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Abstract 
A generalized model for bubble coalescence and breakup has been developed, 
which is based on a comprehensive survey of existing theories and models. One 
important feature of the model is that all important mechanisms leading to bubble 
coalescence and breakup in a turbulent gas-liquid flow are considered. The new 
model is tested extensively in a 1D Test Solver and a 3D CFD code ANSYS CFX for 
the case of vertical gas-liquid pipe flow under adiabatic conditions, respectively. Two 
kinds of extensions of the standard multi-fluid model, i.e. the discrete population 
model and the inhomogeneous MUSIG (multiple-size group) model, are available in 
the two solvers, respectively. These extensions with suitable closure models such as 
those for coalescence and breakup are able to predict the evolution of bubble size 
distribution in dispersed flows and to overcome the mono-dispersed flow limitation of 
the standard multi-fluid model.  
 
For the validation of the model the high quality database of the TOPFLOW L12 
experiments for air-water flow in a vertical pipe was employed. A wide range of test 
points, which cover the bubbly flow, turbulent-churn flow as well as the transition 
regime, is involved in the simulations. The comparison between the simulated results 
such as bubble size distribution, gas velocity and volume fraction and the measured 
ones indicates a generally good agreement for all selected test points. As the 
superficial gas velocity increases, bubble size distribution evolves via coalescence 
dominant regimes first, then breakup-dominant regimes and finally turns into a 
bimodal distribution. The tendency of the evolution is well reproduced by the model. 
However, the tendency is almost always overestimated, i.e. too much coalescence in 
the coalescence dominant case while too much breakup in breakup dominant ones. 
The reason of this problem is discussed by studying the contribution of each 
coalescence and breakup mechanism at different test points. The redistribution of 
the gaseous phase from the injection position at the pipe wall to the whole cross 
section is overpredicted by the Test Solver especially for the test points with high 
superficial gas velocity. Besides the models for bubble forces, the simplification of 
the Test Solver to a 1D model has an influence on the redistribution process. 
Simulations performed using CFX show that a considerable improvement is 
achieved with comparison to the results delivered by the standard closure models. 
For the breakup-dominant cases, the breakup rate is again overestimated and the 
contribution of wake entrainment of large bubbles is underestimated. Furthermore, 
inlet conditions for the liquid phase, bubble forces as well as turbulence modeling are 
shown to have a noticeable influence, especially on the redistribution of the gaseous 
phase.  
 
 

 
 
 



Kurzfassung 
Es wurde ein verallgemeinertes Modell für Blasenkoaleszenz und -zerfall entwickelt, 
das auf einer umfangreichen Recherche bestehender Theorien und Modellen basiert. 
Ein wichtiges Merkmal des Modells ist, dass alle wichtigen Mechanismen, die in 
einer turbulenten Blasenströmung zu Koaleszenz und Zerfall führen können, 
berücksichtigt werden. Das neue Modell wurde ausführlich jeweils in einem 1D 
Testsolver und dem 3D-CFD-Code ANSYS CFX für den Fall einer vertikalen Luft-
Wasser-Rohrströmung unter adiabatischen Bedingungen getestet. Zwei Varianten 
für Erweiterungen des Standard-Multi-Fluid-Modells, das diskrete Populationsmodell 
und inhomogene MUSIG (MUltiple-Size-Gruppe) Modell, stehen in den Solvern zur 
Verfügung. Mit geeigneten Schließungsmodellen für Blasenkoaleszenz und -zerfall, 
sind sie grundsätzlich in der Lage die Entwicklung der Blasengrößenverteilung in 
dispersen Strömungen vorherzusagen und die Beschränkung des Standard-Multi-
Fluid-Modells auf mono-disperse Strömungen zu überwinden.  
 
Für die Validierung des Modells wurde die hochwertige Datenbasis der TOPFLOW-
L12-Experimente für Luft-Wasser-Strömungen in einem vertikalen Rohr genutzt. 
Eine große Auswahl von Messpunkten, die die Blasenströmung, die turbulente-
aufgewühlte Strömung sowie den Übergangsbereich abdecken, wurde in den 
Simulationen einbezogen. Der Vergleich zwischen den Simulationsergebnissen für 
Blasengrößenverteilungen, Gasgeschwindigkeiten und dem Gasvolumenanteil sowie 
den experimentellen Daten zeigt eine allgemein gute Übereinstimmung für alle 
ausgewählten Messpunkte. Mit zunehmender Gas-Leerrohrgeschwindigkeit ist die 
Entwicklung der Blasengrößenverteilung zuerst von Koaleszenz dominiert, dann von 
Zerfall und führt schließlich zu bi-modalen Verteilungen. Die jeweilige Tendenz wird 
in den Simulationen richtig wiedergegeben, allerdings fast immer überschätzt, d.h. in 
dem von Koaleszenz dominierten Fall wird die Koaleszenzrate überschätzt, in dem 
von Zerfall dominierten Fall ist die Zerfallsrate zu groß. Die Ursachen werden durch 
die Untersuchung des Beitrags der einzelnen Koaleszenz- und Zerfallsmechanismen 
für verschiedene Messpunkte diskutiert. Die Umverteilung der Gasphase von der 
Einspeisung an der Wand über den gesamten Rohrquerschnitt wird im Testsolver 
insbesondere für große Gasleerrohrgeschwindigkeiten überschätzt. Neben den 
Modellen für die Blasenkräfte hat die Vereinfachung des Testsolvers auf ein 1D-
Modell einen Einfluss auf die Umverteilung. Die mit CFX durchgeführten 
Simulationen zeigen, dass eine erhebliche Verbesserung der Ergebnisse im 
Vergleich zu den Standardschließungsmodellen für Blasenkoaleszenz und -zerfall 
erzielt wird. Für die durch Zerfall dominierten Fälle wird die Zerfallsrate wiederum 
überschätzt und der Beitrag des Blaseneinfangs in die Nachlaufströmung einer 
großen Blase zur Koaleszenz wird unterschätzt. Darüber hinaus haben die 
Eintrittsbedingungen der flüssigen Phase, Blasenkräfte sowie Turbulenzmodellierung 
einen spürbaren Einfluss auf die Ergebnisse, vor allem auf die Umverteilung der 
Gasphase. 
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1 Introduction 
Two-phase flow refers to any fluid flow consisting of two phases or a liquid 
immiscibility. One can classify them according to the state of the two phases or 
components, e.g. gas-liquid, gas-solid, liquid-liquid and liquid-solid. Of the four types 
of two-phase flows, it is gas-liquid flows, which will be discussed in this work. These 
flows are the most complex since they combine the characteristics of a deformable 
interface and the compressibility of the gaseous phase [1]. 

1.1 Background and motivation for the thesis 
The range of gas-liquid flow applications in today’s technology is immense. 
Examples can be found in nuclear reactors, chemical reactors, food production, gas 
and oil pipelines and automotive industry. In the design and optimization of light 
water-cooled nuclear reactors, e.g. BWR (Boiling Water Reactor) and PWR 
(Pressurized Water Reactor), basic understanding of gas-liquid flow is of special 
importance to guarantee the safety of the system. For example, under normal 
operation conditions of BWR plants, saturated steam is produced in the reactor core 
and directly used to drive a turbine. On the other hand, modern PWR benefits from 
the effective heat transfer coefficient achieved by nucleate boiling in the reactor core 
although steam driving the turbine is produced in a steam generator outside the core. 
Furthermore, knowledge of gas-liquid flow is indispensible when considering 
postulated accidents in the nuclear system. For example, one of the most severe 
accidents in a PWR plant is the loss of coolant (LOCA), where the re-circulating 
coolant may flash into steam. The involved processes are extremely complex and 
have been one of the main focus areas for the research in gas-liquid flows for many 
decades [1]. 
 
Since nuclear experimentation at full scale or with entire systems is only possible in 
a limited number of cases, numerical simulations play an important role in the 
research of complex gas-liquid flow situations that arise in a normal or accident 
situation. The traditional system codes, which have been successfully used for this 
purpose for many years are based on empirical correlations that are specific for 
certain two-phase flow regimes. These regime-dependent empirical correlations are 
implemented into 1D system codes where the boundaries between regimes are 
specified through static regime transition criteria. Such an approach, however, does 
not represent the flow dynamics since the static flow regimes are neither able to 
predict the change of flow regime along the flow path in the case of stationary flows 
nor the time and space dependent flow structure in the case of transient flows [2]. As 
it is known in gas-liquid flow, the distribution of interfacial structure can take any 
possible flow regime. Taking vertical pipe flow as an example possible regimes are 
bubbly flow, slug flow, churn-turbulent flow, wispy annular flow and annular flow. The 
particular flow regime that is observed to occur is dependent on the properties and 
flow parameters of the phases, pipe size and orientation, configuration of the inlet 
and so on. Moreover, the flow regimes continuously evolve along the flow path via 
various bubble dynamic mechanisms such as bubble coalescence and breakup. 
Sommerfeld [3] pointed out that in gas-liquid flow, if the volume fraction of gas 
exceeds c.a. 3% collision and coalescence between bubbles becomes important. As 
a result, the flow regime changes from homogenous mono-dispersed bubbly flow to 
heterogeneous poly-dispersed flow. On the other hand, bubbles are subject to 
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destroying stresses from the surrounding continuous liquid phase. When the 
destroying force is larger than the restoring force such as surface stress, the bubble 
will deform and break up into small bubbles. In conclusion, in order to obtain 
accurate predictions for the transient evolution of flow regime, it is necessary to 
develop more sophisticated numerical methods than system codes.  
 
The considerable increase in the available computational power and tools allows the 
use of CFD (Computational Fluid Dynamics) codes to approach local phenomena in 
much greater detail. In the CFD simulations of gas-liquid flows there are three basic 
numerical methods discussed in the literature, that is, Direct Numerical Simulation 
(DNS), Euler-Lagrange (E-L) and Euler-Euler (E-E) methods. The three methods 
differ in the scale range that is explicitly solved. The DNS or interface resolving 
method is at the lowest level of time and length scale. It aims to resolve all 
interactions between two phases and needs no turbulence and interfacial exchange 
models. The main difficulty of the DNS method is the highest computational load, 
and as a result numerical methods of this type have been applied mostly to flows 
around a single bubble or to systems involving only a relatively small number of 
bubbles or particles. Another difficulty is the moving phase-interface whose shape is 
a part of the solution. To keep the interface numerically sharp, i.e. to avoid any 
artificial smearing of the interface during the computation, special numerical 
algorithms have to be developed. Nowadays mainly three types of methods are used, 
the volume-of-fluid method (VOF), the level-set method (LS) and the front-tracking 
(FT) method [4].  
 
For systems at intermediate scale, the E-L or discrete bubble approach can be used 
where the liquid phase is solved by phase-averaged equations while bubbles are 
modelled by point force distributions at the discrete location of bubbles and the 
equation of motion is solved by Newton’s second law. This method is particularly 
suited to study the effect of bubble-bubble and/or bubble-wall interactions and it 
provides for closure for bubble-bubble interactions since the scale of distances 
between bubbles is explicitly solved. However, contrary to the DNS approach, the 
flow field at the scale of an individual bubble is not resolved, and therefore closure 
laws for bubble-liquid interaction, e.g. bubble forces, have to be provided [5]. The 
major disadvantage of the Euler-Lagrange approach is the complexity of the 
interfacial coupling, since the coupling between two different solvers, i.e. the Eulerian 
and Lagragian solver, is difficult. Therefore, numerical simulations of this type are 
often done by one-way coupling where the effects that the presence of bubbles may 
have on the liquid phase are neglected. As a result, the Eulerian velocity field of 
liquid can be computed independently of trajectories of bubbles. Furthermore, such a 
method is still limited to dilute gas-liquid flows otherwise a statistical approach is 
used as an approximation where a computation parcel contains thousands of real 
bubbles.  
 
Finally, the E-E or continuum approach is at the largest time and length scales where 
both the gas and liquid phase are solved by phase-averaged equations and the 
macroscopic effect of interactions between phases is modelled by constitutive 
equations. Since it is the most computationally efficient this numerical method is 
particularly suited to model gas-liquid flows in industrial scale equipments. Another 
advantage of the Euler-Euler model is that instead of limiting to dilute bubbly flow it 
can be used to compute any flow regime provided that adequate closure relations 



Introduction 

3 
 

about bubble-bubble and bubble-liquid interactions are known. Nevertheless, the 
reliance on closure models is exactly a weak link in this approach. To date, more 
effort is still required to develop phenomenological closure models for bubble forces, 
turbulence generated by the bubble and bubble dynamics such as bubble 
coalescence and breakup.  

1.2 Aim and tasks of this thesis 
This work is aimed at developing a generally applicable closure model for bubble 
coalescence and breakup in the framework of the E-E approach. The goal of the new 
model is to take into account all important mechanisms that lead to bubble 
coalescence and breakup in turbulent gas-liquid flow.  
 
In the last half century, numerous achievements have been made in the theoretical 
analysis and modeling of bubble coalescence and breakup processes. 
Correspondingly, a number of theories and models were proposed. Nevertheless, 
they are found to be the weakest point in the modeling of poly-dispersed flows [6] [7]. 
There are still some obstacles to be overcome such as the superposition of different 
mechanisms, determination of critical conditions, and insufficient knowledge about 
two-phase turbulence modeling. As it is known, bubble coalescence and breakup 
rates depend on turbulence parameters since turbulence is one important promoting 
reason for it. Up to now no mature turbulence modeling approaches for two-phase 
flows exists, i.e. when bubble coalescence and breakup models are used in CFD 
codes, their input parameters are often not well defined. Many CFD codes consider 
the bubble induced turbulence by modifying the turbulent viscosity, e.g. using the 
model of Sato et al. [8]. This method might result in a satisfactory simulation of 
velocity fields, but it hardly reflects the influence of bubbles on the turbulent kinetic 
energy and dissipation rate.  
 
Due to all the difficulties, the models at hand for bubble coalescence and breakup 
are only validated for certain cases. No model is available which is applicable for a 
wide range of flow situations. 
 
In general, all of the models available in literature have one or more following 
shortcomings: 
 

• Only turbulence is considered while other mechanisms are neglected without 
further validation  

• Bubble-eddy collision are assumed and detailed information about the size, 
shape as well as energy of eddies is required  

• Turbulence parameters are not correctly calculated, e.g. simple empirical 
correlations are used and the influence of bubble-induced turbulence is not 
considered 

• Integrals over the size or/and energy of turbulent eddies are included, which 
restricts the computation speed dramatically and make the model more 
difficult to implement into CFD codes 

• Most breakup models need to assume a separate daughter size distribution 
function (e.g. Beta function, Normal function), which usually has no physical 
meaning 
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In a word, further effort is required to develop and validate suitable closure models 
for bubble coalescence and breakup. 
 
Accordingly, the main tasks of this work are: 
 

(1) Extensive literature research on available theories and models for bubble 
coalescence and breakup 

(2) Implementation and testing of some typical models taken from literature in 
the Multi Bubble Size Class Test Solver [2] with help of TOPFLOW 
experimental data [9] 

(3) Theoretical development of a new model framework for bubble 
coalescence and breakup which are aimed to overcome the limitations in 
the existing models  

(4) Implement and test of the new model framework in the Multi Bubble Size 
Class Test Solver [2]. The calculated results of bubble size distribution, 
mean bubble size as well as gas volume fraction and velocity were 
compared with the TOPFLOW experimental data [9] 

(5) Implement and test the new model framework in CFX. The predicted 
bubble size distributions were compared with those delivered by the 
standard closure models in CFX and by the Test Solver  

(6) Study via the Test Solver and CFX, the influence of two-phase turbulence 
modeling on the results of turbulence parameters as well as bubble size 
distribution, gas volume fraction as and velocity fields  

1.3 Outline of the thesis 
The remainder of this thesis consists of six chapters. Brief overview of these 
chapters follows: 
 
Chapter 2:  In this chapter state of the art of basic theory regarding simulation of 
poly-dispersed gas-liquid flows is reviewed. The information is confined to Eulerian 
multi-fluid model and those subjects that are relevant for the prediction of local 
bubble size distribution. Information is presented about the following items: (a) the 
limitation of the standard Eulerian multi-fluid model, (b) the extended Eulerian multi-
fluid model for taking into account the evolution of local bubble size or interfacial 
area density distribution, (c) status of closure models for bubble coalescence and 
breakup, (d) discussion about limitations and possible improvements of existing 
models. 
 
Chapter 3: A new generalized closure model is proposed for bubble coalescence 
and breakup. The underlying theory and the advantage of the extended model are 
introduced. The characteristics of the collision frequency, coalescence efficiency, 
breakup frequency and daughter bubble size distribution predicted by the new model 
are analyzed 
 
Chapter 4: The strategy for the test and validation of the new model is discussed. 
The presented information includes (a) the reason for the choice of a vertical upward 
flow configuration, (b) closure models for interfacial forces and bubble-induced 
turbulence, (c) the requirement for experimental data and the review on available 
databases, (d) advantages and examples of TOPFLOW experimental data [9], (e) 
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solvers, i.e. Test Solver and ANSYS 12. 1 CFX-Solver, used for the validation 
calculations 
 
Chapter 5: Models for bubble coalescence and breakup are tested in the Test Solver 
by using TOPFLOW experimental data [9]. Firstly, the original Test Solver is 
extended and validated with the results obtained by the CFX solver for some crucial 
parameters such as turbulence parameters. Then, some typical models for bubble 
coalescence and breakup taken from the literature are tested by the prediction on 
the bubble size distribution and mean bubble diameter. The new model is 
extensively tested by predicting the evolution of (a) bubble size distribution, (b) radial 
gas volume fraction profile, (c) radial gas velocity profile, and the influence of (d) the 
non-drag forces, i.e. the turbulent dispersion force, the lift force and the wall 
lubrication force, (e) the two-phase turbulence modeling approaches. 
 
Chapter 6: The new model is implemented and validated in the commercial ANSYS 
12.1 CFX-Solver. The mesh information, boundary condition and convergence 
criteria are introduced. The predicted results are compared with the TOPFLOW 
experimental data [9], the results predicted by the standard models used by the CFX 
Solver for bubble coalescence and breakup as well as the results obtained by the 
Test Solver. The influence of the liquid inlet conditions, interphase drag force, wall 
lubrication force as well as the two-phase turbulence modeling methods is reviewed. 
 
Chapter 7: Conclusions and the recommendations for the future research are given 
in this chapter. 
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2 State of the art 
In this chapter, the state of the art of Eulerian multi-fluid model and the 
corresponding constitutive models for the modelling of poly-dispersed bubbly flows 
are discussed. 

2.1 Standard Eulerian multi-fluid model 
A general form of the Eulerian multi-fluid fundamental equations for bubbly flows at 
adiabatic conditions is [10]: 
 
Mass conservation: 
 

( ) ( )α α α α α αα ρ α ρ∂
+∇ ⋅ =

∂
u S

t
                                         Eq. 2-1 

 
Momentum conservation: 
 

( ) ( )

( )( )
α α α α α α α

α α α α α α α α α

α ρ α ρ

α µ α α ρ

∂  + ∇ ⋅ ⊗ ∂
 = ∇ ⋅ ∇ + ∇ − ∇ + +  

  

    T

u u u
t

u u p g M
           Eq. 2-2 

 
where αα, ρα, μα, uα, pα represent void fraction, density, viscosity, velocity and 
pressure of the phase α, respectively, and g is the gravitational acceleration.  
 
Source terms Sα represent the mass transfer between gaseous phases due to 
bubble breakup and coalescence processes and the momentum transfer caused by 
bubble breakup and coalescence is neglected. Mα is the interfacial momentum 
transfer per unit time (interfacial force) between gaseous and liquid phases, which is 
taken into account by drag and non-drag forces. That means that the sum of 
interfacial forces for phase α is given by: 
 

α α α αα = + + +
    

, , , ,D TD L WM F F F F                                     Eq. 2-3 
 
At the right hand side of the Eq. 2-3 are drag force, turbulent dispersion force, lift 
force and wall lubrication force, respectively. Since bubble forces depend not only on 
the velocity field but also on bubble size and turbulence, further constitutive models 
or extensions are needed to capture local bubble size evolution and turbulence 
parameters. 

2.2 Modern extensions of the multi-fluid model 
With the standard multi-fluid model presented above in a strict sense only mono-
dispersed flows with single-value bubble size can be simulated. In a real dispersed 
flow, often a spectrum of bubble sizes is present (poly-dispersed flow). Moreover, the 
bubble size is not spatially and temporarily constant if bubble coalescence and 
breakup occurs. To overcome this restriction, the standard multi-fluid model is often 
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extended in the modern simulation of poly-dispersed flow. In general, there are five 
different extension approaches under development.  

2.2.1 Four-field multi-fluid model 
The first approach is the four-field multi-fluid model, which was firstly proposed by 
Lahey and Drew [11]. The main difference between the extended and standard multi-
fluid model is that in the extended model each of the two fluids maybe either 
continuous or dispersed in different regions of space. The four fields are therefore 
given by continuous liquid, continuous gas, dispersed liquid and dispersed gas. 
Mass and momentum conservative equations are solved for each of the four fields. 
This model seems to be very promising for slug flow or annular flow regimes 
especially with phase transfer. However, it is not ideal for the modelling of bubble-
bubble interactions in a poly-dispersed flow, since the dispersed gas is still treated in 
a mono-dispersed way. 

2.2.2 Population balance equation model 
Another promising concept to overcome the mono-dispersed flow limitation of the 
standard multi-fluid model is the Population Balance Equation Model (PBEM), which 
is based on the introduction of population classes. In the PBEM, an additional 
transport equation analogous to Boltzmann’s transport equation is introduced to 
trace the evolution of local bubble number density. By considering source or sink 
terms caused by bubbles entering and leaving a control volume through different 
mechanisms, the number density transport equation can be written as [12] ~ [14]  
 

( ) ( ) ( )∂
 + ∇ ⋅ ⋅ = ∂


 , ,

, , , ,x

n V r t
u V r t n V r t S

t
                                Eq. 2-4 

 
where n, u, V, 

r , t, are bubble number density, convective velocity, bubble volume, 
spatial and temporal coordinate, respectively. On the right hand side of the equation 
are source or sink terms caused by different mechanisms. 
 
The equation can be solved by dividing the internal coordinate (here is the volume of 
bubbles, V) into N classes. This discretization method called method of classes or 
spectral method. Each of these classes is treated as a dispersed phase with single 
size and separate velocity field. A mass and momentum conservative equation is 
respectively solved for each class leading to 2(N+1) equations in adiabatic condition. 
If discretization is fine enough, the size-dependent source term processes can be 
well modelled by this approach, however, it can consume extensive computer 
resources. In order to capture the effect of the transient change of bubble size at low 
computational costs, a variety of approximate methods have been proposed such as 
interfacial area transport equation (IATE), method of moments (MOM), and multiple-
size group model (MUSIG).  

2.2.3 Transport equation for interfacial area density 
The method of interfacial area transport equation (IATE) was first proposed by Ishii 
and his co-workers [15] [16]. It is based on the intuition that in a two-phase flow the 
interfacial area density is of importance, since it determines directly the interfacial 
transfer processes. Therefore, similarly to the PBEM method, a transport equation is 
introduced to trace the evolution of interfacial area density. Instead of a globally 
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mono-dispersed flow in the standard multi-fluid model a local equivalent bubble size 
can be obtained from the interfacial area density if the shape of the bubble is 
specified. The equivalent bubble size is adopted for the calculation of interfacial 
transfer terms in the extended multi-fluid model. On the other hand, the velocity of 
the dispersed phase in the multi-fluid model is used as the convective velocity of 
interfacial area density in the transport equation. In contrast to the PBEM model, this 
method is much more efficient since no additional mass and momentum 
conservative equations are introduced. However, it can only model a change of 
bubble size but not a change of bubble shape since the shape of bubble has to be 
specified for the calculation of equivalent bubble size. Recently, the concept of two-
group IATE has been proposed by Ishii and his co-workers [17] ~ [19] as a more 
general model. In this approach bubbles are divided into two groups, i.e. the 
spherical/distorted bubble group and the cap/slug bubble group. For each group a 
separate transport equation is solved for interfacial area density. In addition a mass 
equation and a momentum conservative equation are needed to be solved for each 
group.  
 
In a way similar to the PBEM method, different phenomena create or absorb 
interfacial area, such as bubble coalescence and breakup. They are taken into 
account through source terms on the right hand side of the transport equation. 
Nevertheless, these size-dependent source terms can hardly be predicted correctly 
by an assumption of one or two size groups.  

2.2.4 Method of moments 
The method of moments (MOM) solves the evolution of the bubble size distribution 
by tracking the time dependence of bulk properties, i.e., moments of the distribution 
function. Transport equations are solved for some lower-order moments and the 
corresponding bubble size distribution is approximately reconstructed from the 
prognostic moments. One of the main limitations in the MOM is the closure problem. 
In the traditional MOM the evolution of lower-order moments usually cannot be 
expressed by the moments themselves due to size-dependent source terms. As an 
alternative, McGraw [20] developed the so-called quadrature method of moments 
(QMOM), which is based on the approximation of the unclosed terms by means of n-
points Gaussian quadrature. The main limitation of QMOM is the assumption of 
spatial homogeneity. In other word, the convective term is neglected in the transport 
equation of moments. Recently, the QMOM is extended to handle inhomogeneous 
cases where each prognostic moment is transported by its own velocity, the so-
called DQMOM method [21]. In DQMOM, the transport equations are solved directly 
for the abscissas and weights of the quadrature approximation instead of moments. 
Another difficulty of the moment model is the reconstruction procedure. The chosen 
prognostic moments must fulfil certain conditions in order to ensure the existence of 
a function for the corresponding bubble size distribution [22]. 

2.2.5 The inhomogeneous MUSIG model 
The last method discussed here is the multiple-size group model (MUSIG), which is 
similar to the PBEM. The MUSIG model was firstly proposed by Lo [23], in which a 
mass conservative equation is solved for each bubble size group while a common 
velocity field is assumed for all size groups. With this simplification, up to 60 classes 
can be taken into account. However, the performance of this so-called homogeneous 
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MUSIG model is limited to convection dominated bubbly flows or bubbles with small 
inertia, since it is based on the assumption of a homogeneous velocity field applied 
to all bubble size classes. Alternatively, an inhomogeneous MUSIG model is 
presented by Krepper for poly-dispersed flow [7]. As shown in Figure 2.1, in the new 
MUSIG model, the gaseous phase is divided firstly into N phases/velocity groups, 
where each group is characterized by its own velocity field. Furthermore, each 
velocity group j is divided into a number of sub-size groups Mj, j=1, 2, …, N. The 
PBEM considering coalescence and breakup is applied to the sub-size groups, k=1, 
2, …, ΣM j. Therefore, the inhomogeneous MUSIG model is able to take into account 
the heterogeneous velocity fields of bubbles with different size and at the same time 
it allows sufficient size groups to model the process of coalescence and breakup 
accurately with acceptable computation cost. 
 

