered in the literature. For highly viscous liquids, the film is thinning
viscously and the drainage velocity is independent of the film size, and hence the
force. At this limit, the film drainage time is calculated by

t —?’ﬂ’rlni

drainage —
" 20 hcr/'t

Eq. 2-51

In the inertia-controlled limit, which is the case of gas bubbles in turbulent flow, Eq.
2-50 is shown to reduce to:

2
f _ p/ure/r |n hO
drainage 80'

Eq. 2-52

crit
In the numerical study of Chesters and Hofman [63], they found that in the inviscid

case Eq. 2-52 can be approximated as

2
_0.524e”_ Eq. 2-53
o

t

drainage

which was extended further by Luo [58] to unequal bubbles with sizes d;, d;:

urr;'/lo/(ji2
(1+d,1d,) o

=0.5

drainage

Eq. 2-54

From Eq. 2-53 and Eq. 2-54 one can see that the drainage time for the inertia
thinning is proportional to the approach velocity. That means that the drainage time
is small or the coalescence efficiency is high when the approach velocity is low,
which is consistent with the idea of the critical velocity model.

24



State of the art

Lee et al. [57] applied a different model, which is proposed originally by Sagert and
Quinn [50]:

R ,Od 1/2 /7
Lo =—2 22| In| 2 Eq. 2-55
drainage 4 ( 20 j h q

crit
Prince and Blanch [36] simplified the model of Oolman and Blanch [85] by neglecting

the effect of the Hamaker force and obtained the following expression for a pure
system,

’ 3p 0.5 h
e /
fdra/nage =[ 1:760 } In—- Eq. 2-56

It is worth noting that the film drainage time in Eq. 2-55 and Eq. 2-56 has a form
similar to the contact time proposed by Chesters [25] in Eq. 2-62.

Compressing force

In order to apply the above expressions for the determination of the film drainage
time, the interaction force F at the collision requires calculation, which is usually
assumed to be proportional to the mean square velocity difference at either ends of
an eddy with a size of the equivalent diameter [51] [56] [86]:

2

dd,

F~pe?(d, +d, )2’3[d L ] Eq. 2-57
/ J

Similarly, Chesters [25] proposed correlations for both viscous and inertial collisions
of equal-bubbles in turbulent flows. For the viscous regime, the typical force between

two colliding bubbles is expected to be proportional to the turbulent shear rate ve/v
F ~6muriJelv Eq. 2-58

On the other hand, for inertial collisions, Chesters [25] pointed out that because of
inertia the interaction force F exerted by one bubble on the other is greater than that
calculated by Eq. 2-58. For this case, they used the capillary force exerted on the
film, which is induced by variations in the curvature of the gas-liquid interface.

F 1R (Z_GJ Eq. 2-59
r

where Rj; is film radius.

Contact time

For the calculation of the contact or interaction time in a turbulent system, most of
the previous studies used the relationship of Levich [87], which is based on
dimensional analysis:
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2/3
p d

contact ~ 1/3
&

Eq. 2-60

Chesters [25] argued that the duration of a collision is controlled by the external flow
in the bulk. By making an analogy to solid particles located in viscous simple shear,
they concluded that the contact time of bubbles during a viscous collision in turbulent
flows should decrease with an increase in the strain rate in the smallest eddies:

t

contact = (8 / V)71/2 Eq 2'61
During inertial collisions, there is a conversion process between kinetic energy and
surface energy. From this point of view, Chesters [25] stated that the actual contact
time for inertial system was less than that obtained by Eq. 2-61. He derived the
expression for contact time from a energy balance:

b =[ (40,130, +1) p,r* 1 20| Eq. 2-62

By criticizing the simplicity of Levich’s expression and the suitability of Eq. 2-61 for
unequal-sized bubbles, Luo [58] derived an alternative expression for the interaction
time based on a simple parallel film model:

12

p,lp+C, )pd°

[conlact = (1 + 95// )[(3(!; N 5/2 )(1VZ )53/) 0} Eq. 2-63
j j

where Cyy is the added mass coefficient. Although it was found to be variable during
the approaching of bubbles [88], Cym is normally assumed to be a constant between
0.5 and 0.8 [89].

Kamp and Chesters [88] extended their previous expressions by Chester [25] to
unequal-sized bubbles. The interaction time was defined as the interval between the
onset of film formation and the moment at which the bubbles begin to rebound. By
assuming a balance between the increasing surface free energy and the
corresponding reduction in the kinetic energy of the system, they concluded an
expression for the interaction time as:

C d3 1/2
t :%K—p’ o eqj Eq. 2-64

contact

30

On the other hand, empirical expressions are also often applied in the calculation of
interaction time. For example, Tsouris and Tavlarides [51] used the expression of
Schwartzberg and Freybal [90], which treated the contact time as the reciprocal of
the fluctuation frequency of fluid velocity:
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Coalescence efficiency calculated by different models

Based on the combination of different expressions for the contact time and the
drainage time, various models for coalescence efficiency were formulated according
to Eq. 2-41. The dependence of some typical models on bubble size for the equal-
size case is depicted in Figure 2.7. Most of them considered only the inertial collision
caused by turbulent fluctuations and were derived based on classical theories of
isotropic turbulence, while Chesters [25] divided the collisions in a turbulent flow into
viscous and inertial collisions. At the same time, other than turbulence, Prince and
Blanch [36], Carrica et al. [91] and Wang et al. [38] took into account buoyancy,
laminar shear rate and wake interaction. Furthmore, Prince and Blanch [36] used an
identical efficiency for all collision mechanisms while Kolev [92] and Wang et al [37]
stated that models for the coalescence efficiency of different collisions might have a
different form. Carrica et al. [91] considered the influence of different collision
sources on coalescence efficiency by reforming the contact time.
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Figure 2.7 Dependence of coalescence efficiency on bubble size
pi=1000 kg'm>, pg=1 kg:'m?, e=1 m*s™, 4=0.001 Pa-s, py=1.8x10" Pa-s, a4=0.3

From Figure 2.7, one can see that all of the models give a value of between 0 and 1.
The models of Coulaloglou and Tavlarides [56] and Venneker et al. [93] predict
larger efficiencies for small bubbles than other models, among which Lehr et al. [31]
and Prince and Blanch [36] have the smallest value. The model of Coulaloglou and
Tavlarides [56] shows a much steeper decreasing trend than others. On the other
hand, the models of Lehr et al. [31], Luo [58] and Chesters [25] predict a value
considerably larger than zero when the bubble diameter increases up to 20 mm,
which will deliver a large coalescence rate for large bubbles. Despite the quantitative
difference, the dependence on bubble size of most models is consistent, i.e.
decreasing with bubble sizes. However, by using Eq. 2-49, Eq. 2-57 and Eq. 2-60 for
the calculation of drainage time, compressing force and contact time, respectively,
the model of Hasseine et al. [86] shows an increasing relationship with bubble sizes.
Sovova [43] combined the drainage model of Coulaloglou and Tavlarides [56] with
the energy model in Eq. 2-35. Therefore, the coalescence efficiency decreases
dramatically for small bubbles and then increases with the increase in bubble size
due to the contribution of “immediate coalescence”. Finally, Lee et al. [57] argued
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that the film thinning together with the rupture of the thin liquid layer control the
coalescence rate.

24 Breakup models

The breakup of bubbles is influenced by the surrounding liquid hydrodynamics and
interfacial interactions. The breakup frequency of a bubble is in general determined
by the balance between the external stresses (energy) exerted by the surrounding
liquid, which acts to distort the stable form of the bubbles, and the restoring surface
tension stress (energy) of the bubble. However, to quantify the breakup frequency
that one parent bubble breakups into a daughter bubble with given size, which is
used by CFD simulations, e.g. Q(d;, dx) in Eq. 2-8, the daughter bubble size
distribution of the breakup event has to be determined.