 
Figure 2.1 Schematic view of the inhomogeneous MUSIG model [24] 

 
Defining fk as the size fraction of the sub-size group k, we have 
 

α α α α
= =

= = =∑ ∑
1 1

;   1 ;   
jM N

k j k k j g
k j

f f                                  Eq. 2-5 

 
where j is the velocity group that the sub-size group k belongs to (see Figure 2.1) 
and αg is the volume fraction of the whole gaseous phase. 
 
The inhomogeneous MUSIG model solves the transport equations for all size 
fractions fk: 

 

( ) ( )ρ α ρ α∂
+∇ ⋅ =

∂


j j k j j k j kf f u S
t

                                     Eq. 2-6 

 
In adiabatic situation, the source term Sk accounts for: (i) the birth of bubbles of size 
k due to breakup of bubbles of larger size and coalescence of bubbles of smaller 
size, Bbk, Bck; and (ii) the death of bubbles of size k due to both break up and 
coalescence encountered in this size group, Dbk, Dck. 
 

= − + −k bk bk ck ckS B D B D                                          Eq. 2-7 

V1 V2 VN 

d1 dM1 dM1+1 dM1+M2 

bubble 
coalescence 

bubble  
breakup 

Velocity groups 
j=1..N 

Size fractions 
k=1..ΣMJ 

... 

dΣMJ 
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These rate terms may further be expressed as 
 

( )ρ α
>

= Ω∑ ,bk j j i k k
i k

B d d f                                                 Eq. 2-8 

( )ρ α
<

= Ω∑ ,bk j j k i k
i k

D d d f                                                   Eq. 2-9 

( ) ( )ρ α
< <

+
= Γ∑∑

3 32

3 3
1 ,
2

l i
ck j j l i ilk i l

l k i k l i

d dB d d X f f
d d

                              Eq. 2-10 

( ) ( )ρ α= Γ∑
2

3
1,ck j j k i i k

i i

D d d f f
d

                                        Eq. 2-11 

 
where Ω and Γ are breakup and coalescence kernel functions, respectively. 
 
From the above it can be seen that in order to trace the spatial and temporary 
evolution of bubble size by using the different extended methods of the multi-fluid 
model, kernel functions for bubble coalescence and breakup must be known. Bubble 
coalescence and breakup has been a subject of many theoretical and experimental 
investigations over the past years. A variety of theories and models were proposed 
in the literature for the calculation of bubble coalescence and breakup rate in gas-
liquid flow. Since detailed information about the difference between bubble-bubble 
coalescence and drop-drop coalescence is still missing, mechanisms and models for 
these two cases are usually assumed to be transferable from one to another. 

2.3 Coalescence models 
Compared to breakup processes, bubble coalescence is considered more complex 
[25], since it involves not only interactions of bubbles with the surrounding liquid, but 
also those between bubbles themselves once they are brought together by the 
external flow.  

2.3.1 Mechanisms leading to bubble coalescence 
It is obvious that the collision of bubbles is the premise of coalescence between 
them. The collision between bubbles is caused by relative motion, which may be 
caused by a variety of mechanisms, i.e. the flow conditions in the external flow. At 
least five sources of velocity difference between bubbles can be distinguished in a 
turbulent gas-liquid flow:  
 

i) turbulent fluctuations in the surrounding liquid 
ii) velocity gradients in the bulk flow  
iii) shear rate inside eddies  
iv) size-dependent rise velocities  
v) wake interactions  

 
After colliding, bubbles can either coalesce or separate without coalescing. For the 
calculation of the probability of coalescence during a collision event, there are in 
general three kinds of theories discussed in the literature, i.e. film drainage model, 
energy model and critical approach velocity model. The first is the most popular one. 
Shinnar and Church [26] stated that after colliding two bubbles may cohere together 
and they be prevented from coalescing by a thin film of liquid trapped between them. 
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Attractive forces between the interfaces drive the film to drain out until it collapses, 
and coalescence follows. According to the film drainage model, coalescence will 
occur only if the interaction time exceeds the time needed for the intervening film to 
drain out down to the critical rupture thickness. However, in reality the duration of 
collisions is limited due to the relative motion between two colliding bubbles. 
 
In contrast, Howarth [27] believed that the attraction force between two colliding 
interfaces is usually of molecular nature and it is too weak in comparison with the 
turbulent dynamic force to control the coalescence probability. Howarth [27] argued 
that whether coalescence will occur or not, it depends on the impact of collisions. 
During “energetic collisions”, when the approach velocity of the two colliding bubbles 
exceeds a critical value, immediate coalescence without liquid film capturing and 
thinning will be the dominant mechanism. 
 
However, the experimental findings of Doubliez [28] and Duineveld [29] showed that 
small approach velocities lead to high coalescence efficiency. According to these 
results, in the recent work of Lehr et al. [30] [31], a so-called critical approach 
velocity model was introduced. If the approach velocity is smaller than a critical value, 
the coalescence efficiency is set as 1.0 otherwise the efficiency is equal to the ratio 
of the critical velocity to the approach velocity. 

 
In summary, the coalescence process consists of two subprocesses, i.e. collision 
and coalescence. For the calculation of coalescence frequency or specific 
coalescence rate, a general physical model is obtained by multiplying the collision 
frequency h(di, dj) with a coalescence efficiency λ(di, dj): 
 

( ) ( ) ( )λΓ =, , ,i j i j i jd d h d d d d                                       Eq. 2-12 

 
The collision frequency is determined by bubble size and the mechanism causing 
relative motion between bubbles. On the other hand, the coalescence efficiency 
depends on the feature of the colliding interface, flow conditions in the liquid film as 
well as the theory telling whether coalescence occurs. There are a large number of 
models available in the literature for the calculation of collision frequency and 
coalescence efficiency, respectively. Some representable theories and models are 
illustrated in Figure 2.2 on the next page. 

2.3.2 Collision frequency  
As mentioned already there are a variety of mechanisms that promote collisions 
among bubbles. For the calculation of the collision frequency caused by different 
mechanisms, different models should be employed. 
 
Turbulent random motion-induced collisions 
The random motion of bubbles caused by turbulent fluctuation is usually assumed to 
be similar to the case of gas molecules’ movement. Following the classical kinetic 
gas theory, the frequency of turbulence-induced collisions can be interpreted as the 
effective volume swept by the two approaching bubbles per unit time [55], i.e. 
 

( ) =,i j ij relh d d S u                                                    Eq. 2-13 
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where Sij is the cross-sectional area of the two colliding bubbles and calculated as:  
 

( )π
= +

2

4ij i jS d d                                                     Eq. 2-14 

 
 
 

Figure 2.2 Classification of theories and models for coalescence frequency 
 

In order to determine the approach velocity urel in Eq. 2-13 it is assumed that 
bubbles always take the velocity of an eddy of equal size [56] ~ [59]. As a result, the 
turbulence-induced relative velocity between two bubbles with size di and dj is 
approximated by the mean-square root of two equivalent eddy-velocities: 
 

( )= +
1/22 2

rel ti tju u u                                                 Eq. 2-15 

 
where uti is the velocity of eddy with size di. 
 
For the determination of eddy velocity ut, the inertial subrange of isotropic turbulence 
is frequently assumed. Thus, by applying classical turbulence theories one can get:  

Coalescence Frequency 

Nondeformable Surface (Rigid Particles) 
- immobile interfaces [25] [44] [45] 

Deformable Surface 
- immobile interfaces [25] [46] ~ [48] 
- partial mobile interfaces [25] [44] [48] ~ [51] 
- fully mobile interfaces [25] [36] [46] [50] 

Film drainage model 

Empirical model 

Examples: [30] [31] 

Critical velocity 
model 

Physical model 

Energy-model 

Examples: [41] ~  
[43] 

Empirical model 

Examples: [32]~[35] Coalescence Efficiency, λ Collision Frequency, h 

Physical model Γ=h∙λ 

Turbulence-induced 
Collision: [31] [36]~[39] 

Captured in turbulent 
eddies: [16] [25]  

Viscous shear-induced 
Collision: [40] 
 
 

Buoyancy-induced 
Collision: [36] 

Wake-entrainment:  
[39] [52]~[54] 
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( )ε=
2/32

1tu C d                                                       Eq. 2-16 
 

where C1 is an empirical constant and often assumed to have a value of about 2.0 
except that 8.2 used by Martínez-Bazán et al. [59]. 
 
Finally, the collision frequency can be expressed as [57] [58]: 
 

( ) ( ) ( )π ε= + +
1/22 2/3 2/3 1/3

2,
4i j i j i jh d d C d d d d                          Eq. 2-17 

 
Although Eq. 2-17 is widely used, some modifications were proposed in most recent 
work. Firstly, the effect of size ratio between bubbles and eddies is considered, while 
in the original model bubbles are always assumed to be in the inertial turbulence 
subrange and have the same velocities as equal-sized eddies. According to Colin et 
al. [60], eddies are not efficient to move the bubbles if a bubble is larger than the 
integral length scale of the turbulence le. As a result, turbulence-induced collisions 
may occur only in the following two cases 
 

Case 1: ( )< <;  i e j ed l d l , ε
 +

=   
 

1/3

21.61
i jt

rel

d dCu                        Eq. 2-18 

Case 2: ( )< >;  i e j ed l d l , ( )ε=
1/3

1.61
t

rel i
Cu d                                Eq. 2-19 

 
where the coefficient, Ct, takes into account the velocity difference between bubbles 
and eddies, while the factor 1/ 1.61considers the deceleration during the approach 
process due to an increase in the virtual mass of bubbles. 
 
The second modification is to consider the existence of bubbles reducing the free 
space for bubble movement, which can cause an increase in collision frequency. The 
effect can be described by multiplying the collision frequency in Eq. 2-17 with a 
factor γ. Different expressions used for the factor γ in the literature are summarized 
in Table 2.1 and its dependence on gas volume fraction αg is shown in Figure 2.3. 

 
Table 2.1 Different expressions used for the factor γ 

References Factor γ αmax * 

Wu et al. [39] ( )α α α−1/ 3 1/ 3 1/ 3
max max

1
g

 0.8 

Hibiki and Ishii [61] [62] ( )α α−max

1
g

 0.520 [61] 
0.741 [62] 

Wang et al. [37] [38] 
α

α α−
max

max g
 0.8 

* maximum possible gas holdup 
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Figure 2.3 Dependence of factor γ on gas volume fraction αg 

 
From Table 2.1 and Figure 2.3, one can see that all the expressions have a similar 
form, which give a small value for dilute flow and approach infinity when the packing 
of bubbles arrives at the maximum value.  
 
The last modification one can find in the literature is the decreasing factor Π  which is 
introduced to reflect the limited range of turbulent fluctuations affecting the motion of 
the bubbles. Wu et al. [39] and Wang et al. [37] suggested that when the mean 
distance between bubbles is larger than the average turbulent path length, no 
collision should be counted. 
 
Wu et al. [39] proposed the following expression for the factor Π: 
 

  
Π = − −      

3
,

1 exp t

b ij

hC
h

                                           Eq. 2-20 

 
where ht is the average size of eddies that drive bubbles together, and hb,ij is the 
mean distance between bubbles. 
 
By assuming the average size of eddies to be of the same order as the bubble size, 
the final form for the factor Π derived by Wu et al. [39] for one-group case is: 
 

α α
α α

  
Π = − −   −   

1/ 3 1/ 3
max

4 1/ 3 1/ 3
max

1 exp g

g
C                                     Eq. 2-21 
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where C4 is an adjustable parameter that depends on the properties of the fluid. Wu 
et al. [39] used a value of 3 for the air-water system. Furthermore, αmax is defined as 
the maximum packing density of the bubbles and a value of 0.8 was applied. 
 
Recently, Wang et al. [37] [38] employed a different correlation by considering that 
Π  should approach unity when the ratio hb,ij/ht,ij is small and approach zero at large 
ratios: 
 

  
 Π = −     

6
,

,

exp b ij

t ij

h
h

                                                  Eq. 2-22 

 
where the mean relative turbulent path length scale of bubbles ht,ij and the mean 
distance between bubbles hb,ij is calculated by, 
 

( )= +
1/22 2

, 0.89bt ij i jh d d ,   ( )−= +
1/3

,b ij i jh k n n  

 
respectively. 
 
On the other hand, Lehr et al. [31] assume that the effective range of turbulent 
fluctuation obeys a normal distribution with λ=d as the mean value. The factor П has 
the following expression: 
 

α α
α

α

  −
 Π = − =     

21/ 3 1/ 3
max

max1/ 3exp    with 0.6g

g
                     Eq. 2-23 

 
Finally, the modified form for collision frequency can be rewritten as:  
 

( ) ( ) ( )γ ε= ⋅ ⋅Π ⋅ + +
1/22 2/3 2/3 1/3

5,i j i j i jh d d C d d d d                       Eq. 2-24 

 
The turbulence-induced collision frequency of two equal-sized bubbles calculated 
from various models is illustrated in Figure 2.4. It shows that the collision frequency 
always increases with an increasing bubble size. This is because both the cross-
sectional area and the relative velocity increase with the bubble size. The main 
difference lies in the calculation of the relative velocity urel and the modification 
factors, γ, Π. The model of Prince and Blanch [36] predicts a smaller collision 
frequency, which might be caused by not considering the cross-sectional area of the 
moving bubble. Chesters [25] calculates the relative velocity as urel ∞ (d1+d2)1/3 (see 
Eq. 2-18 and Eq. 2-19), while others use the common expression in Eq. 2-17, i.e. urel 
∞ (d1

2/3+d2
2/3)1/2. On the other hand, the model of Wang et al. [37] [38] considers the 

modification factors, γ, Π, and gives a small collision frequency for small bubbles, 
since the mean distance between small bubbles is larger than between bigger 
bubbles if the bubble number density is the same. If the mean distance between two 
bubbles is larger than their average relative turbulent path, the collision frequency 
decreases exponentially. Other discrepancies result from the coefficient C1 in the 
calculation of eddy velocity see Eq. 2-16. 
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Figure 2.4 Dependence of turbulent collision frequency on bubble size 

ρ l=1000 kg∙m-3, ρg=1 kg∙m-3, ε=1 m2∙s-3, μ l=0.001 Pa∙s, μg=1.8x10-5 Pa∙s, αg=0.3 
 
Velocity gradient-induced collisions 
In contrast to the mechanism of turbulent-fluctuation, velocity-gradient, eddy-capture, 
buoyancy as well as wake effects are normally neglected in the existing models. 
 
As pointed out by Friedlander [40], bubbles in a uniform, laminar shear flow may 
collide with each other because of velocity gradients, which also prevail in the bulk of 
a turbulent flow. By assuming that the streamlines are straight and the bubble motion 
rectilinear, an expression was proposed for the frequency of shear-induced collisions 
in a uniform laminar flow,  
 

( ) γ
 

= +  
 



3
4,
3 2 2

ji
i j

ddh d d                                               Eq. 2-25 

 
where γ  is the shear rate in the bulk flow. Theoretically, the Eq. 2-25 can be applied 
to any collision case resulting from a velocity gradient. For example, Prince and 
Blanch [36] used it to describe the gross liquid circulation induced by high gas rates 
in an air-sparged bubble column. For a turbulent flow, collisions induced by the 
velocity gradient in the bulk flow can also be described by Eq. 2-25. 

 
Eddy shear rate-induced collisions 
According to Chesters [25], when the bubble size is much smaller than the size of 
the energy-dissipating eddies that are found in a turbulent flow, the force governing 
the collision will be predominantly viscous. In other words, the bubble velocity will be 
very close to the velocity of the continuous phase flow field. It is the same case when 
the density difference is negligible [16]. Under this condition, the collision frequency 
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will be determined mainly by the local shear of the flow inside turbulent eddies, which 
can be described in a similar way as a uniform laminar shear flow, see Eq. 2-25. 
 

( ) ε ν
 

= +  
 

3

, 0.618 /  
2 2

ji
i j

ddh d d                                  Eq. 2-26 

 
In analogy to γ  the term ε ν/   is the characteristic shear strain-rate in the smallest 
eddy [63]. In contrast to laminar shear, ε ν/   is often referred as turbulent shear 
rate, and we call this collision mechanism here as eddy-capture. 
 
Buoyancy-induced collision 
According to Prince and Blanch [36], bubble-bubble collision may result from the 
difference in rise velocities of the bubbles having different sizes. The calculation of 
buoyant collision frequency is consistent in the literature. A typical model is given by 
Friedlander [40] as: 
 

( ) = −,i j ij ri rjh d d S u u                                               Eq. 2-27 

 
which has the same form as turbulent collisions in Eq. 2-13. The term Sij is also the 
same as Eq. 2-14. The unique difference is that the relative velocity in this case is 
calculated from the terminal rise velocities. For the calculation of ru , Prince and 
Blanch [36] used the expression of Clift et al. [64], while the Fan-Tsuchiya equation 
[65] used in [37], [38]. 
 
Wake-entrainment  
During the free-rise of gas bubbles through the liquid an amount of liquid is inevitably 
carried up and accelerated behind the bubbles, which is known as wake effect. In the 
last few decades, it has been realized that the wake plays a significant role in the 
interaction between bubbles [66]. When bubbles enter the wake region, they will be 
accelerated and collide with the preceding one [67], who generates the wake. In the 
experimental investigation of Stewart [68], the wake was found to be the sole driving 
force and mechanism for bubble interaction. Wake-induced collisions result in 
coalescence primarily between pairs of large cap bubbles in fluids sufficiently 
viscous to keep their wakes laminar. 
 
Unlike the previous mechanisms, the description of the wake interaction does not yet 
have a consistent method and each model is quite different from one another. For 
the transition from bubbly to slug flow regimes, Kalkach et al. [54] used a linear 
instability analysis of the extended multi-fluid model including the population balance 
equation. The coalescence rate caused by wake entrainment was calculated based 
on the work of Bilicki and Kestin [67]. 
 
According to Kalkach et al. [54], the collision frequency between a trailing bubble in 
the wake and its leading bubble can be defined as the volume it has to occupy at 
time t-dt to group with the leading bubble at time t, per unit time. By using the 
correlation of Schlichting [69] for the velocity distribution in the wake, they derived 
the collision frequency as: 
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( ) ( )( )= + +
23 3

6,i j i j i jh d d C d d d d                                      Eq. 2-28 

 
where C6 has a unit of rate per unit area and contains a number of unknowns. 
 
By taking into account the wake interaction, swarm effect and bubble shape, Colella 
et al. [52] developed a novel model especially tailored for the bubble-bubble 
interactions in bubble columns: 
 

( ) =
,

,
BOX

i
i j rel

b ij

Vh d d u
h

                                            Eq. 2-29 

 
where urel is the relative velocity between the two colliding bubbles. Vi

BOX is the 
volume influenced by the wake of a bubble with size di, which is assumed to have a 
conical shape according to Nevers and Wu [70]. The base of the cone is the cross-
sectional area of the leading bubble, while the height was assumed to be 5 times of 
the base diameter on the basis of experimental results. hb,12 is the mean distance 
between bubbles in the considered system. In addition, the swarm effect was 
considered with the equation of Richardson and Zaki [71]. 
 
Wu et al. [39] proposed the basic modeling concept of bubble coalescence due to 
wake entrainment in a vertical pipe by assuming a homogeneous flow. Hibiki and 
Ishii [61] modified the model for a two-group model to formulate the bubble 
coalescence between spherical and cap bubbles due to wake entrainment, which 
was recently extended by Wang et al. [37] [38] to the multi-group case: 
 

( ) = 2
7,i j i rih d d C d u                                                Eq. 2-30 

 
where the constant C7 depends on the geometry and size of the wake region. A 
value of 15.4 was used by Wang and his coworkers. 
 
Since the relative velocity between the leading and following bubbles in the wake 
depends not only on the relative velocity between the leading bubble and the 
continuous phase urel, the wake geometry, but also the drag coefficient CD, Hibiki et 
al. [72] further refined their model by including the term of CD

1/3, but only for one-
group case: 
 

( ) = 1/3 2
8, D rh d d C C d u                                              Eq. 2-31 

 
Since the wake length and geometry is further dependent on flow conditions and 
fluid properties, the determination of the constant C7 and C8 is a tough problem. For 
the case of homogenous air-water upward flow in a small pipe (DN9), Hibiki et al. [72] 
used a value of about 0.984 for C8. For a medium pipe, C7 was adjusted to 0.23 in 
[62] for the case of a spherical bubble entrained by a cap bubble, while for the 
entrainment between two cap bubbles the value has to be reduced to one 
thousandth. That means that the coalescence rate of a small bubble entrained by a 
large cap bubble is higher than the coalescence between two cap bubbles. However, 
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the work of Stewart [67] shows that coalescence due to wake-entrainment requires 
bubbles of approximately similar size. Recently, Wang et al. [37] extended the model 
of Hibiki [62] to a multi-group model. They applied the extended model to bubble 
columns and adopted a quite large value for C7.  
 
In conclusion, bubble collision in a turbulent flow can be promoted by a variety of 
mechanisms. Note that no existing model takes all of the mechanisms into account. 
At the same time, it is difficult to decide which mechanism plays the most important 
role in a certain case. Generally speaking, if the size of the bubble is inside the 
inertial subrange of turbulence, it will be exposed to eddies’ stresses from all 
directions and the random motion will be the most important. If the bubbles are 
smaller than the Kolmogorov dissipation scale, the slip velocity is negligible and the 
relative velocity will be determined mainly by local turbulent characteristics, e.g. 
turbulent shear, while the laminar shear, i.e. the mean velocity gradient, affects the 
relative motion of bubbles with all sizes. Furthermore, the buoyancy mechanism 
becomes more significant with increasing density differences. The mechanism of 
wake entrainment is the most ambiguous one. It is the dominant interaction 
mechanism of cap bubbles and accounts for the transition from bubbly to slug flow. 
As for the modification factors, γ, П, in Eq. 2-24 and Ct in the model of Colin et al. 
[60], further investigations are indispensable. 

2.3.3 Coalescence efficiency 
As discussed in §2.3.1, there are at least three kinds of theories or models proposed 
for the calculation of coalescence efficiency or probability. They are the energy 
model, the critical approach velocity model and the film drainage model, see Figure 
2.2. 

1. Energy model 
The energy model was originally proposed by Howarth [27] [40]. It was confirmed by 
the optical records of coalescence in liquid-liquid dispersions [73] [74], which found 
that significant fraction of collisions result in immediate coalescence and the 
probability increases with increasing energy of collision, which was called “energetic 
collisions”. On the basis of the pioneering work, Sovová [43] developed a model by 
relating the kinetic collision energy Ekin to the interfacial energy Eσ of the drop: 
 

( ) σλ
 

= − 
 

9, expi j
kin

Ed d C
E

                                             Eq. 2-32 

 
The interfacial energy of drops is proportional to the surface tension and drop 
surface area, 
 

( )σ σ= +2/3 2/3
i jE V V                                                    Eq. 2-33 

 
while the kinetic collision energy Ekin is assumed to be correlated with the average 
volume and the relative velocity of the two interacting drops: 
 

ρ= ⋅ 21
2kin g relE V u ,      ( )= +/i j i jV VV V V                               Eq. 2-34 
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where the turbulent relative velocity urel is calculated according to Eq. 2-15 and Eq. 
2-16. 
 
Finally, the expression for coalescence efficiency ends up with: 
 

( ) ( )( )
( )

σ
λ

ρ ε

 + +
 = −
 + 
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d d d d
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d d d d
                          Eq. 2-35 

 
A similar model was derived recently by Simon [42] but he calculated the kinetic 
energy from the momentum balance during the collision, 
 

( )ρ ε∝ ⋅ +2/3 11/9 11/9
kin g i jE V V                                           Eq. 2-36 

 
He concluded the coalescence efficiency as: 
 

( ) ( )
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                               Eq. 2-37 

 
In the work of Sovová [43] the overall coalescence efficiency was further calculated 
by combining the energy model in Eq. 2-35 with the film drainage model, which was 
adopted afterwards by a few scientists [74] [75]: 
 

( ) ( ) ( ) ( ) ( )λ λ λ λ λ= + −1 2 1 2, , , , ,i j i j i j i j i jd d d d d d d d d d                    Eq. 2-38 

 
where λ1 and λ2 is calculated by the energy and the film drainage model, 
respectively. 

2. Critical approach velocity model 
According to the energy model, coalescence will occur immediately when the 
approach velocity exceeds a critical value at the instant of collision. However, the 
experimental investigation of Doubliez [28] and Duineveld [29] gives a contradictory 
conclusion that coalescence behavior favors gentle collisions. A simple expression 
was used by Lehr et al. [30] [31] for the observed relationship between coalescence 
efficiency and approach velocity:  
 

( )λ
 

=  
 

, min ,1crit
i j

rel

ud d
u

                                              Eq. 2-39 

 
where the critical velocity ucrit is determined experimentally for a given system. 

3. Film drainage model 
According to the film drainage model, the coalescence efficiency of a collision 
depends on two timescales, i.e. the contact time tcontact and film drainage time tdrainage. 
The starting point of the theory is the work of Ross [76]. By assuming that the 
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drainage and contact time are random variables, Ross applied the probability density 
function of a normal distribution for the computation of coalescence efficiency: 
 

( )λ
   − 
   = −           

2 2

2
1 1 2, exp exp
2 2 2

drainage drainage

drainage

t t drainage contactdrainage
i j

contact contact tcontact
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    Eq. 2-40 

 
Later on Eq. 2-40 was simplified by Coulaloglou [77] to the following form by 
assuming that the film drainage time is not distributed while the contact time remains 
a random variable, i.e. cdrainge = 0: 
 

( )λ
 

= −  
 
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i j

contact

t
d d

t
                                            Eq. 2-41 

 
Although a few criticisms appear in the literature on the validity of the two timescales, 
e.g. the assumption of random variables as well as a normal distribution [78], the film 
drainage model is still the most popular approach. It has become the starting point of 
almost all subsequent models. The main difference amongst the different models lies 
in the expressions for the two timescales. 
 
Film drainage time  
According to Lee and Hodgson [79], various regimes of the film drainage process 
may be distinguished according to the rigidity of particle surfaces (deformable, non-
deformable, see Figure 2.5) and the mobility of the contact interfaces (immobile, 
partially mobile, fully mobile, see Figure 2.6). A great deal of analysis of these 
regimes is to be found in the literature. Most of them use the lubrication theory, 
which starts with the Navier Stokes Equation and the continuity equation, and ends 
with a film-thinning equation. For simple boundary conditions such as constant 
interaction force or approach velocity, the drainage time can be obtained by 
integrating the thinning equation. For further details about the derivation and solution 
of the film-thinning equation, the reader is referred to the dissertation of Hagesaether 
[80]. 