Similar to the case of bubble coalescence, mechanisms and models for droplets are
often used for the description of the deformation and breakup of bubbles without
further validation. Nevertheless, the work of Muller-Fischer [94] shows that for a
single bubble in simple shear flow this approach is justified for deformation but fails
in the case of breakup. For example, tip breakup or tip streaming is preferential for
bubbles while for droplets different breakup mechanisms can be clearly distinguished.
On the other hand, instead of simple shear flow, mature investigations on the
difference between bubble breakup and droplet breakup is missing for other cases.

241 Mechanisms leading to bubble breakup

In turbulent gas-liquid flows there are four main categories of external stresses: a)
turbulent inertial stresses; b) viscous shear stresses; c) interfacial stresses; d)
interfacial instability.

Breakup due to turbulent inertial stresses

In the turbulent case, the breakup of bubbles is caused by turbulent velocity/pressure
fluctuations around the bubble surface. Bubbles are assumed to modify their
spherical form with the fluctuation of the surrounding liquid. When the amplitude of
the oscillation exceeds that required to make the surface unstable, the bubble starts
to deform and stretch in one direction leading to a neck that contracts further and
fragments finally into two or more daughter bubbles. Whether or not the bubble will
break depends on the extent of the deformation, which can be expressed by the
Weber number, We:

2
T _ Pl d

We = Eq. 2-66

T

s (e}

where T1¢ is the turbulence-induced destroying stress or energy, and 715 is the
restoring stress or energy related to the surface tension.

The destroying stress (energy) 1 is defined differently in the literature, for example:

a) Kinetic energy of the drop transmitted from drop-eddy collisions [56]

b) Turbulent stresses resulting from velocity fluctuations around the bubble
surface [59]

c) Kinetic energy of hitting eddies of different scales [36] [57] [95]
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d) Dynamic pressure of hitting eddies of different scales [30] [31]
Similarly, the restoring stress or energy Ts is defined inconsistently as:

a) Surface energy of the parent bubble [57]

b) Surface stress of the parent bubble [59], which is equal to: (surface energy
of the parent bubble)/(volume of the parent bubble)

c) Critical energy calculated from the critical Weber number [36]

d) Increase in surface energy during the breakage process, i.e. the difference
between the surface energy of all daughter bubbles and that of the parent
bubble [95]

e) Mean value of the increases in surface energy for breakages into two equal-
sized daughters and into a smallest and a biggest one [93]

f)  Capillary pressure of the smallest daughter bubble [30] [31]

g) Combination of criteria d) and f) [96] [97]

Breakup due to viscous shear forces

Aside from the turbulent inertial force, the viscous shear force caused by velocity
gradients can also deform the bubble and lead to breakup in high viscosity liquid. In
addition, a bubble can experience shear stresses when it locates in a wake region or
inside a turbulent eddy. If a bubble has its larger part outside a wake region
generated by a leading bubble, the shear stress across the wake boundary may split
it via surface indentation and necking. When a bubble is smaller than the length
scale of the smallest turbulence eddies, i.e. the Kolmogorov length scale n, it is
contained in the smallest eddies, i.e. in the viscous subrange of turbulence. The
Kolmogorov length scale denotes the eddy scale where viscous forces begin to have
a noticeable effect on the motion of the fluid. Bubbles that are contained within the

eddies experience almost laminar flow conditions with a shear rate of ,/¢/v .

A mathematical description of bubble breakup due to viscous shear stress is still
missing. This is possibly because in most cases of gas-liquid flows, the viscosity of
the liquid is usually low, e.g. air-water flow.

On the other hand, the mechanisms for the droplets’ breakup in simple shear flow
have been widely explored both experimentally [98] ~ [100] and numerically [101] ~
[103]. A spherical droplet will deform and orient in steady simple flow. The steady
state shape and orientation depends on the ratio of the viscosity of the dispersed
droplet to the continuous liquid and the Capillary number Ca. Ca is the ratio of
viscous shear stresses to surface tension. For slightly deformed bubbles (Ca<<1),
the deformed droplet has an ellipsoidal shape, and the inclination angle 6 is about
45° decreasing as Ca increases. With increasing Capillary number the deformation
increases from spherical via ellipsoidal to sigmoidal with pointed ends while the
orientation angle approaches 0° for very high shear stresses.