 
Figure 2.5 Influence of particle surface rigidity on liquid film drainage flow [42] 

(a) Nondeformable surfaces (b) Deformable surfaces 
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Figure 2.6 Influence of particle surface mobility on drainage process [42] 
(a) Immobile interfaces (b) Partially mobile interfaces (c) Fully mobile interfaces 

 
When bubbles are highly viscous compared to the continuous phase or have very 
small sizes (d<1 mm), at large distance their interfaces are slightly deformed and 
behave nearly as rigid spherical particles. For two non-deformable spheres with 
equal sizes, the drainage time can be derived by using the Poiseuille relation 
according to Chesters [25]: 
 

πµ  
=  
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2
l
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F h

                                                Eq. 2-42 

 
If replacing the bubble radius r with an equivalent one req 
 

=
+

2 i j
eq

i j

r r
r

r r
                                                                          Eq. 2-43 

 
The Eq. 2-42 can be extended to describe the case of unequal bubble sizes. Then it 
becomes identical to the drainage time given by Davis et al. [44] and Jeffreys and 
Davies [45] with the form:  
 

πµ    
=     +   

2
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drainage
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                                         Eq. 2-44 

 
However, in most practical applications where large bubbles exist, the deformation of 
the bubble surface during the collision must be considered [42]. The simplest model 
for the film drainage between deformable interfaces is a so-called parallel model, 
which assumes that the surfaces of the coalescing bubbles deform into two parallel 
discs with radius Ra, see Figure 2.5(b). However, during the experimental 
investigation Derjaguin and Kussakov [81] found a dimple in the film, which implies 
that there is a pressure gradient on the deformable interfaces. That means that it is 
impossible to have a parallel plane film, since a flat film cannot support a gradient in 
the pressure. In order to maintain this pressure gradient the film needs change to a 
curved shape. A dimple can be defined as a reverse curvature so that a central lens 
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of liquid is entrapped by a thin barrier ring. The dimple phenomenon was first 
modeled by Frankel and Mysels [82]. However, although the dimple theory was 
proposed and shown to be more close to the physical reality, the parallel model is 
still the basis of most drainage models. It is acceptable with the consideration that 
the film thickness is much smaller than its radius. 
 
The classification of drainage regimes in the case of deformable particles depends 
on the mobility. For immobile interfaces, film drainage is controlled by a viscous 
thinning. The liquid is expelled from between these rigid surfaces by a laminar flow. 
The velocity profile in the film is parabolic with no slip at the surface. The interaction 
between the film drainage and the circulation inside particles is not coupled; see 
Figure 2.6(a). Based on the preceding work of MacKay and Mason [47], Chesters 
[25] derived the drainage time as Eq. 2-45 by assuming constant forces, 
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                                          Eq. 2-45 

 
which has the same form as the model of Chappelear [83], if the bubble radius r is 
replaced by the equivalent radius req (see Eq. 2-43). 
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                                 Eq. 2-46 

 
Based on Eq. 2-46 Coulaloglou and Tavlarides [56] developed a coalescence model 
by assuming a constant initial and critical film thickness h0 and hcrit. It is one of the 
most famous models for liquid-liquid dispersions. 
 
The approximation of immobility of the film surface is applicable only to systems with 
extremely high dispersed-phase viscosity or with a certain concentration of soluble 
surfactant. In many liquid-liquid systems where the drainage process is 
predominantly controlled by the motion of film surface, the contribution of the 
additional flow within the film due to the prevailing pressure gradient is much smaller. 
By assuming a quasi-steady creeping flow, Chesters [25] calculated the drainage 
time for partially mobile interfaces using the following expression: 
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Lee et al. [57] used the model of Sagert and Quinn [50] for the partially mobile case: 
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                        Eq. 2-48 

 
By investigating the resisting hydrodynamic force during the film drainage process, 
Davis et al. [44] concluded the relationship between the force F and the drainage 
velocity dh/dt as:  
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                          Eq. 2-49 

 
where M characterizes the interfacial mobility. Based on Eq. 2-49, Tsouris and 
Tavlarides [51] proposed a new coalescence model for drops in turbulent dispersions. 
 
The drainage regime with fully mobile interfaces, e.g. bubbles in pure systems, is the 
most complicated closure model. In this case, the drainage process is controlled by 
both inertia and viscous forces. Using the parallel-film model, Chesters [84] 
proposed the following drainage equation: 
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          Eq. 2-50 

 
Since there is no analytical solution for the general expression in Eq. 2-50, two limits 
are usually considered in the literature. For highly viscous liquids, the film is thinning 
viscously and the drainage velocity is independent of the film size, and hence the 
force. At this limit, the film drainage time is calculated by 
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                                                   Eq. 2-51 

 
In the inertia-controlled limit, which is the case of gas bubbles in turbulent flow, Eq. 
2-50 is shown to reduce to: 
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                                               Eq. 2-52 

 
In the numerical study of Chesters and Hofman [63], they found that in the inviscid 
case Eq. 2-52 can be approximated as  
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which was extended further by Luo [58] to unequal bubbles with sizes di, dj: 
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                                          Eq. 2-54 

 
From Eq. 2-53 and Eq. 2-54 one can see that the drainage time for the inertia 
thinning is proportional to the approach velocity. That means that the drainage time 
is small or the coalescence efficiency is high when the approach velocity is low, 
which is consistent with the idea of the critical velocity model. 
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Lee et al. [57] applied a different model, which is proposed originally by Sagert and 
Quinn [50]: 
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                                            Eq. 2-55 

 
Prince and Blanch [36] simplified the model of Oolman and Blanch [85] by neglecting 
the effect of the Hamaker force and obtained the following expression for a pure 
system, 
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                                                 Eq. 2-56 

 
It is worth noting that the film drainage time in Eq. 2-55 and Eq. 2-56 has a form 
similar to the contact time proposed by Chesters [25] in Eq. 2-62. 
 
Compressing force  
In order to apply the above expressions for the determination of the film drainage 
time, the interaction force F at the collision requires calculation, which is usually 
assumed to be proportional to the mean square velocity difference at either ends of 
an eddy with a size of the equivalent diameter [51] [56] [86]: 
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Similarly, Chesters [25] proposed correlations for both viscous and inertial collisions 
of equal-bubbles in turbulent flows. For the viscous regime, the typical force between 
two colliding bubbles is expected to be proportional to the turbulent shear rate ε ν/  
 

πµ ε ν2~ 6 /lF r                                                         Eq. 2-58 
 

On the other hand, for inertial collisions, Chesters [25] pointed out that because of 
inertia the interaction force F exerted by one bubble on the other is greater than that 
calculated by Eq. 2-58. For this case, they used the capillary force exerted on the 
film, which is induced by variations in the curvature of the gas-liquid interface.  
 

σπ  
 
 

2 2~ aF R
r

                                                        Eq. 2-59 

 
where Ra is film radius. 
 
Contact time  
For the calculation of the contact or interaction time in a turbulent system, most of 
the previous studies used the relationship of Levich [87], which is based on 
dimensional analysis: 
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ε

2 / 3

1/ 3~contact
dt                                                        Eq. 2-60 

 
Chesters [25] argued that the duration of a collision is controlled by the external flow 
in the bulk. By making an analogy to solid particles located in viscous simple shear, 
they concluded that the contact time of bubbles during a viscous collision in turbulent 
flows should decrease with an increase in the strain rate in the smallest eddies:  
 

( )ε ν
−1/2~ /contactt                                                    Eq. 2-61 

 
During inertial collisions, there is a conversion process between kinetic energy and 
surface energy. From this point of view, Chesters [25] stated that the actual contact 
time for inertial system was less than that obtained by Eq. 2-61. He derived the 
expression for contact time from a energy balance:  
 

( )ρ ρ ρ σ ≈ + 
1/234 / 3 1 / 2contact g l lt r                                   Eq. 2-62 

 
By criticizing the simplicity of Levich’s expression and the suitability of Eq. 2-61 for 
unequal-sized bubbles, Luo [58] derived an alternative expression for the interaction 
time based on a simple parallel film model: 
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where CVM is the added mass coefficient. Although it was found to be variable during 
the approaching of bubbles [88], CVM is normally assumed to be a constant between 
0.5 and 0.8 [89]. 
 
Kamp and Chesters [88] extended their previous expressions by Chester [25] to 
unequal-sized bubbles. The interaction time was defined as the interval between the 
onset of film formation and the moment at which the bubbles begin to rebound. By 
assuming a balance between the increasing surface free energy and the 
corresponding reduction in the kinetic energy of the system, they concluded an 
expression for the interaction time as: 
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On the other hand, empirical expressions are also often applied in the calculation of 
interaction time. For example, Tsouris and Tavlarides [51] used the expression of 
Schwartzberg and Freybal [90], which treated the contact time as the reciprocal of 
the fluctuation frequency of fluid velocity: 
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                                            Eq. 2-65 

 
Coalescence efficiency calculated by different models 
Based on the combination of different expressions for the contact time and the 
drainage time, various models for coalescence efficiency were formulated according 
to Eq. 2-41. The dependence of some typical models on bubble size for the equal-
size case is depicted in Figure 2.7. Most of them considered only the inertial collision 
caused by turbulent fluctuations and were derived based on classical theories of 
isotropic turbulence, while Chesters [25] divided the collisions in a turbulent flow into 
viscous and inertial collisions. At the same time, other than turbulence, Prince and 
Blanch [36], Carrica et al. [91] and Wang et al. [38] took into account buoyancy, 
laminar shear rate and wake interaction. Furthmore, Prince and Blanch [36] used an 
identical efficiency for all collision mechanisms while Kolev [92] and Wang et al [37] 
stated that models for the coalescence efficiency of different collisions might have a 
different form. Carrica et al. [91] considered the influence of different collision 
sources on coalescence efficiency by reforming the contact time. 
 

  

Figure 2.7 Dependence of coalescence efficiency on bubble size 
ρ l=1000 kg∙m-3, ρg=1 kg∙m-3, ε=1 m2∙s-3, μ l=0.001 Pa∙s, μg=1.8x10-5 Pa∙s, αg=0.3 

 
From Figure 2.7, one can see that all of the models give a value of between 0 and 1. 
The models of Coulaloglou and Tavlarides [56] and Venneker et al. [93] predict 
larger efficiencies for small bubbles than other models, among which Lehr et al. [31] 
and Prince and Blanch [36] have the smallest value. The model of Coulaloglou and 
Tavlarides [56] shows a much steeper decreasing trend than others. On the other 
hand, the models of Lehr et al. [31], Luo [58] and Chesters [25] predict a value 
considerably larger than zero when the bubble diameter increases up to 20 mm, 
which will deliver a large coalescence rate for large bubbles. Despite the quantitative 
difference, the dependence on bubble size of most models is consistent, i.e. 
decreasing with bubble sizes. However, by using Eq. 2-49, Eq. 2-57 and Eq. 2-60 for 
the calculation of drainage time, compressing force and contact time, respectively, 
the model of Hasseine et al. [86] shows an increasing relationship with bubble sizes. 
Sovová [43] combined the drainage model of Coulaloglou and Tavlarides [56] with 
the energy model in Eq. 2-35. Therefore, the coalescence efficiency decreases 
dramatically for small bubbles and then increases with the increase in bubble size 
due to the contribution of “immediate coalescence”. Finally, Lee et al. [57] argued 
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that the film thinning together with the rupture of the thin liquid layer control the 
coalescence rate. 

2.4 Breakup models 
The breakup of bubbles is influenced by the surrounding liquid hydrodynamics and 
interfacial interactions. The breakup frequency of a bubble is in general determined 
by the balance between the external stresses (energy) exerted by the surrounding 
liquid, which acts to distort the stable form of the bubbles, and the restoring surface 
tension stress (energy) of the bubble. However, to quantify the breakup frequency 
that one parent bubble breakups into a daughter bubble with given size, which is 
used by CFD simulations, e.g. Ω(di, dk) in Eq. 2-8, the daughter bubble size 
distribution of the breakup event has to be determined. 
 
Similar to the case of bubble coalescence, mechanisms and models for droplets are 
often used for the description of the deformation and breakup of bubbles without 
further validation. Nevertheless, the work of Müller-Fischer [94] shows that for a 
single bubble in simple shear flow this approach is justified for deformation but fails 
in the case of breakup. For example, tip breakup or tip streaming is preferential for 
bubbles while for droplets different breakup mechanisms can be clearly distinguished. 
On the other hand, instead of simple shear flow, mature investigations on the 
difference between bubble breakup and droplet breakup is missing for other cases. 
2.4.1 Mechanisms leading to bubble breakup 
In turbulent gas-liquid flows there are four main categories of external stresses: a) 
turbulent inertial stresses; b) viscous shear stresses; c) interfacial stresses; d) 
interfacial instability. 
 
Breakup due to turbulent inertial stresses 
In the turbulent case, the breakup of bubbles is caused by turbulent velocity/pressure 
fluctuations around the bubble surface. Bubbles are assumed to modify their 
spherical form with the fluctuation of the surrounding liquid. When the amplitude of 
the oscillation exceeds that required to make the surface unstable, the bubble starts 
to deform and stretch in one direction leading to a neck that contracts further and 
fragments finally into two or more daughter bubbles. Whether or not the bubble will 
break depends on the extent of the deformation, which can be expressed by the 
Weber number, We: 
 

τ ρ
τ σ

= =
2

t l rel

s

u dWe                                                   Eq. 2-66 

 
where τt is the turbulence-induced destroying stress or energy, and τs is the 
restoring stress or energy related to the surface tension. 
 
The destroying stress (energy) τt is defined differently in the literature, for example: 
 

a) Kinetic energy of the drop transmitted from drop-eddy collisions [56] 
b) Turbulent stresses resulting from velocity fluctuations around the bubble 

surface [59] 
c) Kinetic energy of hitting eddies of different scales [36] [57] [95] 
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d) Dynamic pressure of hitting eddies of different scales [30] [31] 
 

Similarly, the restoring stress or energy τs is defined inconsistently as: 
 

a) Surface energy of the parent bubble [57] 
b) Surface stress of the parent bubble [59], which is equal to: (surface energy 

of the parent bubble)/(volume of the parent bubble)  
c) Critical energy calculated from the critical Weber number [36] 
d) Increase in surface energy during the breakage process, i.e. the difference 

between the surface energy of all daughter bubbles and that of the parent 
bubble [95] 

e) Mean value of the increases in surface energy for breakages into two equal-
sized daughters and into a smallest and a biggest one [93] 

f) Capillary pressure of the smallest daughter bubble [30] [31] 
g) Combination of criteria d) and f) [96] [97] 

 
Breakup due to viscous shear forces 
Aside from the turbulent inertial force, the viscous shear force caused by velocity 
gradients can also deform the bubble and lead to breakup in high viscosity liquid. In 
addition, a bubble can experience shear stresses when it locates in a wake region or 
inside a turbulent eddy. If a bubble has its larger part outside a wake region 
generated by a leading bubble, the shear stress across the wake boundary may split 
it via surface indentation and necking. When a bubble is smaller than the length 
scale of the smallest turbulence eddies, i.e. the Kolmogorov length scale η, it is 
contained in the smallest eddies, i.e. in the viscous subrange of turbulence. The 
Kolmogorov length scale denotes the eddy scale where viscous forces begin to have 
a noticeable effect on the motion of the fluid. Bubbles that are contained within the 
eddies experience almost laminar flow conditions with a shear rate of ε ν . 
 
A mathematical description of bubble breakup due to viscous shear stress is still 
missing. This is possibly because in most cases of gas-liquid flows, the viscosity of 
the liquid is usually low, e.g. air-water flow. 
 
On the other hand, the mechanisms for the droplets’ breakup in simple shear flow 
have been widely explored both experimentally [98] ~ [100] and numerically [101] ~ 
[103]. A spherical droplet will deform and orient in steady simple flow. The steady 
state shape and orientation depends on the ratio of the viscosity of the dispersed 
droplet to the continuous liquid and the Capillary number Ca. Ca is the ratio of 
viscous shear stresses to surface tension. For slightly deformed bubbles (Ca<<1), 
the deformed droplet has an ellipsoidal shape, and the inclination angle θ is about 
45˚ decreasing as Ca increases. With increasing Capillary number the deformation 
increases from spherical via ellipsoidal to sigmoidal with pointed ends while the 
orientation angle approaches 0˚ for very high shear stresses. 
 
Breakup due to interfacial stresses 
As the size of the bubble increases, the breakup mechanisms become further 
complicated by additional mechanisms such as interfacial stresses and instability. 
Shearing-off of small bubbles at the rim of large bubbles is one of the most important 
interfacial breakup mechanisms, which is caused by interfacial forces such interfacial 
shear force and drag force. The shearing-off process is determined by the balance 
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between the interfacial force and the surface tension at the rim base. When the 
bubble slip velocity and consequently interfacial force is large enough, the bubble 
becomes unsteady and stretches downstream, i.e. in the direction of the destroying 
force. The neck part will further thin and breakup into a number of small bubbles. For 
this mechanism, there are also no sound theoretical models available. Empirical 
correlations are often used to determine the size of the small bubbles torn from the 
large bubbles and the torn-off bubbles are assumed to have identical size [104] [105]. 
 
Breakup due to interfacial instability 
The beakup mechanisms discussed above all depend on the dynamic characteristics 
of the flow of the continuous phase. However, in practice it shows that even in the 
absence of a net flow in the continuous phase, the breakup of a bubble can be 
caused by interfacial instabilities if its size exceeds the maximum stable size. A 
correlation for the maximum stable bubble size is given by Ishii and Kojasoy [106]: 
 

σ
ρ

=
∆max 40d

g
                                                       Eq. 2-67 

 
For air-water systems under normal conditions, the maximum stable size is about 10 
cm according to Eq. 2-67. Nevertheless, Wang and his coworkers [37] [38] [107] 
used a value of 2.7cm to decide whether or not instability is considered. 
 
Two types of surface instability have to be considered: Rayleigh-Taylor instability 
and Kelvin-Helmholtz instability. The Rayleigh-Taylor instability occurs when a light 
liquid is accelerated into a heavy fluid, that is, where there is a density difference. 
The Kelvin-Helmholtz instability can occur when a velocity shear is present in a 
continuous fluid or the velocity difference across the interface between two fluids is 
sufficient large. Due to the complexity of the phenomenon, the information about the 
size distribution of daughter bubbles is still missing. It is usually assumed that two 
daughter bubbles are of equal size [37] [38]. This simplification is obviously too 
arbitrary since the instability usually disintegrates a large bubble suddenly into a 
number of small bubbles. Therefore, the mechanism is excluded in most models. 

2.4.2 Breakup frequency 
In the last decades, modeling of the breakup process has received considerable 
effort and a great number of models for the calculation of specific breakup rate, i.e. 
breakup frequency, were published. According to the four mechanisms discussed in 
§2.4.1 the classification of representative models is shown in Figure 2.8. Most of the 
models provide the total breakup frequency of a bubble and an extra function 
needed to be assumed for the description of daughter bubble size distribution. 
Models that give the partial breakup frequency, i.e. the breakup frequency of a 
bubble breaking up into a daughter bubble with given size, are highlighted in blue 
color. The partial breakup frequency can be used directly in the extended multi-fluid 
model discussed in §2.2. 
 
Since the continuous flow field is in most applications is a turbulent flow, the study of 
bubble breakup frequency has focused on the breakup mechanism due to turbulent 
fluctuations. Actually, this mechanism is usually assumed to be the dominant one 
and the effects of viscous force, interfacial forces and instability on breakup 
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phenomena are usually neglected without any further validation. Furthermore, 
models for the calculation of the frequency of bubble breakup due to turbulent 
fluctuation are formulated on the basis of various criteria, i.e. different definitions for 
τt and τs in Eq. 2-66. 
 
Models for breakup due to turbulent fluctuation 
For breakup caused by turbulent fluctuation, at least five criteria were adopted, which 
are explained subsequently by some representative models. 

 
A pioneering phenomenological model was proposed by Coulaloglou and Tavlarides 
[56], which was based on the turbulent nature of the liquid-liquid dispersion. The 
drop oscillates and deforms due to local pressure fluctuations. The basic premise is 
that an oscillating deformed drop will break if its kinetic energy Ed, transmitted from 
drop-eddy collisions, is greater than its surface energy Ecrit. The breakup frequency 
is defined as: 
 

( )    
Ω = ⋅   

   

1 fraction of
breakup time drops breakingid                               Eq. 2-68 

 
The breakup time is determined from the isotropic turbulence theory by assuming 
that the motion of daughter drops is the same as that of turbulent eddies. The 

 

Figure 2.8 Classification of available models for breakup frequency 
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fraction of drops breaking is assumed proportional to the fraction of drops that have 
a turbulent kinetic energy greater than their surface tension. With the assumption 
that the distribution of kinetic energy is a normal function, Eq. 2-68 is expressed as: 
 

( ) σ
ε

ρ ε
−

 
Ω = − 

 
 
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g i

Cd C d
d

                               Eq. 2-69 

 
To account for the “damping” effect of droplets on the local turbulent intensities at 
high holdup fractions, the authors modified the original expression as: 
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                       Eq. 2-70 

 
The dependence of “damping” effect on gas volume fraction and dissipation rate is 
depicted in Figure 2.9. 
 

  

(a) (b) 
Figure 2.9 Coulaloglou and Tavlarides [56] model. (a) ε=1.0 m2∙s-3; (b) αg=0.1 

(C14=0.00481, C15=0.08) 
 
As pointed out by Prince and Blanch [36], for gas-liquid mixtures, the model of 
Coulaloglou and Tavlarides [56] predicts a breakup rate that is several orders of 
magnitude lower than the experimental results. This might result from the fact that 
the density of dispersed phase in a gas-liquid mixture is much lower than that in the 
liquid-liquid dispersion. Therefore, the density used in the equations of Eq. 2-69 and 
Eq. 2-70 has to be replaced by that of the continuous phase in order to get 
reasonable results for gas-liquid flows [108]. This discrepancy indicates that the 
kinetic energy of turbulent eddies in the continuous phase plays a role in causing the 
breakup of a bubble or drop instead of the kinetic energy of the bubble or drop itself. 
 
Another similar model was proposed by Chatzi [109] [112]. The unique difference is 
that they expressed the probability density of the turbulent kinetic energy by 
Maxwell’s law instead of the normal function. Thus, they published the model in the 
following form: 

αg=0.05 
αg=0.20 
αg=0.35 

ε=1.0 m2·s-3 

ε=5.0 m2·s-3 

ε=9.0 m2·s-3 
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( ) σ
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ρ επ
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                         Eq. 2-71 

 
Martίnez-Bazán et al. [59] criticized the models, which were derived from an 
extension of the classical kinetic theory of gases [36] [51] [57] [95]. These models 
assume the fact that turbulence consists of an array of discrete “eddies” and as a 
result they rely on physically questionable assumptions about the size and number 
density of the “eddies”. Therefore, they presented an alternative model based purely 
on kinematic ideas for fully developed turbulent flows. The premise of the model is 
that, for a bubble to break, its surface has to deform, and enough energy must be 
provided by the turbulent stresses in the surrounding continuous liquid. The breakup 
frequency is assumed to increase with the difference between the turbulent stresses 
τt and the surface stress τs. In other words, the breakup frequency should decrease 
to zero as this difference vanishes and the turbulent stresses are lower than the 
surface pressure. 
 
The turbulent stress, which results from the velocity fluctuations existing in the liquid 
between two points separated by a distance of di, is calculated as: 
 

( )τ ρ ρ ε= = 2 / 32
18

1 1
2 2t l ti l iu C d                                    Eq. 2-72 

 
The critical or minimum stress necessary to deform a bubble of size di is defined as: 
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                                            Eq. 2-73 

 
Thus, the breakup frequency is given by 
 

( )
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ρ
−
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C d
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d
                                 Eq. 2-74 

 
The significant feature of this model is that the assumption about turbulence eddies 
as well as the probability distribution theory of the kinetic energy in eddies is 
discarded. As a result, there are no integrals involved in the model, which makes it 
promising for implementation into CFD simulations. The dependence of the breakup 
frequency on bubble diameter as well as the influence of turbulence dissipation rate 
is shown in Figure 2.10. 
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Narsimhan et al. [111] first proposed a stochastic model for the prediction of breakup 
frequency in the case that the density and viscosity of the dispersed phase are not 
far different from that of the continuous phase. They argued that the oscillation and 
breakage of a drop is induced by the difference in velocity fluctuations between 
points near the drop surface. This is caused by the arrival of eddies of different 
scales, which can be described by a Poisson process. The probability distribution of 
the velocity difference between two points is assumed to be normal, which is given 
by: 
 

( ) 







−= 2

2

2
exp

2
1

σσπ
uuP  with the variance ( )σ ε= = 2 / 32 2 2ti iu d     Eq. 2-75 

 
The critical velocity ucrit or kinetic energy is calculated from the energy balance at 
equal breakage with the consideration that the increase in the surface energy in this 
case is the minimum. 
 

( ) ( )ρ σπ= −2 1/ 3 1/ 3 2 / 3 2 / 31 2 1 6
2 l i crit iV u V                                   Eq. 2-76 

 
Finally, they derived the breakup frequency Ω of a droplet with size di as: 
 

( ) ( )
σ
 Ω = ⋅ ≥ = ⋅  
 

2 2 1
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ud N P u u N erfc                            Eq. 2-77 

 
where N is the average number of eddies arriving at the surface of a drop in unit time, 
i.e. the collision frequency, which is regarded as a constant here. 
 
Alopaeus and his coworkers tried to modify the above model by adding a 
dependence on the turbulence dissipation rate to the eddy-drop collision frequency 
instead of a constant and by taking into account the viscous force of fluid inside the 
drop. They ended up with the following expression [113] [114]: 
 

 

Figure 2.10 Martίnez-Bazán et al. [59] model 

ε=1.0 m2·s-3 

ε=5.0 m2·s-3 
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             Eq. 2-78 

 
Similar to the idea of Narsimhan, Lee et al. [57] developed a theoretical model for 
bubble breakup, which was also based on the probabilistic theory. However, they 
argued that the fragmentation of a bubble will occur if the arriving eddy can provide 
sufficient energy to overcome a certain ratio of the bubble surface energy. The 
collision frequency is assumed dependent on both the dissipation rate ε and the 
bubble diameter d. In a similar fashion to Chatzi et al. [75], they used the Maxwell’s 
law for the distribution of the kinetic energy of eddies. The breakup frequency 
function has the following form 
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      Eq. 2-79 

where F is the cumulative chi-square distribution with three degrees of freedom. 
C24=C·(2π)5/3, where C is the ratio of the minimal energy required for breakup to the 
parent bubble surface energy.  
 
With the exception of the density term, Eq. 2-79 is almost the same as Eq. 2-71 if the 
chi-square distribution is transformed into gamma functions and the effective eddy 
length scale de assumed approximately equal to the bubble size di. That means that 
for turbulence-induced breakup the models for bubbles and drops are often 
transferable to each other. An exception consists in high-viscosity drops. In this case, 
the viscous force of the drop also plays an important role in the constraining of 
breakage in addition to surface tension. 
 
The dependence of the breakup frequency predicted by Eq. 2-79 on the dissipation 
rate ε and constant C is shown in Figure 2.11. 

 
Lee et al. [57] have made some improvements on the model of Narsimhan et al. 
[111]. However, using Maxwell’s law for the probability density of kinetic energy in 
turbulent eddies is criticizable since Maxwell’s law is only valid for free-gas molecular 
motion and might be not suitable for imaginary eddies [95]. Furthermore, the breakup 

  
(a) (b) 

Figure 2.11 Lee et al. [57] model. (a) ε=1.0 m2∙s-3; (b) C=0.25 
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frequency depends strongly on the parameter C, i.e., the minimal required energy, 
which is still an open question. 
 
Although many previous models considered that the collision between the eddies 
and bubbles or drops was the dominant reason for breakup, Prince and Blanch [36] 
first determined the breakup frequency by examining the interaction between the 
bubble and eddy, and by making an analogy to molecular collisions in ideal gases. 
They computed the breakup frequency by multiplying the collision frequency w with a 
collision efficiency Pb: 
 

( ) ( ) ( )
∞

Ω = ∫0 , ,i i e b i e ed w d d P d d dd                                 Eq. 2-80 

 
wherein de is the eddy length scale. 
 
The collision frequency w(di, de) is defined as the volume swept in unit time by the 
approaching bubble and eddy, which is equal to the product of the cross-sectional 
area S, the relative velocity between bubble and eddy urel and the number density of 
eddies ne: 
 

( ) = ⋅ ⋅,i e rel ie ew d d u S n                                             Eq. 2-81 
 

The breakup efficiency Pb(di, de) is assumed equal to the probability that turbulent 
eddies have sufficient energy to rupture a bubble. The critical or minimum energy 
Ecrit is determined from a critical Weber number Wecrit, which is considered as a 
constant for a given system. The random distribution of the turbulent kinetic energy 
Ee in the eddy obeys a normal function in Eq. 2-75. Finally, the breakup efficiency 
Pb(di, de) is calculated as: 
 

( )  
= − 

 

2

2, exp crit
b i e

e

uP d d
u

                                          Eq. 2-82 

 
Prince and Blanch [36] calculated the critical Weber number Wecrit from an empirical 
maximum stable bubble size, and a value of 2.3 was obtained for turbulent air-water 
system. Therefore, the critical eddy velocity ucrit is given by 
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Finally, the integral in Eq. 2-80 can be rewritten as: 
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where k is the wave number of eddies, related to the eddy size by k=2/de. 
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The influence of energy dissipation rate ε and upper limit of the integration on the 
predicted breakup frequency is depicted in Figure 2.12. 
 

  
(a) (b) 

Figure 2.12 Prince and Blanch [36] model. (a) de,min=20%di; (b) ε=1.0m2∙s-3 
 
It must be noted that the upper limit of the integration becomes infinitely large as the 
eddy size approaches zero. With the premise of the inertial subrange, they set the 
minimum eddy size arbitrarily to 20% of the bubble diameter. However, Figure 2.12 
shows that the results depend sensitively on this limit [108]. 
 
Tsouris and Tavlarides [51] criticized their original model of Coulaloglou and 
Tavlarides [56] by pointing out that it predicts a maximum as the drop size increases, 
as shown in Figure 2.9. However, the models of Lee et al. [57], Prince and Blanch 
[36] as well as the model of Martίnez-Bazán et al. [59] also exhibit the same behavior 
especially at high dissipation rates. Tsouris and Tavlarides [51] considered the non-
monotonic behavior to be erroneous and proposed a modified model based on the 
concept of Prince and Blanch [36]. The major difference between two models is the 
value of the critical energy Ecrit. Tsouris and Tavlarides defined the critical energy as 
the mean value of the increases in the surface energy of the equal-sized breakage 
and breakage with a smallest and a biggest daughter. They ended up with the 
following form for breakup frequency: 
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         Eq. 2-85 

 
It can be seen that the modified model has the same problem as its ancestor of 
Prince and Blanch [36]. That is how to determine the upper and low integration limits. 
The smallest and largest effective eddy is arbitrarily set to be half the critical drop 
size dcrit and the drop diameter, respectively. The influence of the lower integral limit 
is referred to Lasheras et al. [115]. 
 
Luo and Svendsen [95] criticized all previous models by pointing out that 
experimental costs are needed to determine unknown parameters. Instead of the 
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total breakup frequency of the mother bubble, they proposed a new theoretical 
model for the partial breakup frequency, 
 

( ) ( ) ( )∞
Ω = ∫0, , , ,j i i e b i j e ed d w d d P d d d dd                             Eq. 2-86 

 
The collision frequency w(di, de) was calculated according to Eq. 2-81 except that 
the expressions used for velocity and number density of eddies are slightly different. 
 
The computation of breakup efficiency Pb(di, dj, de) is also similar to that of Prince 
and Blanch [36] and Tsouris and Tavlarides [51]. The unique difference is the critical 
energy Ecrit, which is defined as the increase in surface energy during the breakage 
event, i.e. 
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The breakage volume fraction, fbv, can be defined as 
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where the subscript i indexes the parent bubble and j indexes one of the two 
daughter bubbles. 
 
Therefore, the partial breakup frequency is given as: 
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where ξ=de/di is the size ratio between the bombarding eddy and the bubble. The 
dependence of the breakup frequency on the dissipation rate ε and the gas volume 
fraction is shown in Figure 2.13. 
 

  
(a) (b) 

Figure 2.13 Luo and Svendsen [95] model. (a) αg=0.3; (b) ε=1.0 m2·s-3 
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Since no separate daughter distribution function is needed, the model of Luo and 
Svendsen [95] is widely used in later applications, such as in [2] [116] ~ [118]. 
However, as pointed by Lasheras et al. [115] the results depend on the lower and 
upper limits of the integration which is a common feature of the models based on 
bubble-eddy collisions [36] [51]. The determination of the upper and lower limits 
includes indirectly two unknowns. On the other hand, the model is found to have no 
limit for the lower breakup size since the critical energy Ecrit in Eq. 2-87 approaches 
to zero as the size of the smaller daughter bubble Vj goes to zero [96] [119] [120]. 
 
Almost all the above models consider only the energy constraint during the breakup 
process, namely breakup occurring only if a critical energy is exceeded. Lehr et al. 
[30] first proposed a model based on a force balance between the inertial force of the 
arriving eddy and the interfacial force of the smaller daughter bubble, called the 
capillary constraint by Wang et al. [96]. They claimed that the capillary pressure is 
the dominant constraint for the breakup of bubbles with radius tending to zero. This 
is because in such a case, the capillary pressure or interfacial force is very high and 
thus the arriving eddy may not provide enough dynamic pressure or inertial force to 
overcome the capillary pressure even though it might contain enough kinetic energy 
[96]. 
 
Lehr et al. [30] calculated the breakup frequency also by multiplying the arrival 
frequency of the eddy with the corresponding probability density. If a bubble of size 
di is hit by an eddy of size de and breaks into two bubbles with size dj and di-dj, the 
breakup frequency Ω can be calculated by integrating the product over the whole 
effective eddy length scale. 
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They assumed that the breakup probability depends on the angle φ, under which the 
eddy hits the bubble. By assuming that it is equal for all steradians, the breakup 
probability can be calculated from the force balance. The final form for the partial 
breakup frequency is given by: 
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           Eq. 2-91 

 
where the normalized volumes of bubble i and j are respectively defined as 
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The model has the same advantage as the model of Luo and Svendsen [95]. 
Arbitrary assumptions about the daughter bubble size distribution can be avoided. 
However, the upper and lower limits of the integral have to be determined. The upper 
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limit was assumed to be the bubble diameter with the consideration that only eddies 
of length scale smaller than or equal to the bubble diameter can deform the bubble 
surface, i.e. de,max=di. The minimum effective eddy length scale is set as 
de,min=max(dj, dmin), where dmin is obtained from the force balance by assigning zero 
to the hitting angle φ.  
 
Three years later Lehr et al. [31] put forward with a modified model, which is also 
based on a force balance. The main difference between the modified and original 
model is the computation of the breakup probability. Lehr et al. [31] calculated the 
breakup probability based on the criterion that the kinetic energy of the eddy 
exceeds a critical energy, which is obtained from the force balance equation. 
 
The Eq. 2-90 is expressed as: 
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      Eq. 2-93 

 
In order to enhance computation efficiency, instead of integrating Eq. 2-93 directly, 
Lehr et al. [31] provided an analytical solution for the breakup frequency Ω(d i) and 
the corresponding daughter size distribution function by expressing the integral as a 
sum of incomplete Gamma-functions. 
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                          Eq. 2-94 

 
The influence of the dissipation rate and bubble size on the breakup frequency 
according to the model of Lehr et al. [31] is shown in Figure 2.14. The breakup 
frequency increases monotonously with the dissipation rate and the bubble size. 
 

 
Figure 2.14 Lehr et al. [31] model 

 
Wang et al. [96] argued that the breakup of bubbles should be limited by both the 
force and the energy constraints. They pointed out that the force balance used by 
Lehr et al. [30] [31] may not be satisfied during breakage, since during breakup the 
inertial force of the colliding eddy is usually larger than the inertial force until 
breakage occurs. On the other hand, they criticized the model of Luo and Svendsen 

ε=1.0 m2·s-3 

ε=5.0 m2·s-3 

ε=9.0 m2·s-3 
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[95] by pointing out that if the kinetic energy is larger than the critical value defined in 
Eq. 2-87 it will be possible for the eddy to induce all breakages with one daughter 
bubble smaller than Vifbv. In contrast, Luo and Svendsen [95] considered only the 
breakage with size Vifbv. Here fbv is the breakage volume fraction defined in Eq. 2-88. 
 
By adding the capillary constraint proposed by Lehr et al. [30] [31], Wang et al. [96] 
extended the model of Luo and Svendsen [95]. The only difference between the 
extended model and its ancestor is the breakup probability Pb(di, dj, de): 
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                Eq. 2-95 

 
where fbv,max and fbv,min are determined by the energy and capillary constraints, 
respectively. 
 
The partial breakup frequency is given as: 
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d d w d d P d d d dd                          Eq. 2-96 

 
where the collision frequency between bubble and eddy is calculated according to 
Eq. 2-81. 
 
The dependence of the predicted total breakup frequency on the dissipation rate, 
gas volume fraction as well as bubble size is depicted in Figure 2.15. 
 

  

(a) (b) 
Figure 2.15 Wang et al. [96] model. (a) αg=0.1; (b) ε=1.0m2∙s-3 

 
Since both constraints are considered in the calculation of breakage probability, the 
model of Wang et al. [96] seems to be most reasonable. However, the calculation of 
the partial breakup frequency is very time-consuming because a triple integral is 
involved in Eq. 2-96. Therefore, Wang et al. [121] worked out an efficient numerical 
algorithm to calculate the triple integral by arbitrarily introducing a cutoff energy and 
calculating the probability recursively instead of integrating directly. The accuracy of 
the solution depends severely on the discretization of fbv. 
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The last breakup model was published by Zhao and Ge [97], which considers also 
both the energy constraint and force balance constraint as in Wang et al. [96]. By 
assuming that one of the two daughter bubbles generated during the breakup 
process has the same size as the hitting eddy, de, the integral over the eddy size can 
be avoided.  
 
The breakage probability of a bubble with size di hit by an eddy with size de, is given 
as: 
 

( ) ( )= = ≥,b i j e e e critP d d d P E E                                    Eq. 2-97 

 
where Ecrit is obtained from the energy and force constraints, i.e.: 
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                       Eq. 2-98 

 
With the eddy efficiency Ce the authors tried to describe the situation that energy in 
the hitting eddy cannot be exhaustively transferred to the bubble. 

 
The model seems to be the most general and computationally cheapest one 
amongst the discussed models. However, the assumption about the size of one 
daughter equal to the length scale of the eddy should be validated with experimental 
data and also the determination of the eddy efficiency is worthy of further 
investigations. 
 
In summary, most of the models discussed so far are based on the bubble-eddy 
collision mechanism which relies on the assumption that the turbulent continuous 
flow consists of an array of discrete eddies that can be treated like molecules in 
classical gas kinetic theory. The imaginary eddy concept is impossible to validate 
regarding the number density, shape, size of eddies and bubble-eddy interactions. 
Although the model of Martίnez-Bazán et al. [59] avoids the eddy concept, its 
validation is still restricted to homogeneous and isotropic fully developed turbulent 
flows and turbulent water jets. The homogeneity of turbulence is well controlled in 
the experiments, whereas the turbulence dissipation rates are several orders of 
magnitude larger than bubble columns or pipe flows. Furthermore, almost all models 

  
(a) (b) 

Figure 2.16 Zhao and Ge [97] model. (a) αg=0.3; (b) ε=1.0m2∙s-3 
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for turbulent flows are limited to isotropic turbulence and the inertial subrange. On 
the other hand, the breakup frequencies provided by various models are inconsistent. 
More recent models such as [51] [95] ~ [97] give a monotonic relation between the 
breakup frequency and the bubble size, while the older ones, e.g. [36] [56] [57] [59], 
exhibit a maximum as the bubble diameter increases, which is considered erroneous 
by Tsouris and Tavlarides [51], whereas the argument is still open to question. The 
quantitative difference between above models can achieve at least several orders of 
magnitude, see Figure 2.9 ~ Figure 2.16. 
 
Models for breakup due to viscous shear force 
As discussed in section §2.4.1, in turbulent gas-liquid flows, bubbles can be 
subjected to a variety of destroying forces and breakup in quite different ways. 
However, compared to the turbulent fluctuations, the influence of viscous shear, 
shearing-off and surface instability in a turbulent flow is usually neglected and as a 
result the corresponding models are rare in the literature. 
 
It has been shown that the deformation and breakup of a drop or bubble due to 
viscous shear force is primarily determined by the Capillary Number Ca, which is 
expressed in the ratio of viscous stress to the surface tension: 
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dCa                                                      Eq. 2-99 

 
where μ l is the viscosity of the continuous liquid and γ  the shear rate. 
 
The criterion used often for the breakup of a bubble due to viscous shear force is 
Ca>Cacrit. The critical diameter is therefore determined by: 
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Experimental studies show that the critical capillary number Cacrit depends on the 
viscosity ratio p=μg/μ l and the flow type [99] [103]. For droplets immerging in simple 
shear flow, the region of Cacrit<Ca<κCacrit is dominated by necking, where the 
droplet breaks up into two equal-sized fragments and a few much smaller satellite 
droplets. When the capillary number increases suddenly to a value well above Cacrit, 
the droplet is rapidly elongated into a long cylindrical fluid thread, which 
subsequently breaks into a series of fragments due to the growth of wave like-shape 
distortions, called capillary instabilities. The deformation prior to breakup decreases 
as the viscosity ratio p increases. At viscosity ratios above about 4, breakup in a 
simple shear flow is virtually impossible [98] [99] [122]. 
 
Experimental results of Grace [98] Elemans et al. [108] and Wieringa et al. [4] show 
that the average breakup time in a simple shear flow can be given by: 
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where the function f(p) depends on the flow type and the viscosity ratio. 
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( ) = 26
nf p C p                                                     Eq. 2-102 

 
It is worth mentioning that Lo and Zhang [122] used a different correlation: 
 

( ) ( ) ( ) = + +  
2

27 28 29log log logf p C C p C p                          Eq. 2-103 

 
The breakup frequency is thought inversely proportional to the breakup time defined 
in Eq. 2-101. This is similar to the concept used by Martínez-Bazán et al.[59]. 
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Models for breakup due to interfacial stresses 
As mentioned in section §2.4.1, interfacial stresses can tear small bubbles from a 
cap bubble rising in water, which is called shearing-off process by Ishii and his 
coworkers [104] [105]. According to Fu and Ishii [104], the number source of small 
bubbles sheared-off from the cap/slug bubble is determined by the total sheared-off 
volume Vso and the generated bubble size dso. The sheared-off volume Vso can be 
modeled as a volume related to the gas flow rate across the ring area with an 
effective thickness δeff of the gas layer that may be sheared off: 
 

π δ∝so i eff relV d u                                                    Eq. 2-105 
 
where the effective thickness δeff is estimated according to the boundary layer 
thickness of a turbulent gas flow over a flat plate [69]. 

 
The sheared-off bubble size dso is assumed to be proportional to the maximum 
stable bubble diameter dso,max, which is given by the empirical expression derived 
from the experiment for plunging liquid jet [124] [125]: 
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According to Sun et al. [105] the average diameter of the sheared-off bubbles can be 
determined from the balance between the interfacial friction force and the surface 
tension force. 
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                                               Eq. 2-107 

 
where Cs is a shape coefficient and Cfi is the interfacial frictional factor, which has 
also a functional dependence on the relative velocity urel. In order to determine the 
final dependence of dso on urel, Sun et al. [105] derived an empirical correlation from 
their experimental data for confined upward air-water flow by making reference to Eq. 
2-106. By considering ε=urel

3G-1, a dependence of dso on urel is obtained, where G is 
the gap of the confined flow channel. 
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In the work of Fu and Ishii [104], the interfacial drag force is postulated to be 
effective in such a case that a number of small bubbles are generated at the tail of a 
slug bubble, whereas its size is lower than the maximum stable size for surface 
instability. They argued that due to any collision with a turbulence eddy, the slug 
bubble may deform and propagate downstream along the side interface. The 
deformed part is subjected to a significant drag force, which is sustained by the 
surface tension force. When the perimeter of the deformed interface part, reduces to 
a scale comparable to the eddy size, the surface tension force may be overcome by 
the drag force and small bubbles may be sheared-off from the interface.  
 
The drag force on the bubble is given as: 
 

ρ= 21
2D d D l rel eF k C u A                                             Eq. 2-108 

 
where Ae=πde

2/4 is the projected area of the bubble and de is the eddy size. 
 
The surface tension force is given as: 
 

σ π σ= eF d                                                     Eq. 2-109 
 
From the balance between FD and Fσ, one obtains 
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                                              Eq. 2-110 

 
In the work of Fu and Ishii [104], de has been seen as the critical eddy size that 
might lead to bubble breakup by this mechanism. 
 
Models for breakup due to surface instability 
When the bubble volume exceeds the maximum stable limit, it becomes unstable 
and disintegrates due to surface instability. Due to insufficient information about the 
breakup process caused by this mechanism, there are no phenomenological models 
in the literature. Wang et al. [107] estimate the breakup frequency following the 
empirical correlation of Carrica and Clausse [126] 
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                                   Eq. 2-111 

 
where dcrit is the critical bubble diameter set as 27 mm. 

2.4.3 Daughter bubble size distribution  
For the calculation of time and space dependent bubble size distributions, in addition 
to the breakup frequency Ω(di), a separate function β(V j, Vi) has to be proposed for 
the daughter bubble size distribution. Functions used for daughter bubble size 
distribution can be classified as three forms: empirical, statistical and 
phenomenological, see Figure 2.17. An exception that no separate functions are 
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needed for daughter bubble size distribution is the partial breakup frequency Ω(d j, di) 
directly given by models, e.g. the models highlighted with red color in Figure 2.17. 
 
Empirical models 
Hesketh et al. [127] compared several different distribution functions with their 
experimental data [128]. They are Dirac delta function, uniform function and attrition 
function, which can be described using two Dirac delta functions at fbv→0 and fbv→1. 
The results showed that the experimental data is between the values predicted by 
uniform and attrition breakage. An intermediate function, the so-called 1/X-shaped 
function, was proposed by the authors: 
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              Eq. 2-112 

 
The constant B is added to control the height of the function at fbv near 0.0 and 1.0. 
The value of B resulting in the best fit to the measured Sauter mean diameter, and I 
is the nomalization constant. 

 
Statistical models 
A statistical model, as the name suggests, assumes that the size of daughter bubble 
is a random variable and its probability distribution satisfies a simple distribution 
function. Normal, beta and uniform distribution functions are often used. 
 
A truncated normal function was first used by Valentas et al. [129] for the continuous 
case, where the size of daughter bubbles is normally distributed about a mean value 
Vmean with a specified variance, σ2. 
 

 

Figure 2.17 Classification of available models for daughter bubble size distribution 
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The dimensionless form is: 
 

( ) ( ) ( )β β
π

 ⋅  = ⋅ = − − ⋅  
   

2
21,1 , exp 0.5

2bv j i i bv
c mf V V V f c m

m
             Eq. 2-114 

 
where m is the number of daughter bubbles, usually assumed to be 2, and c is the 
tolerance of the distribution. For example, c=3 means >99.6% of the daughter 
bubbles lie in the volume range 0 to Vi. 
 
Figure 2.18 (a) shows the truncated normal distribution, which has been used in a 
number of later investigations, such as [56] [75] [109]. 
 
Hsia and Tavlarides [130] found that the truncated normal function was unable to 
predict the results obtained by Ross et al. [76], Verhoff et al. [135] and Ross [134]. 
Consequently, they modified their earlier work in [56] and assumed the distribution 
satisfies a beta function rather than the normal function. 
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6bv bv bvf f f                                        Eq. 2-115 

 
Lee et al. [130] also applied a beta distribution for the size of daughter bubbles with 
the following density function  
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where a, b are two adjustable parameters. According to Lee et al. [130], for a binary 
breakage, 2.0 was the best value for them. 
 
Konno et al. [136] proposed a statistical model that includes the distribution of 
energy in turbulent eddies of different scales and was called a hybrid model by 
Lasheras et al. [115]. They assumed that the probability to form a daughter bubble of 
a given size is proportional to the kinetic energy contained in eddies of the same size. 
However, Konno et al. [131] have shown that their model can be well approximated 
by the following beta function: 
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The dimensionless normal and beta daughter bubble size distribution is depicted in 
Figure 2.18(a) and Figure 2.18(b), respectively. It shows that both the normal and 
beta function predict a maximum at equal-sized breakup, i.e., the two daughters 
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have equal volume, which is contradictory to the experimental findings of Hesketh 
which show that the equal-sized breakage has the lowest probability [127] [128]. 
 

  
(a) (b) 

Figure 2.18 (a) Normal function; (b) Beta function 
 
Narsimhan et al. [111] and Randolph [133] argued that a uniform distribution could 
be used, which was found by Collins and Knudsen [137] to be the best choice by 
comparing with their experimental data. In the work of Prince and Blanch [36] a 
uniform distribution was also used since it was assumed that the size of daughter 
bubbles is a random variable, i. e., daughter bubbles of any size have an equal 
probability. However, there are no physical reasons to select a uniform model, since 
turbulent fluctuations are not uniform over all scales [115]. 
 
Thus, statistical models might be applicable to systems having stochastic 
characteristics. That means that if the breakup of a collection of bubbles can be 
assumed as a large population of independent, random events, the distribution can 
then be deduced statistically. A presumed density function with more adjustable 
parameters is of course more flexible and can provide more shapes to fit daughter 
bubble size distributions. However, the dependence on experimental apparatus 
increases with the number of free parameters, because the proper selection of 
adjustable parameters relies heavily on the flow conditions. On the other hand, only 
through one or two adjustable parameters, the presumed function such as the 
normal and beta function can hardly reflect the dependence on the underlying 
turbulence. Therefore, most recent work is based on a phenomenological approach. 
 
Phenomenological models 
A phenomenological model is usually a simple algebraic expression, which is 
formulated for the purpose of relating empirical observations of a phenomenon to 
each other. It is not directly derived from theory, because the information about the 
underlying theory of such phenomenon is still insufficient. 
 
According to the shape of daughter size distributions, phenomenological models 
derived by various researchers can be categorized as three categories, i.e. Bell-
shape, U-shape and M-shape. 
 
Martίnez-Bazán et al. [110] continued their work on the breakup of air bubbles 
injected into a fully developed turbulent flow, and presented a model for daughter 
bubble size distribution on the basis of a force balance. They computed the 
probability density of a daughter bubble with size dj as the product of the probability 
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that the parent bubble splits into two daughter bubbles with one in the size range 
0≤dj≤di, P1, and the probability of the daughter bubble with a given size dj, P2. As in 
Prince and Blanch [36], the size of daughter bubbles is assumed to be a stochastic 
variable and uniformly distributed on the segment [0, di], therefore, the distribution 
probability density of any size falling in [0, di] would always be P1=1/di. On the other 
hand, the probability of the parent bubble with size di breaking into a daughter 
bubble of a given size dj should be determined by the difference between the 
turbulent stresses over a length equal to its size, ρ lφ(εd j)2/3/2, and the confinement 
stresses, i.e. surface pressure stresses of the parent bubble, 6σ/d i. Thus, the 
probability of the formation of a daughter bubble of size dj and its complementary 
part dk, P2, is postulated to be equal to the product of the two surplus stresses 
corresponding to two daughter bubbles. 
 
Finally, the total probability can be written as: 
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     Eq. 2-118 

 
where φ is a constant obtained by integrating the difference between the velocity 
fluctuations . 
 
Using the normalization condition of the probability density, the dimensionless 
daughter bubble size distribution is then calculated as: 
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From Figure 2.19, one can see that the daughter bubble size distribution predicted 
by Martίnez-Bazán et al. [110] has the same behavior as the above statistical models, 
i.e. bell-shaped. 
 

 

 
Figure 2.19 Martίnez-Bazán et al. [110] model  
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One of the most popular phenomenological models for the size distribution of 
daughter bubbles is that in [51] and [93]. This is a bimodal function with high 
probability density at both ends and low in the middle. 
 
They assumed that the daughter bubble size distribution function is linearly related to 
the energy requirements for the formation of the daughters. With the expression for 
the minimal energy required for the bubble breakage proposed by Tsouris and 
Tavlarides [51] and Venneker et al. [93], the probability density function of daughter 
bubbles can be written as: 
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                                Eq. 2-120 

 
where Emin is the energy needed to create the smallest and largest daughter bubbles; 
Emax the energy needed to create two equal-sized daughter bubbles; E(Vj) the 
energy needed to create two daughters with size Vj and Vi-Vj. The results are 
graphically shown in Figure 2.20(a), and the line goes through zero at fbv=0.5. 
However, it is highly unlikely that equal-sized breakage never occurs even though it 
requires the most energy. Similarly, to the statistical function, the model of Tsouris 
and Tavlarides [51] is independent of the parent size and flow conditions, which is 
considered unphysical. 
 
The models discussed above provide only a total breakage rate of the parent bubble 
Ω(d i) and assume a function for daughter bubble size distribution independently. On 
the other hand, the following models give the partial breakage frequency Ω(d j, di) 
and the daughter bubble size distribution function is obtained by normalizing the 
partial breakup frequency by the overall breakage frequency. 
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Therefore, one can get the daughter bubble size distribution directly from the model 
for breakup frequency Ω(d j, di) discussed in §2.4.2, which is also the most attractive 
point of such models.  
 
The model of Luo and Svendsen [95] is expressed as: 
 

( )

( )

( )

ξ

ξ

ξ σ
ξ

ξ ϕρ ε ξ
β

ξ σ
ξ

ξ ϕρ ε ξ

+  
− 
 =

+  
− 
 

∫

∫ ∫

min

min

2
1

11/ 3 2 / 3 5 / 3 11/ 3

2
1 1

11/ 3 2 / 3 5 / 3 11/ 30

1 122 exp
,1

1 12exp

fbv

l i
bv

fbv
bv

l i

c d
df

c d df
d

                  Eq. 2-122 

 
where φ is about 2.0. 
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(a) (b) 

Figure 2.20 (a) Tsouris and Tavlarides [51] model; (b) Luo and Svendsen [95] model 
 
Figure 2.20 shows the U-shape daughter bubble size distributions predicted by two 
different models. Both have a minimum at equal-sized breakage and maximum when 
the volume fraction approaches to zero or one, but the model of Luo and Svendsen 
[95] has a non-zero minimum and exhibits a dependence on the parent bubble size. 
 