Breakup due to interfacial stresses

As the size of the bubble increases, the breakup mechanisms become further
complicated by additional mechanisms such as interfacial stresses and instability.
Shearing-off of small bubbles at the rim of large bubbles is one of the most important
interfacial breakup mechanisms, which is caused by interfacial forces such interfacial
shear force and drag force. The shearing-off process is determined by the balance
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between the interfacial force and the surface tension at the rim base. When the
bubble slip velocity and consequently interfacial force is large enough, the bubble
becomes unsteady and stretches downstream, i.e. in the direction of the destroying
force. The neck part will further thin and breakup into a number of small bubbles. For
this mechanism, there are also no sound theoretical models available. Empirical
correlations are often used to determine the size of the small bubbles torn from the
large bubbles and the torn-off bubbles are assumed to have identical size [104] [105].

Breakup due to interfacial instability

The beakup mechanisms discussed above all depend on the dynamic characteristics
of the flow of the continuous phase. However, in practice it shows that even in the
absence of a net flow in the continuous phase, the breakup of a bubble can be
caused by interfacial instabilities if its size exceeds the maximum stable size. A
correlation for the maximum stable bubble size is given by Ishii and Kojasoy [106]:

g -40 -2 Eq. 2-67
gAp

For air-water systems under normal conditions, the maximum stable size is about 10
cm according to Eq. 2-67. Nevertheless, Wang and his coworkers [37] [38] [107]
used a value of 2.7cm to decide whether or not instability is considered.

Two types of surface instability have to be considered: Rayleigh-Taylor instability
and Kelvin-Helmholtz instability. The Rayleigh-Taylor instability occurs when a light
liquid is accelerated into a heavy fluid, that is, where there is a density difference.
The Kelvin-Helmholtz instability can occur when a velocity shear is present in a
continuous fluid or the velocity difference across the interface between two fluids is
sufficient large. Due to the complexity of the phenomenon, the information about the
size distribution of daughter bubbles is still missing. It is usually assumed that two
daughter bubbles are of equal size [37] [38]. This simplification is obviously too
arbitrary since the instability usually disintegrates a large bubble suddenly into a
number of small bubbles. Therefore, the mechanism is excluded in most models.

2.4.2 Breakup frequency

In the last decades, modeling of the breakup process has received considerable
effort and a great number of models for the calculation of specific breakup rate, i.e.
breakup frequency, were published. According to the four mechanisms discussed in
§2.4.1 the classification of representative models is shown in Figure 2.8. Most of the
models provide the total breakup frequency of a bubble and an extra function
needed to be assumed for the description of daughter bubble size distribution.
Models that give the partial breakup frequency, i.e. the breakup frequency of a
bubble breaking up into a daughter bubble with given size, are highlighted in blue
color. The partial breakup frequency can be used directly in the extended multi-fluid
model discussed in §2.2.

Since the continuous flow field is in most applications is a turbulent flow, the study of
bubble breakup frequency has focused on the breakup mechanism due to turbulent
fluctuations. Actually, this mechanism is usually assumed to be the dominant one
and the effects of viscous force, interfacial forces and instability on breakup
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phenomena are usually neglected without any further validation. Furthermore,
models for the calculation of the frequency of bubble breakup due to turbulent
fluctuation are formulated on the basis of various criteria, i.e. different definitions for
Tt and 15 in EqQ. 2-66.

Models for breakup due to turbulent fluctuation
For breakup caused by turbulent fluctuation, at least five criteria were adopted, which
are explained subsequently by some representative models.

Breakup Frequency Q

' Il Il v
Turbulent Viscous Interfacial Surface
fluctuation shear stress stress instability
v v v
[35] [98] [108] [104] [103] [104] [37] [38]
v ! v v v
a). b). c). d). e).
Turbulent Turbulent Turbulent Inertial Combination
kinetic stress kinetic force of of ¢) and d)
energy of caused by energy of bombarding
the velocity bombardin eddies i
bubble fluctuations g eddies greater than
" [96] [97]
greater around the greater a critical
than a bubble than a value
critical surface critical 7
value greater value
v than a | [30] [31]
100 s6] | critica [36] [51] [57]
7 [95] [111]
[110]

Figure 2.8 Classification of available models for breakup frequency

A pioneering phenomenological model was proposed by Coulaloglou and Tavlarides
[56], which was based on the turbulent nature of the liquid-liquid dispersion. The
drop oscillates and deforms due to local pressure fluctuations. The basic premise is
that an oscillating deformed drop will break if its kinetic energy Eq4, transmitted from
drop-eddy collisions, is greater than its surface energy E.i;.. The breakup frequency
is defined as:

fraction of j Eq. 2-68

Q(d)=[ ——1—|.
' breakup time ) | drops breaking

The breakup time is determined from the isotropic turbulence theory by assuming
that the motion of daughter drops is the same as that of turbulent eddies. The
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fraction of drops breaking is assumed proportional to the fraction of drops that have
a turbulent kinetic energy greater than their surface tension. With the assumption
that the distribution of kinetic energy is a normal function, Eq. 2-68 is expressed as:

_ C,.o
Q(d/) = C,d " expL—WJ Eq. 2-69
g i

To account for the “damping” effect of droplets on the local turbulent intensities at
high holdup fractions, the authors modified the original expression as:

a3 81/3
Q(d,)=C,0, TP

+C¥g

_Gieo(l11a, )2] Eq. 2-70

2/3 4 5/3
pgg d/'

The dependence of “damping” effect on gas volume fraction and dissipation rate is
depicted in Figure 2.9.
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Figure 2.9 Coulaloglou and Tavlarides [56] model. (a) €=1.0 m?:s™; (b) 0gy=0.1
(C14=0.00481, C15=0.08)

As pointed out by Prince and Blanch [36], for gas-liquid mixtures, the model of
Coulaloglou and Tavlarides [56] predicts a breakup rate that is several orders of
magnitude lower than the experimental results. This might result from the fact that
the density of dispersed phase in a gas-liquid mixture is much lower than that in the
liquid-liquid dispersion. Therefore, the density used in the equations of Eq. 2-69 and
Eq. 2-70 has to be replaced by that of the continuous phase in order to get
reasonable results for gas-liquid flows [108]. This discrepancy indicates that the
kinetic energy of turbulent eddies in the continuous phase plays a role in causing the
breakup of a bubble or drop instead of the kinetic energy of the bubble or drop itself.

Another similar model was proposed by Chatzi [109] [112]. The unique difference is
that they expressed the probability density of the turbulent kinetic energy by
Maxwell’s law instead of the normal function. Thus, they published the model in the
following form:

32



State of the art

/

2 3 C,.o
Q(d)=C,.d 23" = || =, —1— Eq. 2-71
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Martinez-Bazan et al. [59] criticized the models, which were derived from an
extension of the classical kinetic theory of gases [36] [51] [57] [95]. These models
assume the fact that turbulence consists of an array of discrete “eddies” and as a
result they rely on physically questionable assumptions about the size and number
density of the “eddies”. Therefore, they presented an alternative model based purely
on kinematic ideas for fully developed turbulent flows. The premise of the model is
that, for a bubble to break, its surface has to deform, and enough energy must be
provided by the turbulent stresses in the surrounding continuous liquid. The breakup
frequency is assumed to increase with the difference between the turbulent stresses
Tt and the surface stress T1s. In other words, the breakup frequency should decrease
to zero as this difference vanishes and the turbulent stresses are lower than the
surface pressure.

The turbulent stress, which results from the velocity fluctuations existing in the liquid
between two points separated by a distance of dj, is calculated as:

1 1
o= EP/Uﬁz = EP/Cw (ed, )2/3 Eq. 2-72

The critical or minimum stress necessary to deform a bubble of size d; is defined as:

2
0 (d)="2%" _6° Eq. 2-73
fdl?’ d/
6 /
Thus, the breakup frequency is given by
\/018( )" -12 ‘;
Q(d,)=C, it Eq. 2-74

The