Similarly, to the model of Luo and Svendsen [95], Lehr et al. [31] proposed also a 
correlation for the partial breakup frequency (see Eq. 2-93). However, for efficient 
computation, they transformed the model back to an overall breakup frequency with 
a separate daughter bubble size distribution by expressing the integral as a sum of 
incomplete Gamma-functions. The daughter bubble size distribution has the 
following form: 
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                      Eq. 2-123 

 
The daughter bubble size distribution predicted by the above model is depicted in 
Figure 2.21. As the parent bubble size increases, the probability of small and large 
daughter bubbles increases rapidly, and the distribution changes from a monmodal 
to a bimodal. That means that the equal-sized breakage is more likely for small 
bubbles than for big bubbles, which is similar to the assumption of Nambiar et al. 
[138] that bubbles with size of dmax break always equally, however, no experimental 
evidence and theoretical support exist. 
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Similarly, in the model of Wang et al. [96] the daughter bubble size distribution 
function is also calculated directly from the partial breakup frequency. It has the 
following form: 
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  Eq. 2-124 

 
However, the triple integrals in Eq. 2-124 make the application of this model in CFD 
simulations very time-consuming. 
 
Last, the model of Zhao and Ge [97] is somewhat different from others listed here, 
since they assumed one of the daughter bubbles having the same size as the 
bombarding eddy. Therefore, the density probability of a daughter bubble with size Vj 
should be the sum of the breakage induced by an eddy with size de=(6Vj/π)1/3 and 
with size de=(6(Vi-Vj)/π)1/3. Finally, the daughter bubble size distribution is given as: 
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             Eq. 2-125 

 
where w(di, de) and Pb(di, de) are the collision frequency and breakup probability, 
respectively, see section §2.4.2. 
 
The effect of the parent bubble size on the daughter bubble size distribution 
predicted by the models of Wang et al. [96] and Zhao and Ge [97] is depicted in 
Figure 2.22(a) and Figure 2.22(b), respectively, which are typical M-shape 
distributions. 
 

 
Figure 2.21 (a) Martίnez-Bazán et al. [110] model; (b) Lehr et al. [31] model  
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(a) (b) 
Figure 2.22 (a) Wang et al. [96] model; (b) Zhao and Ge [97] model 

 
According to Wang et al. [96], the daughter bubble size distribution should satisfy 
four requirements:  
 

(i) a local minimum but no zero at equal-sized breakup, i.e. at fbv=0.5 
(ii) the distribution function depends on both the parent bubble size and the 

dynamics in the continuous phase, e.g. the energy dissipation rate 
(iii) the probability density of the daughter particles approaches zero when 

the breakup volume fraction fbv approaches zero 
(iv) the function form should not depend on experimental conditions or 

include singularity 
 

Starting from this point, the phenomenological models are generally more 
reasonable than the statistical ones, among which the M-shape models in Figure 
2.22 seem to be the most reasonable ones.  

2.5 Conclusions and discussions  
By using the extended Eulerian multi-fluid model, time and space dependent bubble 
size distributions or interfacial area density can be predicted for poly-dispersed flow. 
Nevertheless, for this purpose, constitutive models are needed for bubble forces, 
bubble dynamics (such as bubble coalescence and breakup) as well as turbulence. 
In this chapter, available methods for the extension of the standard multi-fluid model, 
modelling of bubble coalescence and breakup as well as bubble-induced turbulence 
are discussed. Since the main objective of this work is to develop a new model for 
bubble coalescence and breakup, a short discussion about the existing models is 
given as following. 

2.5.1 Mechanisms and models for bubble coalescence 
For turbulent bubbly flows, it is shown that at least five mechanisms are relevant to 
cause the relative motion between bubbles and consequently their collision. These 
mechanisms include turbulent fluctuations, laminar shear stress, capture in turbulent 
eddies, different rise velocities resulting from body forces, and wake entrainment. On 
the other hand, most available models assume arbitrarily a dominant mechanism, 
e.g. turbulent fluctuation, and neglect others without further verification and validation. 
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The coalescence frequency is calculated by defining collision frequency and 
coalescence efficiency. For turbulent fluctuation-induced collisions, the general 
structure of all models is similar to Eq. 2-24. The main difference is in the pre-factors, 
the value of which is still open. For non-diluted flows, which are normally in the focus 
of coalescence modeling, the reduction of the free space for bubble movement by 
bubbles themselves has to be considered by the factor γ. Collisions due to laminar 
velocity shear and size-dependent bubble rise velocities are obtained by 
straightforward considerations. They result in Eq. 2-25 and Eq. 2-27, respectively. 
For the collision of bubbles captured inside a turbulent eddy (see Eq. 2-26), the 
frequency is calculated by making an analogy to the case of laminar shear-induced 
collisions. Most open questions arise from the modeling of collision due to wake 
entrainment, which is especially important for large cap bubbles. Wake entrainment 
should be the most important mechanism leading to bimodal bubble size 
distributions, as observed in vertical pipe flows at high void fractions. 
 
In contrast to collision frequency, the formulations of coalescence efficiency are quite 
different from each other. The widely used film drainage model is based on the 
statistical theory by assuming the drainage and interaction time to be random 
variables. The model states that coalescence can occur only when the liquid film 
ruptures before the bubbles separate again, i.e. tcontact>tdrainage. However, it has been 
put into question by recent experimental observations. Doubliez [28] investigated the 
collision of a single rising bubble with the free liquid surface. He found that film 
rupture actually occurred when the bubble was already leaving the liquid surface, 
which was caused by the tension during the departure of the bubble. The experiment 
of Stewart [67] shows that most of coalescence processes occurred in a short time 
(1/30 s) and the interface penetration appeared to be instantaneous. On the other 
hand, the expressions for the drainage and contact time are quite different from one 
another and depend seriously on simplifying assumptions, e.g. the parallel-film 
model. However, up to now there are no models available which are qualitatively 
better than the film drainage model. 
 
In conclusion, the limitation of existing coalescence closure models is clear and 
further studies on more fundamental and consistent coalescence models are 
indispensable. These studies must consider all relevant collision mechanisms and 
they must be applicable to a wide range of flow conditions in the practice. 
 
For the improvement of bubble coalescence modeling, the following topics have to 
be considered: 
 

• The modeling should be based on physical observations, which shows a 
dependence on bubble size, liquid property and turbulent parameter. 

• All mechanisms have to be included, despite a mechanism being clearly 
identified as negligible for the case considered. 

• The necessity of pre-factors for collision frequency, e.g. γ and П should be 
checked. The factor γ considers the reduction of free space for bubble 
movement due to the existence of bubbles (up to now only discussed for 
turbulent collisions, it should apply to all kinds of collisions), while the factor П 
is only necessary for turbulent collisions, since it is related to the ratio of mean 
distance between bubbles to the relative turbulent path length. 
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• According to the film drainage model, the coalescence efficiency should be 
calclulated differently for each mechanism, since the contact time and 
drainage time of bubble collision related tightly to the mechanism. Up to now 
for buoyancy or wake interactions, the expression of turbulent collisions is 
adopted or a constant is assumed. 

• The coalescence closures have to be embedded in a model which provides 
turbulence parameters for the liquid phase correctly, e.g. including the effect 
of bubbles. 

• The model should not rely on open parameters. If an adjustable coefficient is 
included, a general expression applicable to wide range of flow situations 
should be proposed. 

2.5.2 Mechanisms and models for bubble breakup 
Similarly, for bubble breakup, there are various mechanisms that have to be 
considered. For example, in the case of turbulent gas-liquid flows, turbulence 
fluctuation, viscous shear stress, interfacial stresses as well as surface instability can 
cause the deformation and breakup of bubbles. On the other hand, most existing 
models consider only turbulence-induced bubble breakup, which limits the 
transferability of these models. Furthermore, various breakage criteria are used in 
the existing models. 
 
The turbulence parameters such as the turbulent energy dissipation rate ε, are 
essential input parameters for breakup models, which are difficult to estimate with 
sufficient accuracy by applying a standard turbulent model. Improvements of 
turbulence models for two-phase flows, especially the bubble-induced turbulence, 
are of crucial importance for the development of breakage closures. 
 
In a word, for the development of new breakup models, the following aspects need to 
be contemplated. 
 

• The model should be based on physical observations, and all potential 
mechanisms should be involved. 

• It should be efficient to implement the new model into CFD codes, i.e. no 
complicated integrals should be included as Eq. 2-96 in the model of Wang et 
al. [96]. 

• The model should provide the partial breakage frequency such as by Luo and 
Svendsen [95] and Wang et al. [96]. That means that additional errors 
introduced by the arbitrary assumption of a separate daughter size distribution 
can be avoided. 

• The daughter size distribution derived from the partial breakup frequency 
should have the feature of an M-shape function. That means that the 
probability of equal-sized breakage is a minimum and the probability is zero 
as one daughter bubble size approaches zero by binary breakage. 
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3 A generalized model for coalescence and breakup 
As discussed in the last chapter, in order to use the extended multi-fluid model for 
the modeling of poly-dispersed flow further effort needs to be invested in the 
development of closure models for bubble coalescence and breakup. Although an 
amount of work has been done in this field, it remains still a weak link in the CFD 
simulation of gas-liquid flows. Practice shows that it is difficult to transfer the 
application of the existing models from one case to another. In this chapter, a 
generally-applied or transferable model based on available knowledge is proposed 
for the calculation of bubble coalescence and breakup frequency, respectively. 

3.1 Coalescence frequency 
One major limitation of the existing coalescence models is that they considered 
usually only one mechanism. In this work, the widespread expression in Eq. 2-12, i.e. 
coalescence frequency equal to the product of collision frequency and coalescence 
efficiency, is extended to include all important mechanisms in a turbulent gas-liquid 
flow.  
 
According to Chesters [25], the modeling concept of bubble coalescence can be split 
into two parts, i.e. the external flow and the internal flow. The flow dynamics in the 
external flow, namely, the surrounding liquid phase, leads to the collision of bubbles. 
Furthermore, it determines important input parameters for the internal flow such as 
the relative velocity, interaction force and time. The term of internal flow here refers 
to the thinning process including the flattening and draining of the liquid film captured 
between two colliding interfaces.  
 
There are various sources in the external flow leading to bubble collisions, which are 
called collision or coalescence mechanisms following in this work. For example, in 
the case of a turbulent gas-liquid bubbly flow, turbulence fluctuation, laminar velocity 
shear, buoyancy, wake entrainment as well as eddy capture might be important 
mechanisms. These mechanisms are depicted at the right bottom of Figure 3.1 and 
numbered by (a), (b), (c), (d) and (e), respectively. 

3.1.1 Collision frequency 
The collision frequency is usually determined by assuming that the collision between 
bubbles in a locally isotropic turbulent flow field is analogous to that between ideal 
gas molecules. As shown in Eq. 2-13, the collision frequency of two approaching 
bubbles is determined by the effective cross-sectional area as they cross each other 
and the relative velocity between them. 

 
The effective cross-sectional area Sij for the collision of two bubbles having size di 
and dj can be modeled by using a circle of diameter (di+dj) to represent a moving 
bubble's effective collision area while treating the "target" bubbles as point masses 
(see Figure 3.2). As a result, Sij can be calculated according to Eq. 2-14 with the 
exception of wake-entrainment, since it is only effective for bubbles in the wake 
region behind the leading bubble i. For the computation of Sij,wake Eq. 2-14 has to be 
rewritten as 
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π
= 2

,  
4ij wake iS d                                                   Eq. 3-1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Finally, the collision frequency of the two bubbles can be interpreted as the volume 
swept by the moving bubble per unit time as shown in Figure 3.3. 
 

( ) = ⋅,i j ij relh d d S u                                                     Eq. 3-2 
 

 

 
 

Figure 3.2 Effective cross section for the collision of two bubbles of size di and dj 
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Figure 3.1 Conceptual framework of coalescence process modeling 
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Note that if Eq. 3-2 multiplied by the number density of “target” bubbles in the 
collision cylinder, h(di, dj) is the total collision frequency of a bubble in size group i 
and has a correspondent unit of s-1. 

 
According to Eq. 3-2, the collision frequency of two approaching bubbles is 
determined by the bubble sizes and the relative velocity. As discussed above, the 
relative velocity or relative motion between bubbles in a turbulent poly-dispersed flow 
can be caused by various mechanisms. Correlations used for the calculation of the 
relative velocity resulting from different mechanisms are different, which have been 
discussed in the last chapter. For ease of understanding, those correlations included 
in the new model are put together here. 
 
(a) Turbulence fluctuation 
In order to determine the mean approach velocity of bubbles in a turbulence-induced 
collision, it is assumed that bubble sizes are within the turbulence inertial subrange, 
i.e. η<d<le, and bubbles follow the velocity fluctuation of the liquid. Thus, the average 
velocity of one bubble with size d takes the mean turbulent velocity fluctuation 
between two points distance d apart, which is calculated by Eq. 2-16. By considering 
the stochastic inherence of turbulence, bubble velocities are assumed to be 
statistically non-correlated in space. The relative velocity between bubble i and j is 
determined by the mean square root of the turbulent fluctuations around their 
surfaces [139]: 
 

( ) ( ) ( )ε η= + = + + >
1/ 2 1/ 22 2 1/ 2 1/ 3 2 / 3 2 / 3

, 2    rel turb ti tj i j i ju u u d d d d           Eq. 3-3 
 
where η is the Kolmogorov microscale. 
 
(b) Laminar velocity shear 
The laminar velocity gradient in the bulk flow also gives rise to a relative velocity 
between the suspended bubbles when they are located at different positions. The 
shear-induced relative velocity between two adjacent bubbles can be expressed as 
 

( )γ= + , 0.5rel shear i ju d d                                              Eq. 3-4 
 
where γ  is the shear rate in the continuous phase. 
 
(c) Buoyancy or size-dependent body forces 
Bubble collisions may also result from the difference in size-dependent rise velocities 
of bubbles caused by buoyancy or other body forces 

 

 
 

 

 

 

Figure 3.3 Effective volume swept by the two colliding bubbles in a time Δt 
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= −,   rel buoy ri rju u u                                                  Eq. 3-5 
 
where uri is the terminal bubble rise velocity of bubble i. For the calculation of ur, a 
balance between drag and buoyancy forces is assumed. 
 
In addition, it is worth noting that for the case of vertical pipe flow, the shear-induced 
and buoyancy-induced relative velocity may compensate each other and cannot be 
regarded as single mechanism. 
 
(d) Wake-entrainment  
A bubble with a size larger than a critical value dcrit could produce strong agitation in 
the liquid and leave a wake region behind it, where the liquid velocity is higher than 
that in the bulk flow. The bubbles will be accelerated when they enter such a wake 
region with the result of collision and coalescence with the leading bubble. 
Schlichting [69] gave an analytical expression for the dimensionless relative velocity 
between the trailing and leading bubbles as 
 

( )
β

 
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 

1/3
,

2 2
rel wake D

ri

u y C A
u y

                                        Eq. 3-6 

 
where parameter A, β and y is the frontal area of the leading bubble i, the ratio 
between the length and the width of the wake, and the distance measured from the 
center of the leading bubble, respectively.  
 
According to Hibiki and Ishii [62], the average relative velocity between the leading 
bubble and the bubbles in the wake region, which can be obtained by integrating Eq. 
3-6 over the effective wake length, depends on the ratio of the wake length to the 
leading bubble diameter Lw/di. By treating this ratio as a constant depending on the 
fluid properties, the average relative velocity can be given by Eq. 3-7. 
  

( )= 1/3
, 35      >rel wake ri D i critu C u C d d                             Eq. 3-7 

 
where the constant C35 increases with a decrease in the ratio of Lw/di. 
 
It is noted that the simple treatment of Lw/di as a constant is in principle only 
reasonable for fully-developed flow and therefore, might introduce error for the flow 
at the gas entrance, where the average wake length is obviously smaller than the 
flow far away downstreams and the wake-entrainment is dominant. However, since 
up to now there is no accurate information about this complicated phenomenon 
available, this simplification is still adopted in this work 
 
The critical bubble diameter dcrit in Eq. 3-7 is calculated by employing the correlation 
of Ishii and Zuber [140]: 
 

σ
ρ

=
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4critd
g

                                                   Eq. 3-8 
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For 25 oC air-water flow system under atmospheric pressure it is about 10 mm. 
 

(e) Eddy-capture 
For turbulence-induced collision, when the size and relaxation time of bubbles are 
smaller than the Kolmogorov micro scale η, Eq. 2-26 does not apply to this case any 
more. Thus, the relative velocity cannot be calculated according to Eq. 3-3. Chesters 
[25] proposed that the collision of bubbles in such a case is mainly promoted by the 
viscous shear of turbulence eddies. By making an analogy to the case of laminar 
velocity shear in Eq. 3-4, the relative velocity between two bubbles inside an eddy, 
the so-called eddy capture, is given as 
 

( ) ( )ε η
ν

= + + ≤, 0.5        rel eddy i j i ju d d d d                     Eq. 3-9 

 
where ε ν/   is the rate of strain characteristic of flow in the smallest eddies. 

3.1.2 Coalescence efficiency  
The coalescence efficiency, which describes the probability of a bubble-bubble 
collision event resulting in coalescence, is calculated by the most mature model, i.e. 
the film drainage model (see Chapter 2 for details). According to the film drainage 
model, the coalescence process essentially consists of three successive steps which 
are shown in Figure 3.4. As a result, the coalescence efficiency can be calculated 
from two time scales, i.e. film drainage time tdrainage and contact time tcontact, see Eq. 
2-41.  
 
In the literature, it is usual to assign an identical efficiency for collisions caused by 
various mechanisms. This assumption might be unreasonable since the input 
parameters such as the relative velocity and the contact time are determined by 
collision mechanisms, see Figure 3.1. Therefore, in the calculation of coalescence 
efficiency, the influence of collision mechanisms on the film drainage time and 
contact time should be considered. 
 

 
Figure 3.4 Sub-processes of bubble coalescence process 

 
Depending on whether the particle Reynolds number Red=ρ ldurel/μ l is much smaller 
or much greater than unity, the respective force governing the collision of bubbles 
and the film thinning process will be predominately viscous or inertial. In turbulent 
gas-liquid flows, the viscous and inertial regimes correspond respectively to bubbles 
much smaller and much larger than the length scale of the Kolmogorov scale η [25]. 
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The coalescence of bubbles much smaller than η is dominated by the viscous force, 
while for the case of large bubbles the inertial force is predominant. 
 
As discussed above, film drainage time depends heavily on the rigidity and mobility 
of bubble surface. For fully-mobile deformable interface, e.g. bubbles in pure liquid, 
the correlation for film drainage time is different for viscous and inertial collisions. For 
viscous collision, the correlation proposed by Chesters [25] is used for the 
calculation of the film drainage time, which is given by Eq. 2-51. For collisions 
controlled by inertial forces, the film drainage time is calculated according to the 
correlation of Oolman and Blanch [85] in Eq. 2-56. It is noted that both correlations 
above for film drainage time are proposed for the case of fully-mobile interface and 
might not be applicable for the case of immobile or partially-mobile such as drops in 
viscous fluids or bubbles in fluids containing surfacants. 
 
The contact time is determined by the size and the relative velocity of two colliding 
bubbles, which is given by 
 

+
= i j

contact
rel

d d
t

u
                                               Eq. 3-10 

 
where the relative velocity urel is calculated according to Eq. 3-3 ~ Eq. 3-9. 
 
For viscous collision due to eddy-capture, by making use of Eq. 3-9, Eq. 3-10 
becomes  
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i j
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d d
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d d
                                   Eq. 3-11 

 
On the other hand, in turbulent gas-liquid flows, inertial collisions can be caused by 
turbulence, laminar shear as well as buoyancy. The relative motion of bubbles in this 
case is a combined effect of various collision mechanisms. It is usually difficult to 
describe the coupling effect between different mechanisms. In the literature, the 
contribution of each mechanism is usually assumed to be cumulative, which could 
deliver an overestimation of the coalescence rate. If the mechanisms are 
comparable, two bubbles after a collision promoted by one mechanism can be 
separated again by any another mechanism before coalescence could occur. 
However, if one mechanism is obviously stronger than the others are, it could be the 
predominately effective disturbance for the contact of two bubbles. In this work, it is 
assumed that the collision caused by different mechanisms is cumulative while the 
separation of the bubbles after collision is determined by the strongest mechanism, 
i.e. the largest relative velocity. Therefore, the contact time in Eq. 3-10 is rewritten as 
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                                              Eq. 3-12 
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wherein the subscript k reprsents the collision mechanisms of turbulence, laminar 
shear and buoyancy, and urel,k calculated according to Eq. 3-3 ~ Eq. 3-5, 
respectively. 
In addition, the modification factors γ and П discussed in §2.3 is included in the 
collision frequency and the correlations proposed by Wang and his coworkers [37] 
[38] are adopted (see Table 2.1 and Eq. 2-22). The reader is referred to Chapter 2 
for details.  

3.1.3 Final expression for the coalescence frequency 
By taking account of the contribution of all mechanisms, the total coalescence 
frequency is given by 
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where the cross-sectional area is calculated by,  
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The relative velocity between bubbles caused by different mechanisms is given by 
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And the coalescence efficiency is given by  
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In Eq. 3-15, the critical bubble size for wake-entrainment to occur is calculated 
according to 
 

σ
ρ

=
∆

4critd
g

 

 
And the Kolmogorov length scale is defined as 
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The modification factors γ and П are determined according to the correlations 
proposed by Wang et al. [37], 
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α α

=
−
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A value of 0.8 is used for the maximum possible gas holdup αmax. 
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                                     Eq. 3-17 

 

with ( )= +
1/22 2

, 0.89bt ij i jh d d  and ( )−= +
1/3

, 6.3b ij i jh n n . 

 
Furthermore, in Eq. 3-13 ~ Eq. 3-16, the subscript turb refers to the mechanism of 
turbulence fluctuation, shear to laminar shear, buoy to buoyancy, eddy to eddy-
capture and wake to wake entrainment. The coefficient C35 is dependent on the ratio 
of wake length scale to the leading bubble size and a constant value of 0.1 used in 
this work can give a satisfying agreement with the measurement. The initial and 
critical film thickness h0, hcrit are assumed to be constant. The initial film thickness in 
air-water systems was estimated by Kirkpatrick and Locket [141] to be 10-4 m while 
the critical film thickness is typically taken as 10-8 m [142]. According to the Chesters 
[25], the initial and critical film thicknesses are different for viscous and inertial 
collisions.  
 
The coalescence efficiency for collisions caused by wake-entrainment is assumed to 
be 1, since available information is inconsistent with each other. For example, Hibiki 
et al. [61] found that the coalescence rate of a spherical bubble entrained by a cap 
bubble is higher than the entrainment between two cap bubbles. However, the work 
of Stewart [68] showed that collision and coalescence caused by wake-entrainment 
can only occur if two bubbles have equivalent sizes. On the other hand, the 
assumption of 1 means that all entrained bubbles will coalesce with the leading 
bubbles. This is also reasonable from intuitive insight since it is difficult for a trapped 
bubble to escape from the wake region. 
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Finally, it is worth noting that for the case of vertical pipe flow, the effect of the shear-
induced collision and the buoyancy-induced collision is combined with each other 
according to the relative position of the two bubbles. 
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                   Eq. 3-18 

 
where dul/dr is the shear rate in the radial direction and the constant C36 is 
dependent on the horizontal mean distance of bubbles. 

3.2 Breakup frequency  
The work of Martínez-Bazán et al. [59] is used as a starting point of the generalized 
model. The model is based on a pure kinematic idea, and no information about the 
eddy is needed and no integrals are included. However, in this model only the 
turbulence mechanism is considered and a separate daughter bubble size 
distribution function is needed. The daughter bubble size distribution function 
proposed by Martínez-Bazán et al. [110] is a bell-shape function. As discussed in the 
last chapter, instead of bell-shape function, the M-shape function is the most 
reasonable function for the description of breakup progresses in gas-liquid flows. 
Furthermore, instead of both energy and capillary constraints, in the original work 
only the energy constraint is used to judge whether the breakup of a bubble can 
occur or not. 
 
According to the model of Martínez-Bazán et al. [59], by making analogy to the 
mechanical process, the velocity ub at which the breakup process of a bubble takes 
place can be assumed to increase with the difference between the deformation 
stress τ and the confinement stress τcrit exerted on the bubble.  
 

( )τ τ τ τ
ρ

 −
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                   crit
b crit

l
u                          Eq. 3-19 

 
The duration of the breakup process, i.e. the breakup time tb, is assumed to be the 
size of the parent bubble divided by the breakup velocity ub. 
 

= i
b

b

dt
u

                                                         Eq. 3-20 
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The deformation and confinement stress in Eq. 3-19 is assumed to be the turbulent 
stress and surface stress of the parent bubble, see Eq. 2-72 and Eq. 2-73. Finally 
the total breakup frequency of the parent bubble is given by Eq. 2-74. 

3.2.1 Extensions 
Breakup constraints  
For the determination of the confinement stress or the minimum stress τcrit needed 
for breakage of a bubble to occur, the energy constraint τcrit1 and capillary constraint 
τcrit2 are used in this work, i.e. 
 

( )τ τ τ= 1 2max , crit crit crit                                                Eq. 3-21 
 
where the energy constraint means that the energy density provided by the velocity 
fluctuation around the bubble surface should exceed the increase in the surface 
energy density during the breakage. The increase of surface energy density is 
determined by the number and the sizes of the daughter bubbles formed in the 
breakage process, for a binary breakage, a bubble with size di breaking up into two 
daughter bubbles, which is calculated according to Eq. 2-87. 
 
Therefore, the energy density τcrit1 caused by turbulent fluctuations around the 
bubble surface can be obtained from Eq. 2-87, 
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´ 
where cfbv=fbv

2/3+(1-fbv)2/3-1, fbv is the breakage volume fraction defined in Eq. 2-88. 
 
Nevertheless, as pointed out by Wang et al. [96] the energy constraint, i.e. τ>τcrit1, is 
still not enough for justifying the occurrence of breakage event, because according to 
it all bubbles under the disruptive stress will break up since there will always be a 
daughter size distribution that satisfies τ>τcrit2. This is because the increase of 
surface energy goes to zero when the size of the smaller daughter bubble dj 
approaches zero in a binary case. On the other hand, when the radius of the 
daughter bubble approaches zero its capillary pressure becomes very high, which 
means that the disruptive stress τ resulting from the velocity fluctuation in the liquid 
may not provide sufficient dynamic pressure to overcome the capillary pressure and 
cause such a breakage [96]. Therefore, the capillary constraint (τ>τcrit2) is added as a 
supplement to the energy constraint, which is the surface tension stress of the 
smaller daughter bubble. 
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                             Eq. 3-23 

 
It is worth noting that the capillary constraint given by Eq. 3-23 has a similar structure 
as the energy constraint in Eq. 3-22. The main difference lies in the prefactors, i.e. 
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prefactor1 and prefactor2. The dependence of the two prefactors on the breakage 
volume fraction, fbv, is shown in Figure 3.5. It can be seen that for a given parent 
bubble size di the capillary constraint is much stricter than the energy constraint 
except for the breakage with a volume fraction fbv around 0.5, i.e. equal-sized 
breakage. The capillary surface stress increases steeply as the breakage volume 
fraction approaches zero or one and suppresses the production of small daughter 
bubbles. 

 
Various mechanisms 
In general, the breakup of a bubble is the result of a velocity difference between the 
two points of its surface. The velocity difference can result from three main kinds of 
sources or mechanisms in a turbulent gas-liquid flow, that is, turbulence fluctuation, 
velocity shear and interfacial slip, see Figure 3.6(a), (b) and (c), respectively.  
 
External flow (velocity fluctuation) 

  
Internal flow (deformation, fluid redistribution 
inside the particle) 

Figure 3.6 Conceptual framework of breakup process modeling 
 

 
Figure 3.5 Prefactors in Eq. 3-22 and Eq. 3-23 

τk 

τcrit 

Bubble breaks up if τk>τcrit 

τk 

(a) 

(b) 

(c) 
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In Figure 3.6, the disruptive stress τk provided by the velocity fluctuation in the 
external flow is dependent on the mechanism that causes the fluctuation. The 
subscript k represents different breakup mechanisms, inter: interfacial slip; turb: 
turbulence fluctuation; shear: laminar velocity shear; eddy: eddy velocity shear.  
 
The deformation force generated by the velocity disturbances can also be distincted 
as viscous or inertial. The inertial force is caused by turbulence fluctuation and 
interfacial slip while the laminar velocity shear and eddy shear of strain give rise to 
viscous stresses.  
 
The inertial deformation acting on a bubble of size di caused by turbulence 
fluctuation and interfacial slip can be calculated according to Eq. 3-26 and Eq. 3-25, 
respectively. 
 

τ ρ= 21
2turb l tiu                                                          Eq. 3-24 

 

τ ρ= 2
int

1
2er l riu                                                         Eq. 3-25 

 
where uti, uri is the average turbulent fluctuation around the bubble given by Eq. 2-16 
and its terminal rise velocity, respectively. 
 
The viscous shear stress due to velocity shear rate in the bulk flow and turbulent 
eddies is calculated respectively as: 
 

( )τ µ γ=            mean shear stressshear l                  Eq. 3-26 
 

( )ετ µ
ν

=            eddy shear stresseddy l                 Eq. 3-27 

 
where γ is the shear strain rate in the bulk flow. 
 
Length scale of the breakup process 
Instead of the parent bubble size, the neck size of the parent bubble before it begins 
to break up is assumed to be equal to the size of the smaller daughter bubble dj. 
Therefore, for the calculation of the breakup time, the parent bubble size di is 
replaced by the daughter bubble dj in Eq. 3-20. 

    
Finally, the partial breakup frequency Ω(d i, dj) for a bubble with size di breaking up 
into two daughter bubbles with size dj and (di

3-dj
3)1/3 is given by 
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The total breakup frequency of bubbles with size di can then be obtained by 
integrating Eq. 3-28 over the effective range of fbv=0.0 ~ 0.5, where the breakage 
volume fraction fbv is defined by Eq. 2-88. 
 
Daughter bubble size distribution obtained directly from the model 
The partial breakup frequency calculated by Eq. 3-28 can be used in the extended 
Eulerian multi-fluid model directly and no separate functions are needed for daughter 
bubble size distribution. The daughter size distribution β obtained directly from the 
partial breakup frequency has an “M-shape”: 
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                                    Eq. 3-29 

3.2.2 Final expression for the breakup frequency 
By taking into account the contribution of all mechanisms, the total frequency of 
bubble i breaking up into bubble j is given by 
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where the subscript k refers to the mechanisms leading to bubble breakup such as 
turburlence, laminar shear, eddy shear and interfacial slip. The destroying stress τk 
provided by the breakup mechanisms in the external flow is given by Eq. 3-31. 
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and the critical stress or constraint τcrit is given by 
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                          Eq. 3-32 

3.3 Characteristics of the new model 
The characteristics of the new model is studied by plotting the effect of all input 
parameters such as turbulence dissipation rate and shear rate on the predicted 
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collision frequency, coalescence efficiency and frequency, breakup frequency and 
daughter bubble size distribution. 

3.3.1 Collision frequency 
An illustration of the influence of turbulence dissipation rate and bubble size on the 
turbulence-induced collision frequency is shown in Figure 3.7 and Figure 3.8, 
respectively.  

 
Figure 3.7 Effect of energy dissipation rate on turbulence-induced collision 

frequency for two equal-sized bubbles  

 
Figure 3.8 Effect of bubble size on turbulence-induced collision frequency  

 
As it can be seen, the frequency of bubble collision due to turbulence fluctuation 
increases with the dissipation rate and bubble size. This is because in the case of 
turbulence fluctuation, the approach velocity increases as the dissipation rate ε and 

ε=0.5 m2∙s-3 

ε=0.05 m2∙s-3 
ε=0.5 m2∙s-3 
ε=5.0 m2∙s-3 

di=5 mm 
di=10 mm 
di=20 mm 
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bubble sizes increase. Furthermore, large bubbles represent a larger cross-sectional 
area of the “collision tube”. 
 
The collision frequency of two unequal-sized bubbles caused by the difference in 
their terminal rise velocities (see Figure 3.10) is shown in Figure 3.9. 

 
Figure 3.9 Effect of bubble size on buoyancy-induced collision frequency of two 

unequal-sized bubbles  
 

 
Figure 3.10 Predicted terminal rise velocity of single air bubble in water 

 
The buoyancy-induced collision frequency increases with an increase in the size 
difference of two colliding bubbles. This is because the terminal rise velocities are 
purely determined by bubbles’ size. Therefore, the collision frequency of two equal-
sized bubbles is zero. 
 

γ −= 1100 s  

di=3 mm 
di=20 mm 
di=50 mm 



A generalized model for coalescence and breakup 

71 
 

The dependence of shear-induced collision frequency on the shear rate and bubble 
size is shown in Figure 3.11 and Figure 3.12, respectively. 

 
Figure 3.11 Effect of shear rate on shear-induced collision frequency  

(equal-sized bubbles ) 
 

 
Figure 3.12 Effect of bubble size on shear-induced collision frequency  

(unequal-sized bubbles) 
 
In this case, the approach velocity of two bubbles is determined by the shear rate 
and the sum of bubble sizes as shown in Eq. 3-4. Large shear rate and bubble sizes 
will result in a large relative velocity and consequently a high collision frequency. In 
comparison to other mechanisms, shear-induced collision frequency of bubbles is 
high, but with the consideration that the shear rate is almost zero at center region of 
a pipe flow, the mechanism of laminar velocity shear is only effective in the region 
near to the wall. 

γ = -110 s  

di=5 mm 
di=10 mm 
di=20 mm 

γ = -110.0 s  

γ = -150.0 s  

γ = -1100.0 s  
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According to Eq. 3-1 and Eq. 3-7, the frequency of bubble collisions caused by wake 
entrainment is only dependent on the size of the leading bubble, which generates the 
wake region, as depicted in Figure 3.13. 

 
Figure 3.13 Dependence of wake-induced bubble collision frequency on the leading 

bubble size  
 
The mechanism of eddy capture is only effective for collisions between micro 
bubbles. As the turbulence dissipation rate increases, the Kolmogorov length scale η 
decreases. In accordance, the size of bubbles, which can also be captured by eddies, 
decreases since it is assumed that only bubbles smaller than the Kolmogorov length 
scale can be captured. The dependency of collision frequency resulting from this 
mechanism on the turbulence dissipation is shown in Figure 3.14. 
 

 
Figure 3.14 Dependence of eddy-capture collision frequency on turbulence 

dissipation rate  

ε=0.05 m2∙s-3 
ε=0.5 m2∙s-3 
ε=5.0 m2∙s-3 
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3.3.2 Coalescence efficiency 
An illustration of the influence of turbulence dissipation rate, velocity shear rate as 
well as bubble size on the coalescence efficiency of inertial bubble collision caused 
by turbulence, shear rate and buoyancy is shown in Figure 3.15 ~ Figure 3.17, 
respectively. The dependence of the coalescence efficiency of each collision 
between two equal-sized bubbles on the turbulence energy dissipation rate, ε, is 
illustrated in Figure 3.15. 
 
An increase in the energy dissipation rate causes a decrease in the coalescence 
efficiency. The explanation is that the approach velocity of two bubbles increases 
with the energy dissipation rate, however, the contact time of the colliding bubbles is 
inversely proportional to the approach velocity. On the other hand, the coalescence 
time is independent of the approach velocity according to Eq. 2-56. Therefore, the 
coalescence efficiency decreases as the turbulence dissipation rate increases. 
 

 
Figure 3.15 Effect of turbulence energy dissipation rate on coalescence efficiency  

 
Similarly, as it can be seen from Figure 3.16, the contact time of two colliding 
bubbles decreases due to the increase of the shear rate. This effect is especially 
strong for large bubbles, since the relative velocity between two bubbles caused by 
velocity gradients in the bulk flow is proportional to the product of the shear rate and 
the sum of bubble sizes. 
 

γ −= 110 s  

ε=0.05 m2∙s-3 
ε=0.5 m2∙s-3 
ε=5.0 m2∙s-3 
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Figure 3.16 Effect of shear rate on coalescence efficiency  

 
If the size of one bubble is kept constant, the influence of the size of the other bubble 
on the coalescence efficiency of inertial collisions is shown in Figure 3.17. For the 
collision between two bubbles of size di and dj, the coalescence efficiency in general 
decreases with an increase in bubble size. For a given bubble size di, the efficiency 
of coalescence with a very small bubble dj is very high. However, it decreases 
rapidly with the increasing of dj. This is because the film drainage time expressed by 
Eq. 2-56, increases much faster than the contact time given by Eq. 3-10. 
Nevertheless, if one of the two colliding bubbles is small, the liquid film radius is 
small and the drainage time is always smaller than the contact time, which leads to a 
very high coalescence efficiency. 
 
The increase of the coalescence efficiency for large bubbles can be explained by a 
closure evaluation of the contact and the drainage time. The change of contact / 
drainage time with the increase of bubble size dj for two cases with given bubble size 
di (di=5 mm and 10 mm) is shown in Figure 3.18. It can be seen that for these two 
cases, both contact time and film drainage time increase with the bubble size dj. For 
very small bubble sizes dj the drainage time is almost the same for both cases and it 
is less than the contact time. As the bubble size dj increases, the difference in the 
film drainage times becomes large while the contact time is almost the same for 
cases di=5 mm and 10 mm. Therefore, for bubbles larger than 10 mm, the 
contribution of turbulence, shear rate and buoyancy is trivial while the mechanism of 
wake-entrainment plays a significant role in the coalescence process. 

 

ε=0.5 m2∙s-3 

γ = -110.0 s  

γ = -150.0 s  

γ = -1100.0 s  
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Figure 3.17 Effect of bubble size on coalescence efficiency  

 

 
Figure 3.18 Effect of bubble size on contact/drainage time (ε=0.5 m2·s-3, γ=10 s-1) 

 
As discussed above, due to low particle Reynolds number, the collision of small 
bubbles captured inside an eddy is controlled mainly by viscous force. Different from 
the case of other three mechanisms, i.e. turbulence, shear and buoyancy, the 
coalescence efficiency is calculated according to the correlation of Eq. 3-16. The 
influence of turbulence dissipation rate on the coalescence efficiency of two equal-
sized bubbles captured inside an eddy is shown in Figure 3.19. For small bubbles 
that can be captured by eddies, the coalescence efficiency is about 1. In addition, it 
decreases with the increase of turbulence dissipation rate and bubble size, which is 
easy to explain by using the definition. 
 

γ −= 110 s  
ε=0.5 m2∙s-3 

di=5 mm 
di=10 mm 
di=20 mm 

Contact Time: di=5 mm 
Drainage Time: di=5 mm 
Contact Time: di=10 mm 
Drainage Time: di=10 mm 
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Figure 3.19 Effect of turbulence dissipation rate on coalescence efficiency of two 

equal-sized bubbles captured inside an eddy 

3.3.3 Total coalescence frequency 
Figure 3.20 ~ Figure 3.22 show the effects of turbulence dissipation rate, shear rate 
and bubble size on the total coalescence frequency, which is the coalescence rate 
divided by the product of number densities of bubble size class i and j. Here the 
coalescence caused by wake-entrainment is not included since it depends only on 
the size of the leading bubble. 
 
The total coalescence frequency of two equal-sized bubbles under three different 
values of turbulence dissipation rates is depicted in Figure 3.20. 
 

 
Figure 3.20 Effect of dissipation rate on coalescence frequency (γ=10 s-1, di=dj) 

ε=0.05 m2∙s-3 
ε=0.5 m2∙s-3 
ε=5.0 m2∙s-3 

ε=0.05 m2∙s-3 
ε=0.5 m2∙s-3 
ε=5.0 m2∙s-3 
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It can be seen that an increase in the dissipation rate will cause a decrease in the 
coalescence frequency. This is clear since the coalescence efficiency decreases 
steeply with an increase in the dissipation rate (see Figure 3.15), although the 
turbulence-induced collision frequency increases with the dissipation rate (see 
Figure 3.7). 
 
The total coalescence frequency of two equal-sized bubbles under three different 
shear rates is depicted in Figure 3.21. 
 

 
Figure 3.21 Effect of shear rate on coalescence frequency (ε=0.5 m2·s-3, di=dj) 

 
Similarly to the case of turbulence dissipation rate, the increase of the shear rate 
reduces the contact time of two colliding bubbles. If the contact time is smaller than 
the time needed for the liquid film captured between them to drain out to the critical 
film thickness, the two bubbles will separate again before the coalescence occurs. 
Therefore, the coalescence efficiency is low at high shear rate (see Figure 3.16). As 
a result, the total coalescence frequency will decrease as the shear rate increases, 
even though the collision frequency increases (see Figure 3.12). 
 
The total coalescence frequency of two unequal-sized bubbles under given shear 
rate and dissipation rate is shown in Figure 3.22. As discussed above, the collision 
frequency increases with the bubble sizes while the coalescence efficiency 
decreases with an increase in the equivalent bubble radius, which is mainly 
determined by the smaller bubble size (see Eq. 2-43). If the smaller bubble size is 
kept constant, e.g. di=5 mm, the coalescence efficiency will increase with an 
increase in the larger bubble size dj since the contact time is proportional to the sum 
of the bubble sizes. From Figure 3.22 one can see that if a bubble with a given size 
di coalesces with a very small bubble dj, say dj<5 mm, large bubble di results in 
large coalescence frequency. The explanation is that for these cases the 
coalescence efficiency is almost 1 for different bubble sizes di and the collision 
frequency will determine the total coalescence frequency. 
 

γ = -110.0 s  

γ = -150.0 s  

γ = -1100.0 s  
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As the bubble size dj increases, for a large given bubble size di, e.g. di=20 mm, the 
coalescence efficiency decreases steeply due to the fact that the liquid film thickness 
increases and as a result film drainage time increases. On the other hand, for the 
case with small di, e.g. di=5 mm, the coalescence efficiency decreases at first when 
dj<di=5 mm and then increases stably, see Figure 3.17. This is because if dj<di the 
film drainage time is mainly determined by dj and decreases with a decrease in dj 
while for dj>di the film drainage time remains almost constant for a given di and the 
contact time increases with an increase in the bubble size dj. 
 

 
Figure 3.22 Effect of bubble size on coalescence frequency (ε=0.5 m2·s-3, γ=10 s-1) 

 
If the contribution of wake-entrainment is considered, the total coalescence 
frequency of two colliding bubbles larger than the critical bubble size given by Eq. 
3-8 is dominated by this mechanism, see Figure 3.23. 
 

  
(a) di=dj (b) di=20 mm 

Figure 3.23 Contribution of each mechanism (ε=0.5 m2·s-3, γ=10 s-1) 

di=5 mm 
di=10 mm 
di=20 mm 
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3.3.4 Breakup frequency 
For the example of air-water systems, the breakup mechanisms of turbulence and 
interfacial stresses are important since the shear force is negligible due to low 
viscosity of water. 
 
The influence of bubble size and energy dissipation rate on the turbulence-induced 
specific breakup rate, which is the total breakup rate divided by the number density 
of the mother bubble, is shown in Figure 3.24.  
 

 
Figure 3.24  Effect of turbulence dissipation rate on turbulence-induced breakup 

frequency  
 
The larger the bubble size and/or the energy dissipation rate, the higher the breakup 
frequency. This is reasonable since a large bubble has a low surface tension, which 
is easy to deform/breakup, and a large dissipation rate can provide a large disruptive 
stress according to Eq. 3-31. The specific breakup rate of very small bubbles is close 
to zero, since the turbulence fluctuation around these bubbles is too weak to 
overcome the surface tension. As the energy dissipation rate increases, the 
maximum stable bubble size, under which on breakage occurs, decreases. 
 
The specific breakup rate caused by the interfacial slip between air bubbles and 
water is plotted in Figure 3.25. It depends only on the bubble size and increases with 
the bubble size since large bubbles have a large slip velocity, which results in a large 
interfacial stress. 

ε=0.05 m2∙s-3 
ε=0.5 m2∙s-3 
ε=5.0 m2∙s-3 
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Figure 3.25 Dependence of buoyancy-induced breakup frequency on bubble size 

3.3.5 Daughter size distribution 
The influence of the parent bubble size and the breakage volume fraction on the 
required minimum stress for breakage is shown in Figure 3.26, which is determined 
by both energy and capillary constraints (see Eq. 3-21 ~ Eq. 3-23). As discussed 
above, according to the energy constraint, bubble breakage can occur if the 
destroying stress around the bubble surface exceeds the increase in surface energy 
during the breakage. The increase of surface energy has a maximum for equal-size 
breakage, i.e. fbv=0.5, and then goes down to zero as the size of the smaller 
daughter bubble approaches zero, i.e. fbv=0.0. That means that a bubble can 
breakup at any point if the size of one of the daughter bubbles is small enough. On 
the other hand, the capillary constraint limits the size of the smaller daughter bubble, 
because as the bubble radius curvature tends to zero, its capillary pressure becomes 
very high. Thus, it is impossible for the external destroying force to overcome the 
capillary pressure and results into such a breakage. As a result, the highest 
breakage probability is located at a breakage volume fraction, fbv, between 0.0 and 
0.5 and the corresponding daughter bubble size distribution is the so-called an “M-
shape”, see Figure 3.27 and Figure 3.28, which has been shown to be more 
reasonable than the “U-shape” and “Bell-shape” distributions. 
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Figure 3.26 Energy and capillary constraints for bubble breakup (ε=1.0 m2·s-3) 

 
In Figure 3.27 the dimensionless daughter size distribution is depicted for four 
different parent bubble sizes. As it can be seen from Figure 3.26, the larger the 
parent bubble size is the smaller the required critical stress is, since the critical 
stress according to the two constraints is inversely proportional to the parent bubble 
size if the breakage volume fraction is kept constant. Meanwhile, the destroying 
stress caused by various mechanisms always increases with the bubble size. As a 
result, the breakup frequency increases with the bubble size (see Figure 3.24 and 
Figure 3.25) since the time duration of a breakage event decreases as the difference 
between the destroying stress and the required minimum stress increases. On the 
other hand, according to the definition (see Figure 3.17 and Figure 3.18), the 
breakup time is proportional to the size of the smaller daughter bubble. That means 
that if the difference between the destroying stress and the required minimum stress 
is the same, it is easier to generate a small and a large daughter bubble than two 
approximately equal-sized bubbles. Furthermore, the probability of equal-sized 
breakage will increase with an increase in the parent bubble size. As the parent 
bubble size increases further, the daughter bubble size distribution will approach 
approximately to a constant value of 2, i.e. uniform distribution. This is because for 
large cap bubbles, the breakage is mainly determined by the capillary constraint, 
which is only very high for the breakage with a small and a large daughter bubbles. 
In contrast to the case of small daughter bubbles, the critical stress is almost 
constant for the breakage volume fraction fbv around 0.5. 
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Figure 3.27 Effect of bubble size on daughter size distribution (ε=1.0 m2·s-3) 

 
The influence of turbulence dissipation rate on the dimensionless daughter bubble 
size distribution is illustrated in Figure 3.28. 

 
Figure 3.28 Effect of dissipation rate on daughter bubble size distribution 

 
It is easy to understand that the daughter bubble size distribution becomes more flat 
as the dissipation rate increases from 0.5 m2·s3 to 1.0 m2·s3, since large dissipation 
rates can provide enough destroying stress to overcome the critical stress 
determined by a wider range of daughter bubble size. When the dissipation rate is 
small, turbulent inertial stress can only overcome the minimum critical stress which is 
located at a position between fbv equal to 0 and 0.5. If the dissipation rate increases 
further, the number density of very small daughter bubbles increases while the 
equal-sized breakup rate remains almost constant and the daughter bubble size 
becomes uneven again. Similarly to the influence of the parent bubble size in Figure 

ε=0.05 m2∙s-3 
ε=0.5 m2∙s-3 
ε=5.0 m2∙s-3 

di=7 mm 
di=8 mm 
di=9 mm 
di=10 mm 
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3.27, in the case of a sufficiently large destroying stress, the breakup time for equal-
sized breakage remains almost constant while for unequal-sized breakage it is 
determined by the size and capillary stress of small daughter bubble. 

3.4 Summary 
A theoretical closure model is proposed for the calculation of bubble coalescence 
and breakup frequency, respectively.  In comparison to models available in literature, 
the advantages of the new model can be summarized as follows: 
 
New model for coalescence frequency: 

a) All potential mechanisms leading to a relative velocity between bubbles in a 
turbulent gas-liquid bubbly flow are considered 

b) Different correlations are proposed for the calculation of collision frequency 
and coalescence efficiency in the case of different collision mechanisms 

c) Besides the cumulative assumption, the overlapping of various mechanisms is 
considered to a certain extent by determining the contact time of two colliding 
bubbles from the maximum relative velocities, see Eq. 3-12. 

 
New model for Breakup frequency: 

a) All potential mechanisms leading to velocity fluctuations around the bubble 
surface and result in deformation of bubbles considered 

b) The model is based on pure kinematic analysis so that information about the 
size and energy of turbulent eddies is not needed. As a result, complicated 
integrals over the size and/or energy of eddies are successfully avoided  

c) No additional daughter bubble size distribution functions are needed and the 
directly calculated daughter bubble size distribution obeys the most 
reasonable ‘M-shape’  
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4 Strategy for model test and validation 
For the test and validation of the new model for bubble coalescence and breakup, 
experimental data for different flow situations are needed. Vertical pipe flow under 
adiabatic conditions is nearly optimal for studying different constitutive models 
characterizing the dynamic and exchange processes at the gas-liquid interface. In 
this case, the change of the bubble size distribution due to coalescence and breakup 
can be observed along the pipe over a long vertical distance, and the gaseous phase 
travels together with the liquid flow with a stable velocity difference. Another reason 
that this geometry is selected is that compared to complicated 3D flow fields vertical 
pipe flow is a much simple case since the radial flow field is almost symmetrical and 
the boundary conditions are well-defined. For the test of a new model for bubble 
coalescence and breakup it is ideal to exclude all other uncertainties. However, even 
for this simple case, there are some obstacles that stand in the way of the test and 
validation of new models for bubble coalescence and breakup due to the uncertainty 
of other indispensable constitutive models.  
 
Since it is difficult to measure the coalescence and breakup rates directly, measured 
bubble size distributions, average bubble size or interfacial area density are usually 
employed in the validation of new models for the calculation of coalescence and 
breakup rates. However, the evolution of bubble size distribution in a vertical pipe 
flow is coupled with that of radial gas volume fraction profiles, which are mainly 
determined by lateral non-drag forces such as the lift and turbulent dispersion forces. 
These forces are in turn dependent on the bubble size.  
 
Numerical [143] and experimental [144] investigations have shown that the direction 
of the lift force changes its sign, if a substantial deformation of the bubble occurs. For 
air-water systems under atmospheric pressure and room temperature, the lift force 
coefficient changes its sign around an equivalent spherical diameter of 5.8 mm 
according to Tomiyama [145], which leads to a demixing of small and large bubbles 
in the lateral direction. That means that inside upward vertical pipe flow the radial 
gas volume fraction profile of small bubbles (d<5.8 mm) has a wall-peak, while large 
bubbles (d>5.8 mm) accumulate at the pipe center and cause a core-peak profile in 
the radial distribution of the volume fraction of gas phase.  
 
On the other hand, both coalescence and breakup rates increase with an increase in 
the bubble number density. As a result, the evolution of the local bubble size 
depends on the radial redistribution of the gas volume fraction. Furthermore, large 
bubbles that accumulate at the pipe center will grow into even larger Taylor bubbles 
or slugs since the breakup rate is low there due to a small turbulence energy 
dissipation rate. This is the key mechanism for the transition from bubbly to slug flow, 
see Figure 4.1.  
 
In both cases of Figure 4.1, small bubbles (d<5.8 mm) are injected from the bottom; 
however, a low superficial gas velocity is assumed for the left case. In such a case, 
small bubbles move along the pipe wall without any interaction and the local gas 
volume fraction near the wall is higher than the cross-sectional averaged one. 
Nevertheless, it is still too low for collisions between bubbles to occur and the flow is 
almost monodispersed. If the superficial gas velocity is further increased, as shown 
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in the right case, large bubbles are generated by coalescence near the pipe wall and 
migrate to the pipe center under the effect of lift force. 
 
Finally, uncertainties in the modeling of two-phase turbulence affect directly the 
evolution of bubble size distribution, since turbulence is one of the important input 
parameters for coalescence and breakup models.  
 
Therefore, bubble forces and turbulence models for bubbly flow are given in addition 
below.  
 

 
 
 
 
 
 
 
 
 

Figure 4.1 Development of bubble size inside a vertical pipe flow [2] [146]  

4.1 Interfacial force models 
Drag force 
The drag force experienced by the dispersed phase β per unit volume is: 
 

( )β β α β αβρ α= − − −
    

,
3
4

DD l
CF u u u u
d

                                  Eq. 4-1 

 
where α, β indicate the continuous and dispersed phase, respectively. 
 
For the calculation of the drag coefficient CD, several correlations that are specific to 
dispersed flow are available.  
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Schiller and Naumann [147] proposed a correlation originally for solid particles, 
which is also suitable for the case of sufficiently small fluid particles or viscous 
regime. 
 

( )= 0.687
p

24 1+0.15Re        
ReD

p
C                                      Eq. 4-2 

 
where Rep is particle Reynolds number, defined as: 
 

Re l
p

l

u u dβ αρ

µ

−
=

 

                                                    Eq. 4-3 

 
The Grace [98] model was formulated originally for flow past a single distorted 
bubble, which is assumed to be applicable for sparsely distributed fluid particles in 
the distorted regime: 
 

ρ
ρ
∆

= 2
4        
3D

r l

gdC
u

                                                  Eq. 4-4 

 
where ur is the terminal velocity. For the case of densely distributed fluid particles, 
Eq. 4-4 is modified using a power law correction: 
 

αα∞=    p
D DC C                                                          Eq. 4-5 

 
where CD∞ is the single bubble drag coefficient given by Eq. 4-4 and p is the volume 
fraction correction exponent depending on the bubble size. 
 
For the distorted fluid particle regime, the Ishii and Zuber [140] correlation gives: 
 

= 1/ 22
3DC Eo                                                              Eq. 4-6 

 
where Eo is Eotvos number defined as: 
 

ρ
σ
∆

=
2g dEo                                                              Eq. 4-7  

 
Similarly, for dense distributed particles, Eq. 4-6 will be modified according to the 
shape and volume fraction of the particles. 
 
Recently, a correlation of drag coefficient was proposed by Tomiyama [145] for pure 
systems based on single bubbles rising in a stagnant liquid, which is an extension of 
the model of Schiller and Naumann [147] in Eq. 4-2: 

 

( )
   = +  +    

0.687

p

16 48 8max min 1 0.15Re , ,
Re Re 3 4D

p

EoC
Eo

               Eq. 4-8 
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Turbulent dispersion force 
The turbulent dispersion force is the result of the turbulent fluctuations of liquid 
velocity. It has an important influence on the radial gas volume fraction profiles in 
vertical pipe flows. It causes the transportation of bubbles from regions of high 
concentration to regions of low concentration, and smoothes the radial gas profiles of 
gas volume fraction. 
 
In this work, the FAD model proposed by Burns et al. [148], based on the Favre 
average of the interfacial drag force, is used. By Favre averaging the drag fluctuation 
term, the turbulent dispersion force per unit volume is derived as: 
 

β α
β β αβ

β α

αν αρ α
α α

 ∇ ∇
= − − −  

 

  
,

3
4 Pr

D tTD TD l
CF C u u
d

                      Eq. 4-9 

 
where CTD is a user-modifiable multiplier. A value of 1.0 is used in this work. Pr is the 
turbulent Prandtl number for continuous phase volume fraction and currently set to 
be 0.9. 
 
Similar expressions were also obtained by Carrica et al. [92], Drew [149], and 
Gosman et al. [150]. All these correlations show a proportional dependence on the 
liquid eddy viscosity νt. 
 
Lift force 
The lift force considers the interaction of a bubble with the shear field in its 
surrounding liquid. It acts perpendicularly to the direction of the relative motion of the 
gaseous and liquid phases. Based on the unit volume it can be calculated as:  
 

( ) ( )β α β ββρ α= − − × ∇×
   

,L L lF C u u u                                     Eq. 4-10 

 
Tomiyama et al. [151] derived a correlation for CL from the experiments on single 
bubbles rising in stagnant liquids under the conditions of -5.5 ≤log M ≤ -2.8 and 1.6 ≤ 
log Eod ≤ 6: 

 

( ) ( )
( )

   = ≤ ≤
−

min 0.288 tanh 0.121Re ,         <4 

                                                   4 10        
0.27                                                      >10  

d d

L d d

d

f Eo Eo
C f Eo Eo

Eo
     Eq. 4-11 

with ( ) = − − +3 20.00105 0.0159 0.0204 0.474d d d df Eo Eo Eo Eo  
 
Here the modified Eotvos number Eod is calculated according to Eq. 4-7 but using 
the bubble diameter in horizontal direction, dh, instead of the equivalent bubble 
diameter. It is calculated according to the correlation of Wellek et al. [152] for the 
ellipsoidical bubble aspect ratio: 
 

= ⋅ + 0.7571 0.163hd d Eo                                     Eq. 4-12 
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It is noted that this correlation is only valid for oblate spheroid or ellipsoid bubbles, i.e. 
Eo≤40. 
 
Wall lubrication force 
In the case of bubbly upward flow, the dispersed phase is observed to concentrate in 
a region close to the wall, but not immediately adjacent to the wall. This effect may 
be modeled by adding the wall lubrication force, which tends to push the dispersed 
phase away from the wall. According to the model of Antal et al. [153], the wall 
lubrication force can be computed as: 
 

β α ββα ρ= − −
   2

,W W l WF C u u n                                           Eq. 4-13 

 
where 
 

 
= + 

 
1 2max 0, W W

W
w

C CC
d y

                                             Eq. 4-14 

 
The non-dimensional coefficients are by default set to CW1=-0.01 and CW2=0.05. 
Note that the effective distance of the force from the pipe wall is yw=5d with the 
default values of CW1 and CW2. 
 
Furthermore, Tomiyama [151] proposed a correlation for the calculation of wall 
lubrication force: 
 

( )
2

, 2 2
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2
lW W r W

dF C u n
y D y

β
ρ  

 = − −
 − 
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                        Eq. 4-15 

 
Similarly to the lift force coefficient CW proposed by Tomiyama [151] depends on the 
Eotvos number: 
 

( ) − + ≤ ≤= 
+ ≤ ≤

exp 0.933 0.179   1 5
0.007 0.04               5 33 W

Eo Eo
C

Eo Eo
                      Eq. 4-16 

 
As pointed out by Tomiyama [151], the application of Eq. 4-16 is limited to the case 
with logM=-2.8 and the value of CW has to be tuned for other Morton number 
systems. 
 
Recently, Eq. 4-16 was modified by Frank et al. [24] to ensure a continuous 
dependence on the Eotvos number, which is adopted in this work. 
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                   Eq. 4-17 
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4.2 Two-phase turbulence modeling 
Since turbulence is one of the important mechanisms that lead to bubble 
coalescence and breakup, an investigation on the influence of turbulence modeling 
is necessary in the test of a new model for bubble coalescence and breakup. 
However, turbulence modeling is still an open issue in the simulation of gas-liquid 
flows. In contrast to single-phase flows, the number of terms to be modeled in the 
governing equations of a two-phase flow is large. This makes the modeling of 
turbulence in two-phase simulations extremely complex. Two-phase turbulence 
modeling typically involves two-equation models that are formulated on the basis of 
single-phase models. For gas-liquid bubbly flow, it is commonly assumed that the 
motion of gaseous bubbles follows the fluctuations in the continuous liquid phase. 
Accordingly, turbulence stresses are modeled only for the liquid phase, whereas a 
simple zero equation model is used for the gaseous phase. In the present study the 
standard k-ε model or SST model is used for the liquid phase, which belongs to the 
category of eddy viscosity turbulence models. The production and destruction of 
liquid turbulence caused by the agitation of bubbles, i.e. the so-called bubble-
induced turbulence (BIT), is considered by additional source terms. 

4.2.1 General approach 
There are in general two different approaches to considering bubble-induced 
turbulence (BIT) discussed in the literature. They are either to add an additional 
viscosity term or k and ε source terms. 
 
Additional viscosity term 
Similarly to the concept of Sato et al. [8], the BIT is described by an additional 
algebraic viscosity term, which is added to the molecular viscosity of the liquid phase 
μ l in the same way as the shear-induced turbulence viscosity term μt: 
 

µ µ µ µ= + +eff l t b                                                  Eq. 4-18 
 
where μeff is the effective viscosity and μb represents the BIT viscosity, which 
depends on the gaseous phase volume fraction αg, the bubble diameter d and the 
relative velocity between the phases: 
 

µ ρ α=


b S l g relC d u                                                 Eq. 4-19 
 

A value of 0.6 was recommended by Sato et al. [8] for the constant CS. This 
expression of Eq. 4-19 is implemented widely in CFD codes such as ANSYS CFX. 
However, as pointed out by Sato et al. [8] it gives too high a value of μb near the wall. 
Therefore, it was further improved by taking into account the damping effect of the 
wall surface on BIT turbulence. 
 

µ ρ α
+

+

  
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A is the damping factor. 
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Additional source terms for k-ε model 
The most popular approach for the consideration of BIT is to add additional source 
terms to the transport equations of k and ε / ω such as φk and φε in Eq. 4-21 and Eq. 
4-22. 
 

( ) ( ) µα ρ α ρ α µ α α ρ ε ϕ
σ

  ∂
+ ∇ ⋅ = ∇ ⋅ + ∇ + − +  ∂   

 t
l l l l l l l l k l l k

k
k u k k P

t
         Eq. 4-21 
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   Eq. 4-22 

 
where Cε1, Cε2, σk, σε are model constants. The shear-induced turbulence 
production Pk is given by 
 

µ= ∇ +∇
  2T

k t l lP u u                                             Eq. 4-23 
 
There are a number of models proposed for the calculation of BIT source terms φk 
and φε, which are described in the following section. 

4.2.2 BIT source term models 
In most models the production of BIT kinetic energy φk is calculated as the work of 
interfacial forces (e.g. drag force, added-mass force), i.e. the interfacial force 
multiplied with the local slip velocity. 
 

αϕ ∝ − ⋅
 

k relM u                                              Eq. 4-24 

 
It is worth noting that the drag force is included in all models, since it is the main 
source of energy input. Non-drag contributions are considered only in a few models, 
e.g. the added-mass force considered in the work of Yao and Morel [159].  
 
For the modeling of BIT source term in Eq. 4-21, φε, the same approach as it was 
done in the single-phase model is adopted. That is the destruction of BIT is assumed 
to be proportional to the production divided by a characteristic time scale, τ: 
 

ε
ϕϕ
τ

∝ k                                                        Eq. 4-25 

  
If the k-ω model is used instead, the source term for the turbulence eddy frequency 
ω is calculated according to the transformation ε=β*ωk,  
 

ω ε
ωϕ ϕ ϕ

β
= −*

1
kk k

                                           Eq. 4-26 

 
where β*=0.09. 
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The main difference between the existing models for the BIT source terms is the 
calculation of the time scale τ. 
 
In this study, four different models for BIT production and destruction, φk and φε, are 
implemented. They are the Morel model [159], Pfleger model [157], Politano model 
[158] and Troshko model [163]. 
 
Morel model [159] 
In Morel [159], in the calculation of turbulence produced by the bubble agitation only 
the work input of the interfacial drag force is considered. The additional source term 
for the k balance equation is expressed as: 
 

( )βϕ α= − − =
    3

,
3
4

D
k k D g l k g rel

CC F u u C u
d

                         Eq. 4-27 

 
It can be seen that the BIT kinetic energy is proportional to the gas volume fraction. 
 
Accordingly, the source term for energy dissipation balance equation is: 
 

ε ε
ϕϕ
τ

= kC                                                    Eq. 4-28 

 
In the Morel model [159], a value of 1.0 is used for both constants Ck and Cε. 
 
The time scale τ of the pseudoturbulence destruction was calculated based on a 
dimensional analysis background. The authors assumed that τ is dependent on the 
bubble diameter d with the consideration that the wake region behind a bubble is 
originally of the same size as the bubble. The larger the wake, the longer will be the 
time required for its energy to cascade to the smallest turbulence eddy scale before 
it can be dissipated. Therefore, they gave the characteristic time scale as 
 

τ
ε

 
=  
 

1/ 32d                                                  Eq. 4-29 

 
Pfleger Model [157] 
In the work of Pfleger and Becker [157], the authors prosposed a model which is 
similar to that of Morel [159]. The only difference is the calculation of the time scale τ. 
By making an analogy to the shear-induced turbulence in single-phase flows, Pfleger 
and Becker [157] calculated the time scale τ based on the Kolmogorov’s hypothesis 
that the destruction of turbulence is determined by the time scale of the smallest 
eddies, which are responsible for energy dissipation, i.e. 
 

τ
ε

=
k                                                       Eq. 4-30 

 
In addition, a value of 1.44 and 1.92 is used by Pfleger and Becker [157] for the 
constants Ck and Cε, respectively. 
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Politano model [158] 
For the calculation of the BIT production, φk, Politano et al. [158] proposed a model 
by extending the model of Lee et al. [160] to the multi-group simulation of poly-
dispersed bubbly flow. This model is slightly different from the last two models. 
According to Lee et al. [160], in an air-water upflow, the increase in the turbulence 
production of the liquid phase due to the relative motion of bubbles comes from a 
decrease in the potential energy of the liquid phase when the bubbles displace the 
same volume of high density liquid from a low pressure to a higher pressure region. 
As a result, the rate of increase in turbulent kinetic energy per unit mass of the liquid 
is given as: 
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= −
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
                                          Eq. 4-31 

 
According to Antal et al. [153] and Lopez de Bertodano et al. [161], the pressure 
gradient around the bubble surface can be approximated as 
 

2
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                                               Eq. 4-32 

 
For poly-dispersed flow Politano et al. [158] extended the above model to consider 
the effect of bubbles of different sizes by using the relative velocity weighted by the 
gas volume fraction. Therefore, Eq. 4-31 is rewriten as: 
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                                          Eq. 4-33 

 
where j is the bubble size group. 
 
For the calculation of the characteristic time scale, τ, Eq. 4-30 is used. In addition, 
Ck=1.0 and Cε=1.92 were adopted originally in this model. 
 
Troshko model [163] 
In a recent work, Lopez de Bertodano [162] found that the time scale of single-phase 
turbulence destruction in Eq. 4-30 brought unreasonable results for his case of the 
decay of homogenous two-phase turbulence. In other words, the turbulence decay 
was shown to depend on the initial dissipation rate. Therefore, he proposed a new 
expression for the time scale of bubble-induced turbulence destruction, which was 
used in the BIT model of Troshko and Hassan [163]: 
 

τ = 
2

3
VM

D rel

C d
C u

                                                       Eq. 4-34 

 
where CVM is the virtual mass force coefficient and a value of 0.5 used in this work. It 
is worth noting that if the parameters CVM, CD and urel are assumed to be constant 
for a given bubble size, the time scale predicted by Eq. 4-34 is independent on the 
radial position, gas volume fraction as well as energy dissipation rate. 
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4.3 Solver 
In this work, the models described in the last chapters were implented and tested in 
two different solvers, i.e. a 1D simplified Test Solver (the Multi Bubble Size Class 
Test Solver) and a 3D CFD solver (ANSYS 12.1 CFX solver), respectively. The two 
solvers especially the simplified one are introduced briefly below. 

4.3.1 The Multi Bubble Size Class Test Solver 
This is a simplified model for the simulation of gas-liquid flows developing along a 
vertical pipe, which was proposed and developed originally by Lucas et al. [2]. The 
aim of this model is to provide an efficient tool for the test of new closure models, 
which are suitable for their implementation in CFD codes. It considers a large 
number of bubble size classes, and therefore, is called Multi Bubble Size Class Test 
Solver. A sufficiently fine discretization of bubble size is usually impossible for a CFD 
code but desirable for the test of coalescence and breakup models.  
 
For each height position, the Test Solver delivers new radial profiles of the bubble 
size class resolved gas velocity, gas volume fraction by solving mass and 
momentum equations of all classes. However, it does not resolve flow parameters of 
gas and liquid over the pipe height. Instead, the liquid velocity at each height position 
is calculated by using the Sato [8] correlation from a given gas volume fraction [8], 
see Eq. 4-35. By assuming that all bubbles perform their upward movement with the 
average gaseous phase rise velocity, it is possible to transform the time axis to a 
vertical axis and to evaluate the evolution of flow pattern over the pipe height in the 
case of stationary flows.  
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                                Eq. 4-35 

 
where τ is the shear stress and calculated according to following expression, which 
is derived from the force balance: 
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                          Eq. 4-36 

 
where B and r* are dimensionless parameters B=gR/ul

*2 and r*=r/R, and τw is the wall 
shear stress. 
 
In the Test Solver, bubble size can be discretized uniformly or with a fixed width ratio 
into n size classes. In this work, the latter approach is used, i.e. 
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                                               Eq. 4-37 

 
where, dmax, dmin is the maximum and minimum bubble size, respectively. 
 
The influence of the discretization of the bubble size on the predictions is shown in 
Figure 4.2 for test point 107 at level I. Details about the test points and height levels 
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will be introduced later in this chapter. It can be seen that if the number of size 
classes, n, is equal to or larger than 25, then the influence is negligible especially for 
gas velocity and volume fraction. A value of 45 is used for n in this work. 
 

   
Figure 4.2 Influence of bubble size groups on predicted results (TP107, Level I) 

 
The radial cross-section of the vertical pipe is discretized into N equal-volume 
annular rings. The influence of N on the predicted radial profiles of gas velocity and 
volume fraction and average bubble diameter is shown in Figure 4.3. The influence 
of the radial spatial discretization on the results vanishes if the number of discretised 
annular rings N is equal to or larger than 120. N=150 is used for all calculations in 
this work. 
 

   
Figure 4.3 Influence of number of radial nodes on predicted results (TP107, Level I) 

 
In the numerical scheme used in the Test Solver, values for gas volume fraction αg 
are given within the radial nodes, while the gradients of gas volume fraction and 
liquid velocity are given at the boundary of the nodes. For a consistent discrete 
modeling, partial velocities at the boundaries are introduced according to the scheme 
shown in Figure 4.4. 
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Figure 4.4 Schema of applied discretization method [164] 

 
The velocity uk

- is calculated using the node values of node k and the gradients at 
the lower boundary of node k at rg,k, while uk

+
 results from the node values of node k 

and the gradients at the upper boundary at rg,k+1. Furthermore, uk
- is set to zero if 

positive values are calculated, and uk
+ is set to zero, if negative values are 

calculated.  
 
For one time step, at first the change in velocities caused by bubble forces is 
calculated. Afterwards, the gas volume and momentum are shifted according to the 
new velocity. It is assumed that the gas volume fraction at one given node is equally 
distributed within the node width, which forms an annulus in the radial direction. The 
shift is done in a way in which the center of mass of the annulus is shifted according 
to uΔt. The centre of mass of an annulus in the case of a constant density is 
calculated by: 
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                                            Eq. 4-38 

 
with r0 and r1 are the inner and outer radii of the annulus.  
 
If a fraction Θ of the gas volume is shifted from node k to node k+1, the centre of 
mass of the annulus k is recalculated according to: 
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In the model all radial nodes have an equal volume, i.e.: 
 

− +− = +2 2 2 2
, , 1 , 1 ,g k g k g k g kr r r r                                         Eq. 4-40 

 
For this special case the following relation applies: 
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                                                   Eq. 4-41 

 
In analogy for Θk

- yields: 
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                                                     Eq. 4-42 

 
These fractions of gas volume are shifted from one node to the other together with 
their momentum. The source terms in the mass balance resulting from coalescence 
and breakup are added separately to the gas volume fractions for each node and 
each bubble class. 
 
The flow chart depicted in Figure 4.5 gives a general schema for the prediction of 
upward gas-liquid vertical pipe flow with the Test Solver. It can be seen that the 
calculation terminates if the gaseous phase arrives at the maximum pipe height. The 
liquid velocity is calculated by adjusting τw through the iteration between the wall 
shear stress τw and the given superficial liquid velocity Jl according to Eq. 4-35 and 
Eq. 4-36. If the difference between the calculated and given superficial liquid velocity 
is lower than a presumed tolerance, the iteration stops, 
 

( )cal given
l l

given
l

J J
J
−

≤ ∆                                                    Eq. 4-43 

4.3.2 ANSYS 12.1 CFX-Solver 
Since the final goal of the Test Solver is to provide an efficient tool for the preliminary 
test of new closure models for CFD codes, it is meanful to validate the simplified 
model itself and relevant parameters delivered by it with the help of a CFD code. In 
this work, ANSYS CFX-12.1 is selected to fulfill this requirement, which is a high-
performance commercial fluid dynamics program that has been widely applied for 
over 20 years. Modern extension approaches of the standard multi-fluid model such 
as the MUSIG and the DQMOM model are available in the CFX-12.1 solver. This 
makes it possible to use this solver to trace the evolution of local bubble size and to 
compare the predictions with those delivered by the Test Solver. In this work, the 
inhomogeneous MUSIG model is employed, whose basic concept is introduced in 
the section §2.2.5. 
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Input data  
Geometry, Fluid properties, Control parameters, Model constants, 
Mesh generation parameters, Flow parameters 

 

Figure 4.5 Flow chart of 1D Test Solver 

4.4 Experimental database  
For the validation of the new model discussed in Chapter 3 in a steady-state by 
using the two solvers discussed above, experimental data for bubble size 
distributions and radial gas volume fraction profiles at different spatial positions are 
needed. The following subsections describe the detailed requirements for such a 

Calculation of parameters independent on time iteration 
Eötvös number, geometry matrix for bubble stretching over the mesh, 
bubble forces coefficients 

Initialization of variables, preprocessing of input data 
total void fraction, radial gas volume fraction, bubble size distribution, 
turbulence parameters, gas and liquid velocity, etc…)  
 

Begin of time iteration     

Mass equation (sources by bubble coalescence and breakup) 
New bubble size distribution, gas volume fraction of each bubble size 

Momentum equation (Force balance) 
Calculation of radial gas velocity and new radial gas volume fraction 

k-ε Procedure  
Calculation of new k, ε, υt, ul and dul/dr for a given τw 

 

(Jl
cal-Jl

given)/Jl
given≤Δ 

no 

τw=τw+Δ 

Calculation of parameters at the new height position h 
Pressure, expansion, drift velocity, void fraction, gas velocity, etc… 

yes 

no 
L≥Ltotal 

Program Stop 

L=L+ugΔt 

Discretization 
Building the calculation mesh (equal volume/ equal distance) 
Bubble size distribution (equal width/ logarithmically increased width 
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validation process, limitations of databases available in the literature and the 
TOPFLOW experiment [9]. 

4.4.1 Requirements 
Experimental databases used for the validation of bubble coalescence and breakup 
models are required to be able to provide the evolution of bubble size distribution for 
a relatively long time period or over a long distance. The example of vertical pipe 
flows satisfies the requirement well. In addition, measurements about the bubble size 
distribution and gas volume fraction should be available for several height positions. 
A consistent trend regarding the evolution of phase distribution and bubble size 
distribution along the pipe should be observed. 
 
In the past, many experimental studies have been carried out for turbulent bubbly 
flows inside vertical pipes or channels, and a number of databases were developed. 
However, the information provided by these databases is usually incomplete 
especially for bubble size distributions, which makes it difficult to validate the new 
model in the two selected solvers by using these data. 
 
Continuous efforts in the development of the IATE method have been made by Ishii 
and his co-workers analytically and experimentally [53] [165] [166]. Comprehensive 
databases on the interfacial area concentration have been developed for bubbly 
flows in vertical pipes. Unfortunately, these data cannot be applied in the solvers 
selected in this work, since no information about the bubble size distribution is 
available. 
 
Another well-known database for upward air-water bubbly flow in a vertical pipe was 
published by Liu and Bankoff [46] [167]. Measurements about liquid and gas velocity, 
gas volume fraction, probability density function (pdf) of bubble chord length as well 
as turbulence intensity are available. However, the results are applicable only for 
fully-developed flow, i.e. measurements done only for one height position (L/D=36). 
In addition, bubble size distribution has to be obtained from the measured chord 
length pdf, for which the differentiation of the measured irregular curve is required. 
This operation will magnify any scatter to induce uncertainty [167]. The same 
problem was encountered by processing the experimental data provided by Liu [168], 
Ohnuki et al. [169] and Shen et al. [170]. 
 
All the databases were achieved from vertical pipes that have an inner diameter of 
about 50 mm or below with the exception of the last two databases published by 
Ohnuki et al. [169] and Shen et al. [170], which deliver insights into the flow structure 
in large diameter pipes (D=200 mm). The use of a large pipe can exclude the 
dependence of local gas volume fraction distribution on the pipe diameter. 
 
For upward gas-liquid flow in a vertical DN200 pipe (D=195.3 mm), a high-quality 
database (test series L12) was constructed at the TOPFLOW (Transient twO Phase 
FLOW) test facility, of the Institute of Safety Research at the Helmholtz Zentrum 
Dresden Rossendorf [9]. This database is finally chosen for the test and validation of 
the new model in this work mainly based on three considerations. 
 
Firstly, measurements of the bubble size distribution, the radial profiles of gas 
velocity and the gas volume fraction as well as the decomposition of radial gas 
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volume fractions according to bubble size are available for several height positions, 
e.g. for 1 mm inlet orifice data available for 12 height positions (see Table 4.1). 
Secondly, an extensive range of flow conditions with superficial gas velocity from 
0.0625 m/s to 3.185 m/s and superficial water velocity from 0.0405 m/s to 1.611 m/s 
is covered in the measurement as indicated in Table 4.2. Finally, the quality and 
plausibility of the measured data was checked extensively. The measured bubble 
size distribution, radial gas velocity and volume fraction profiles for different heights 
were compared to each other for all test matrix points. 
 
As a result, a clear and consistent trend regarding their evolution with increasing L/D 
and superficial gas velocity was found, as depicted in Figure 4.11. In contrarst to this 
test series, discrepancies or inconsistent trends could be found in some published 
databases as well the previous measurement series of TOPFLOW. Furthermore, 
superficial gas velocities have been reconstructed from the measured radial gas 
volume fraction and velocity profiles. A good agreement with the setting values could 
be obtained. The evolution of the time and cross-sectional averaged total gas 
volume fraction along the pipe height was checked with theoretical values predicted 
by the drift velocity model. As a result the trend along the pipe height is well reflected 
by the experimental data. In addition, the measurement temperature of the two-
phase mixture was kept constant 30oC and the variance is below 1K. This is 
important for the validation of models for bubble coalescence and breakup because 
these processes sensitively depend on the temperature due to its effect on surface 
tension. 

4.4.2 TOPFLOW air-water experiment in a vertical pipe 
 
Test facility 
The construction and function of the TOPFLOW facility are described in detail by 
Schaffrath et al. [171] and Beyer et al. [172]. For this reason, here only the 
information of the L12 test series that is relevant to the execution of model validation 
in this work is considered.  
 
To obtain the evolution of the flow along the pipe, a so-called variable gas injection 
was used. Figure 4.6 shows the geometrical construction of the injection system with 
six modules which are almost logarithmically distributed over the pipe height. This is 
because the change of the flow structure, which is mainly caused by the radial 
redistribution of the gaseous phase, occurs mostly close to the gas injection. Each 
module (see Figure 4.7) consists of three chambers. In order to analyze the 
influence of different initial bubble diameters on the development of the flow, the 
uppermost and the lowest injection chambers are provided with 72x1 mm orifices 
while the middle chambers have 32x4 mm orifices.  
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Table 4.1 lists the vertical distances between the individual gas injection chamber 
and the first measurement plane of the wire-mesh sensor located in the flow 
direction. The experimental data achieved by using 1 mm inlet orifices at different 
height positions, which are highlighted by bright turquoise, are used in this work. 
 

 
Figure 4.6 Vertical test section of 

TOPFLOW facility  

 

 
Figure 4.7 Injection module of the variable 

gas injection 
 

For rotation–symmetric gas injection, all 
orifices per chamber are equally 
distributed over the circumference of the 
pipe. Gas is injected into the pipe through 
the orifices at the wall. This gas injection 
offers the advantage that the two-phase 
flow can smoothly rise up to the 
measurement plane without being 
influenced by the feeder within the pipe in 
other height positions. The supply of the 
liquid phase is done from the bottom of the 
test section by means of an isolating valve 
and a 90° bend. As shown in Figure 4.6, 
for these experiments, the measurement 
plane is always situated at the upper end 
of the test section, where a two level low 
temperature wire-mesh sensor is used.  

M 
 

N 
 

O 
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Table 4.1 Absolute and relative height of injection chambers 

 
Measurement matrix 
In order to simplify the comparison of individual measurements with each other, a 
general test matrix was used for all test series of the vertical test section at 
TOPFLOW facility. Table 4.2 shows the HZDR –Matrix composed of 231 test points. 
Each matrix point characterizes a combination of superficial velocities for the liquid 
and gaseous phase. The range of superficial velocities was divided logarithmically 
and is increased to approximately 4m/s for the liquid phase and to 19m/s for the 
gaseous phase. The measurement points selected for the present test series are 
color highlighted in Table 4.2 and different colours indicate different flow regimes 
such as bubbly flow, churn-turbulent flow and annular flow. They can be grouped in 
four lines at which the superficial velocity of the liquid or gaseous phase remains 
constant, respectively. This selection has the advantage that the flow phenomena 
are only dependent on one variable parameter, which can be evaluated regarding its 
effect on the flow properties. For investigations on the development of the two-phase 
flow over the height of the test section, all levels (A-R) shown in Table 4.1 or Figure 
4.6 were measured for any point of series <149, respectively. For test points ≥149, 
both injection chambers with 1 mm orifices or 4 mm of injections have to be used to 
reach the prescribed gas flow rate.  
 
The results of the current test series cover a broad range of flow regimes such as 
bubbly, churn-turbulent and annular flow. While in the left range of the matrix, the 
bubbly flow prevails at rather low superficial gas velocity Jg, the churn-turbulent flow 
emerges increasingly in the middle and the right range and exclusively at the right 
edge of the matrix annular flow occurs. For the measurement points 094-107 and 
117-119, flow pattern transitions are observed along the bubble height. Thus, the 
flow pattern changes from bubbly flow at L/D=1.1 into churn-turbulent flow at 

injection 
chamber 

position of 
height 

diameter of the 
inlet orifice [mm] 

injection length 
[m] 

L/D 
ratio 

1 A 1 0.221 1.1 
1 B 4 0.278 1.4 
1 C 1 0.335 1.7 
2 D 1 0.494 2.5 
2 E 4 0.551 2.8 
2 F 1 0.608 3.1 
3 G 1 1.438 7.4 
3 H 4 1.495 7.7 
3 I 1 1.552 7.9 
4 J 1 2.481 12.7 
4 K 4 2.538 13.0 
4 L 1 2.595 13.3 
5 M 1 4.417 22.6 
5 N 4 4.474 22.9 
5 O 1 4.531 23.2 
6 P 1 7.688 39.4 
6 Q 4 7.745 39.7 
6 R 1 7.802 39.9 
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L/D=39.9. This is valuable for the validation of new model for bubble coalescence 
and breakup since they are relevant mechanisms responsible for such a transition. 
 
The circled test points are selected in this work, which covers bubbly flow and churn-
turbulent flow as well as the transition range. This is sufficient for the purpose of 
testing the new model for bubble coalescence and breakup.  
 

Table 4.2 General experimental matrix of HZDR for vertical pipe flows 

 
Examples of the results 
The evolution of some characteristic parameters of the upward air-water flow along 
the pipe height is shown below in Figure 4.8 ~ Figure 4.11. It includes the evolution 
of gas volume fraction, gas velocity and bubble size distribution from L/D=1.1 to 39.9, 
gas volume fraction decomposed according to the bubble size, and the evolution of 
the average bubble size and Sauter mean bubble diameter of different test points in 
the axial direction. As the gaseous bubbles migrate from the pipe wall (r=100 mm) to 
the pipe center (r=0 mm). The radial profile of gas volume fraction and gas velocity 
changes stably from a wall-peak to a core-peak (see Figure 4.8). However, for all 
test points bubbles smaller than 6 mm keep still a wall-peak due to the effect of lift 
force (see Figure 4.9). For the example of test point 118, the evolution of bubble size 
distribution from L/D=1.1 to 39.9 is typically bi-directional. The bubble size range at 
L/D=1.1 is between 0 ~ 60 mm, however, both large and small bubbles are 
generated by coalescence and breakup as the gas-liquid mixture flows along the 
pipe (see Figure 4.8). As shown in Figure 4.10, the evolution of the average bubble 
size along the pipe exhibits a consistent dependence on the superficial gas velocity. 
It can be seen that for test points 008 ~ 063, the average bubble size increases 
almost linearly in the axial direction but the increasing rate decreases as the 
superficial gas velocity increases. From test point 074 on, the evolution of average 
bubble size is characterized by a breakup trend along the whole pipe height except 
for a small increase at the beginning. However, as the superficial gas velocity 
increases further, e.g. test points 118 ~ 140, the breakup trend is again overtaken by 
the coalescence one at the upper half of the pipe due to the effect wake-entrainment. 
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The tendency of the Sauter mean diameter evolving along the pipe is similar to that 
of the average size except that it is smaller especially for those test points with high 
superficial gas velocities. This difference is mainly caused by the definitions of the 
average bubble size d  and the Sauter mean diameter dSM (see the nomenclature). 
 

   
Figure 4.8 Gas volume fraction, gas velocity and bubble size distribution (TP118) 

 

   
Figure 4.9 Radial profile for gas volume fraction in different size range (Level R) 

 

   
Figure 4.10 Average bubble size of different test points in the axial direction  

 

   
Figure 4.11 Sauter mean diameter of different test points in the axial direction 

 

TP118 TP096 TP074 
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5 Validation of the new model in frame of Test Solver 
The new model proposed for bubble coalescence and breakup is extensively tested 
in the Test Solver, which is at first extended and verified using the CFD code ANSYS 
CFX. 

5.1 Extensions of the Test Solver 
The original version of the Test Solver proposed by Lucas [2] is extended regarding 
the calculation of turbulence parameters, cross-sectional averaged gas volume 
fraction and gas velocity.  

5.1.1 Turbulence modeling 
Turbulence modeling is one of the important parts in the Test Solver, which provides 
input parameters for the calculation of bubble coalescence and breakup rates as well 
as the turbulence dispersion force. In order to investigate the influence of turbulence 
modeling on the performance of models for bubble coalescence and breakup, it is 
extended from a one-equation model to a two-equation model including additional 
BIT source terms. The two-equation k-ε model is given by Eq. 4-21 and Eq. 4-22 and 
the BIT source terms described in Eq. 4-27 ~ Eq. 4-34. 
 
In the original version of Test Solver, only one transport equation is solved for the 
turbulent kinetic energy k. By neglecting the effect of molecular viscosity μ l of the 
liquid phase and the BIT source production, Eq. 4-21 becomes: 
 

( ) ( ) ( )µα ρ α ρ α α ρ ε
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                 Eq. 5-1 

 
Under steady-state conditions, by considering only the radial dependence of all 
properties, Eq. 5-1 can be further simplified as: 
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             Eq. 5-2 

 
where the shear-induced μt and the BIT viscosity μb calculated according to the 
correlations proposed by Sato [8] 
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                             Eq. 5-4 

 
where, y+, R+ are the dimensionless pipe radius and distance from the wall, and 
A+=16, k=0.4. Note that Eq. 5-4 is an extension of the original model in Eq. 4-19 to 
consider the case having multi bubble size classes. 
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Finally, the turbulence dissipation rate ε is calculated inversely from the well-known 
relation in the two-equation turbulence model: 
 

µµ ρ
ε

=
2

't l
kC                                                         Eq. 5-5 

 
The plots in Figure 5.1 show the predictions of the turbulent kinetic energy, 
turbulence dissipation rate, eddy kinematic viscosity as well as liquid velocity profile 
obtained by using the one- and two-equation model, respecitvely. The results show 
that the viscosity given by Eq. 5-3 and Eq. 5-4 is in general too low at the pipe center, 
which is unreasonable and will cause flow instability due to the imbalance between 
the lift force and turbulence dispersion force (see test point 074, i.e. the plots in the 
third column of Figure 5.1). Furthermore, according to Eq. 5-1 the additional viscosity 
term is insufficient to consider the BIT energy production at the pipe center while 
overestimate the BIT in the high shear rate region, e.g. near the wall. Therefore, the 
two-equation model is adopted in this work. The BIT source model proposed by 
Politano [158] is used here in order to compare the performance of the two-equation 
model with that of the one-equation model. The influence of BIT source models is 
discussed in detail in the section §5.4.12. 
 
It can be seen in Figure 5.1 that the two-equation model with additional source terms 
has achieved considerational improvement in contrast to the one-equation model. At 
low gas volume fractions, e.g. test point 019, the effect of turbulence damping can 
only be reproduced by the k-ε two-equation model. In this case, a lot of small 
bubbles are accumulated near the pipe wall and thus smoothes the liquid velocity 
profile. Therefore, the shear production of turbulent kinetic energy Pk decreases, and 
at the same time BIT source φk is negligible for this case. As a result, gas bubbles 
have an effect of suppressing the liquid turbulence. On the other hand, as superficial 
gas velocity increases, large bubbles formed near the gas injection at the pipe wall 
will increase the liquid velocity there so much that the velocity gradient changes from 
negative to positive. Afterwards, bubbles migrate rapidly to the pipe center and the 
velocity gradient changes again from positive via zero to negative. As a result, both 
shear-induced and BIT turbulence increase due to large bubble size and large liquid 
velocity gradients. 
 
Genearlly, in comparison to the two-equation model, the one-equation model 
predicts too large a value for the turbulence parameters in the wall region while too 
small a kinetic energy and eddy viscosity at the pipe centre. A smaller eddy viscosity 
means that the turbulent dispersion force is too low. When large bubbles (d>5.8 mm) 
move towards the pipe centre under the effect of lift force, the turbulent dispersion 
force may be not large enough to disperse the bubbles away from the pipe centre. 
Since the lift force is proportional to the liquid velocity gradient, a positive feedback 
between the liquid velocity gradient, radial gas volume fraction profile and lift force 
will occur as it drives large bubbles to the pipe centre. In the one-equation model, the 
viscosity predicted by Eq. 5-3 and Eq. 5-4 is too low at the pipe center. Therefore, 
the positive feedback phenomenon is more serious than the case of two-equation 
model. As a result, the calculation will diverge due to the unreasonable accumulation 
of large bubbles at the pipe centre, e.g. test point 074 in Figure 5.1. On the other 
hand, as observed in the experiment, according to the two-equation model the 
increase of the liquid velocity at Level A caused by bubble injection will reduce liquid 
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velocity gradient or change it to be positive. This will keep the large bubbles near the 
wall and retard the migration of the whole gaseous phase to the pipe center (see the 
first and second columns in Figure 5.1). 
 

TP019 TP052 TP074 

   

   

   

   

Figure 5.1 Performance of one-equation model and two-equation model with BIT 
source term (Level R) 

 
Furthermore, the instability effect of the transverse lift force on the radial gas volume 
fraction profile of test point 074 is illustrated in Figure 5.2. Calculations are done 
respectively with and without lift force by the one-equation model. It can be seen that 
in the case without lift force the gaseous phase redistributes stably over the cross 
section of the pipe under the smoothing effect of turbulent dispersion force. As a 
result, a smooth profile of gas volume fraction is obtained at Level R and the 
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unreasonable accumulation of bubbles does not appear at the pipe centre, which is 
consistent with the experimental observation. In other words, if the one-equation 
model is used for the calculation of turbulence parameters, lift force calculated by 
Tomiyama model [151] is too large to deliver a reasonable gas volume fraction 
profile for this test point. 

 
Figure 5.2 Instability effect of radial gas volume fraction profile caused by lift force 

(TP074, Level R) 

5.1.2 Cross-sectional averaged gas void fraction  
As mentioned in the previous chapter, in order to maintain the simplicity of the Test 
Solver, it does not resolve the variables over the height of the pipe. Instead, a 
vertical gas rise velocity that is equal for all bubble size classes and radial positions 
is assumed.  
 
In the old version of the Test Solver, the cross-sectional averaged void fraction at a 
certain height position is determined solely by considering the pressure expansion 
along the pipe. For example, the two-phase mixture flows along the pipe from the 
height position 1 to position 2, the new total void fraction at position 2 is calculated 
from: 
 

α α= 1
,2 ,1

2
g g

p
p

                                                    Eq. 5-6 

 
where p1,  p2 is the absolute pressure at position 1 and 2, respectively. 
 
In order to take into account the influence of relative motion between the gaseous 
and liquid phase, in this work the drift velocity correlation is used for the calculation 
of total void fraction along the pipe: 
 

α =
+ +

g
g

g l D

J
J J u

                                              Eq. 5-7 
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where Jg and Jl are the cross-sectional averaged gas and liquid superficial velocities, 
respectively. 
 
The cross-sectional averaged drift velocity uD is calculated according to: 
 

( )= − = − +0 1D g GIu u J C J u                                       Eq. 5-8 
 
where C0 and GIu  is distribution parameter and void-fraction-weighted mean drift 
velocity, respectively: 
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                                 Eq. 5-9 
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                     Eq. 5-10 

 
where the radial gas volume fraction αg(r) and volume fraction of each size group 
αg(r, di) can be obtained from the solution of mass conservative equation for each 
bubble size class. 
 
In addition, for the calculation of C0 and GIu , the superficial velocity of the two-phase 
mixture, j(r), and the local drift velocity of the bubble class i, uD,local(di, r), have to be 
determined: 
 

( ) ( ) ( ) ( ) ( )α α = − + 1l g g gj r u r r u r r                                    Eq. 5-11 

 
( ) ( ) ( )α = − ⋅ ⋅ , , 1D local i g ri swarmu d r r u f r                                  Eq. 5-12 

 
where the swarm factor fswarm(r) is set to 1.0 in this work. The calculation of radial 
gas and liquid velocity profiles ul(r) and ug(r) is given in next section. 
 
The evolution of total void fraction along the pipe height predicted respectively by the 
old and new methods is illustrated in Figure 5.3.  

 
From the experimental data, one can see that in the case of small superficial gas 
velocities, for example, test points 019, 042, 063, higher gas fraction values are 
observed for low pipe heights compared to the linear trend due to decreasing 
pressure. On the other hand, in the case of large gas fractions, for example, matrix 
points 096, 107, 129, smaller gas fractions are observed at low pipe heights. This 
phenomenon of the increase or decrease in gas fractions results from the effect of 
wall injection of bubbles on the liquid velocity profile. 
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Figure 5.3 Improvement of the prediction of total gas void fraction by the extended 

model (black line: measurement; blue line: old method; red line: new method) 
 
For the case of small superficial gas velocity or large superficial liquid velocity, small 
bubbles injected from the pipe wall will smooth the liquid velocity profile, which 
results in a decrease of the profile parameter C0 and the average drift velocity uD. As 
the gas-liquid mixture flows along the pipe, the influence of the gas injection 
disappears quickly and the liquid velocity gradient increases again. That means that 
the profile parameter C0 and drift velocity uD will be higher than that at the injection 
position. Therefore, the predicted gas void fraction according to Eq. 5-7 will be higher 
near the injection position. On the other hand, as the superficial gas velocity 
increases, the large bubbles injected from the wall will obviously accelerate the liquid 
phase near the injection. As a result, the liquid velocity gradient is very large but 
positive at the injection position, which results in a large profile parameter C0 and 
drift velocity uD according to Eq. 5-9. Therefore, the total void fraction is low at the 
injection position and then increases as bubbles migrate away from the injection 
position. As the two-phase mixture flows along the pipe, the liquid velocity profile 
changes from a wall-peak to a core-peak, and as a result the profile parameter C0 
decreases. 

5.1.3 Cross-sectional averaged gas velocity 
In the Test Solver, the average gas rise velocity is originally calculated by adding the 
mean liquid velocity lu  with a average relative velocity relu : 
 

= +g l relu u u                                                   Eq. 5-13 
 
where lu  and relu  is given by, 

α
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l
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Ju                                                      Eq. 5-14 
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where αg is the cross-sectional averaged void fraction. 
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                             Eq. 5-15 

 
In this work, the radial gas velocity ug(r) is first calculated from the radial liquid 
velocity ul(r) and the relative velocity urel(r), given by: 
 

( ) ( ) ( )= +g l relu r u r u r                                           Eq. 5-16 
 

where the radial profile of liquid velocity is calculated according to Eq. 4-35, Eq. 4-36 
and Eq. 4-43. 
 
The relative velocity urel between the gas and liquid phase in Eq. 5-16 is calculated 
by averaging the bubble terminal rise velocity of all size classes if the gas volume 
fraction at the given radial position r is not zero: 
 

( ) ( )
( ) ( )α

α
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                         Eq. 5-17 

 
Finally, the average velocity of the gaseous phase in the axial direction is calculated 
as: 
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                              Eq. 5-18 

 
The cross-sectional averaged gas rise velocities for different test points calculated 
respectively by the old and the new method is depicted in Figure 5.4. According to 
the original method, the average gas velocity is calculated from the mean liquid 
velocity and the average relative velocity (see Eq. 5-7). This approach is not able to 
reflect the developing process of the gaseous phase from the injection position at the 
wall to the whole cross section of the pipe, since both the mean liquid velocity and 
the average relative velocity have no dependence on the radial position. Therefore, 
the predicted average gas rise velocity is almost constant over the whole pipe height. 
On the other hand, the new method calculates the gas rise velocity from the radial 
liquid velocity profile and the radial relative velocity profile. The increase of average 
gas rise velocity during the distribution process of the gaseous phase to the whole 
cross section can be captured well and it delivers a satisfactory agreement with the 
measurements. Since the average gas velocity determines the corresponding height 
position at a given time step, it is an important parameter for the prediction of the 
evolution of flow pattern along the pipe caused by bubble coalescence and breakup. 
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Figure 5.4 Improvement of the prediction for average gas rise velocity by the 

extended model (black line: experiment; blue line: old method; red line: new method) 
 
From Figure 5.1 to Figure 5.4, one can see that the influence of gas injection on the 
gas and liquid velocity profile, cross-sectional averaged void fraction and gas rise 
velocity at low height positions can be well predicted by the extended Test Solver. 
The agreement with experimental data is considerably improved with comparison to 
the old version. Therefore, in this work, the extended Test Solver is used for the test 
of the new model for bubble coalescence and breakup. 

5.2 Parameter study by using CFD results 
Turbulence parameters and liquid velocity predicted by the Test Solver are 
compared with those by the CFD code CFX for two kinds of upward vertical pipe 
flows: single-phase (water) and two-phase (air-water). Note that for the two-phase 
case no models for bubble coalescence and breakup are included. 

5.2.1 Single-phase flow 
As shown below in Figure 5.5, for the case of single-phase flow, constant inlet 
conditions are given at Level A for turbulent kinetic energy, dissipation rate and liquid 
velocity, respecitvely.  
 

   
Figure 5.5 Inlet conditions for parameter study of single-phase flow 
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Predictions about the evolution of the flow along the pipe delivered by the Test 
Solver and by CFX are compared with each other. Turbulent kinetic energy, 
dissipation rate, eddy viscosity as well as velocity profile at different height levels are 
shown in Figure 5.6 ~ Figure 5.9, respectively. 

  

  
Figure 5.6 Turbulent kinetic energy predicted by Test Solver and CFX 

 

  

  
Figure 5.7 Dissipation rate predicted by Test Solver and CFX 
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Figure 5.8 Eddy kinematic viscosity predicted by Test Solver and CFX 

 

  

  
Figure 5.9 Velocity profile predicted by Test Solver and CFX 

 
From the comparison between the predictions provided by the two solvers, 
considerable difference is to be observed during the development of the flow 
especially near the gas inlet. However, the agreement gets better as the flow 
becomes fully developed, e.g. at Level R, where the results achieved in the Test 
Solver are comparable to those in CFX. According to CFX, under constant inlet 
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conditions given at Level A, the velocity gradient develops first near the wall and as a 
result shear-induced turbulence is produced there. Then the development of both the 
velocity gradient and the turbulence propagates slowly to the pipe center. On the 
other hand, the flow develops almost immediately into a fully developed profile after 
the gas inlet according to the Test Solver although the given inlet profiles are 
constant. That means that the inlet conditions at Level A have marginal influence on 
the development of the flow downstream, which is quite questionable. The 
discrepancy might be caused by the inherent characteristics of the Test Solver such 
as no transport equations solved in the axial direction. Instead, the vertical liquid 
velocity is calculated by using the Sato [8] model in Eq. 4-35 and Eq. 4-36, which 
was originally developed for fully-developed flows. As a result, the developing 
process of liquid velocity profile and turbulence parameters from a constant profile to 
a fully-developed one can hardly be captured by the Test Solver. 

5.2.2 Two-phase flow 
For the parameter study of two-phase flow, the test point 118 is chosen as an 
example. The same inlet conditions are given at Level A for the Test Solver and CFX 
calculations. Inlet liquid turbulence parameters are determined by assuming a fully-
developed single-phase flow with equal liquid volumetric flow rate, which is provided 
by CFX calculations. Inlet conditions for gas volume fraction and gas velocity profile 
are taken from measurement data. The liquid velocity is derived from the gas velocity 
by assuming a constant difference (see Figure 5.10), which has to conform the given 
liquid volumetric flow rate. 
 

  

  
Figure 5.10 Inlet conditions for parameter study of two-phase flow 

 
In order to test the performance of the k-ε turbulence model in Test Solver, models 
for bubble coalescence and breakup as well as additional BIT source terms are 
excluded here. Comparison between the results obtained in the two solvers for 
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turbulent kinetic energy, dissipation rate, eddy kinematic viscosity as well as liquid 
eddy velocity are shown below in Figure 5.11 ~ Figure 5.14. 
 

  

  
Figure 5.11 Turbulent kinetic energy predicted by Test Solver and CFX 

 

  

  
Figure 5.12 Dissipation rate predicted by Test Solver and CFX 
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Figure 5.13 Eddy kinematic viscosity predicted by Test Solver and CFX 

 

  

  
Figure 5.14 Liquid velocity profile predicted by Test Solver and CFX 

 
In contrast to the case of single-phase flow, the agreement between the results of 
the Test Solver and those of CFX seems much better in this case. This is because 
with the developed inlet profiles the propagation process of the flow predicted by 
CFX is much faster than that in the last case with constant inlet conditions. However, 
the development of the flow is still too fast according to the Test Solver. In other 
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words, the change of turbulence parameters and liquid velocity profiles from Level F 
to Level R is negligible, which indicates again that the influence of inlet conditions on 
the development of flow structure cannot be captured correctly in the Test Solver. 
According to the Test Solver the liquid velocity profiles change suddenly from a wall-
peak profile given at Level A to a core-peak profile at Level F, which is much faster 
than that in the CFX predictions (see Figure 5.14). As a result, the evolution of 
shear-induced turbulence predicted by the Test Solver is faster than that by CFX. 
Furthermore, a wall-peak liquid velocity profile will produce a positive lift force for 
large bubbles and help to suppress their migration towards the pipe center. In other 
words, the redistribution of gaseous phase from the injection position at the pipe wall 
to the center will be overestimated by the Test Solver. In addition, turbulence 
parameters calculated by the Test Solver are in general larger than those by CFX, 
which can also accelerate the redistribution process of the gaseous phase due to 
large turbulent dispersion force. 

 
Finally, from Figure 5.11 to Figure 5.13 one can see that the turbulent parameters 
predicted by CFX decrease suddenly at Level L in comparison with those at Level I. 
This is caused by the transition of the liquid velocity profile from a wall-peak to a 
core-peak. During the transition, the velocity gradient changes from positive via zero 
to negative and at Level L the absolute velocity gradient reaches its minimum, see 
Figure 5.14. Since at low absolute velocity gradient the shear-induced turbulence is 
also low, the turbulence parameters are correspondingly minimal at Level L. 
However, in the Test Solver calculations, this effect cannot be observed since before 
it reaches Level F, the liquid velocity profile already has a core-peak. 

5.3 Implementation and test of available models 
As shown in Chapter 2, there are a large number of models and theories available in 
the literature. Nevertheless, since all of them were adjusted under certain conditions 
in the original work, they should be verified for the applied case such as vertical pipe 
flow before their application. Many comparative studies have been done for poly-
dispersed gas-liquid flows with various coalescence and breakup models [38] [173] 
[174]. However, most of the study cases focus on bubble columns [38] [173]  or two-
phase jets [174]. 
 
In this work, three couples of the most popular models developed by different 
researchers are implemented in the Test Solver. They are models of Lehr et al. [31], 
Luo and Svendsen [95] [175] and Prince and Blanch [36]. These models are chosen 
with the consideration that these authors proposed both coalescence and breakup 
models simultaneously.  
 
Note that in all the calculations run in this work, measurements of the gas volume 
fraction and the bubble size distribution at Level A are used as inlet conditions. As 
the air-water mixture flows along the pipe, predicted results such as the bubble size 
distribution and the gas volume fraction at different height levels are compared with 
measurements. 

5.3.1 Test cases 
A comparative study of available models is performed for the case of upward vertical 
pipe flow. Cross-sectional averaged bubble size distributions as a function of the 
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axial location are examined for four test points with different combinations of gas and 
liquid superficial velocities. Breakup and coalescence rates estimated by various 
models can only be compared with each other qualitatively, since it is impossible to 
separate the coalescence and breakup processes. Nine different combinations of 
bubble breakup and coalescence models listed in Table 5.1 are examined in this 
study. 
 

Table 5.1 A list of cases 

Cases Coalescence model Breakup model 
1 Lehr et al. [31] Lehr et al. [31] 
2 Lehr et al. [31] Luo and Svendsen [175] 
3 Lehr et al. [31] Prince and Blanch [36] 
4 Luo and Svendsen  [95] Lehr et al. [31] 
5 Luo and Svendsen  [95] Luo and Svendsen [175] 
6 Luo and Svendsen  [95] Prince and Blanch [36] 
7 Prince and Blanch  [36] Lehr et al. [31] 
8 Prince and Blanch  [36] Luo and Svendsen [175] 
9 Prince and Blanch  [36] Prince and Blanch [36] 

5.3.2 Results 
At low gas volume fractions, e.g. test point 041, the inlet bubble size at Level A is 
smaller than 10 mm. Bubbles are sparsely dispersed and both coalescence and 
breakup is weak. The change in bubble size distribution is nearly negligible. With the 
increase of superficial gas velocity, the inlet bubble size becomes large. The 
evolution of bubble size from Level A to Level R is breakup dominant, e.g. for test 
point 085, the average bubble diameter decreases from about 16 mm to 8 mm. The 
last case of test point 107 with Jl=1.017 m/s and Jg=0.219 m/s is an example of flow 
regime transition. The characteristic of the evolution of bubble size distribution is that 
besides the growth of the peak of small bubbles, remarkable formation of large 
bubbles (d>40 mm) is observed at the upper pipe section. 
 
As shown in Figure 5.15 and Figure 5.16 for test point 041, the coalescence model 
of Lehr et al. [31] with their own breakup model or with that of Luo and Svendsen 
[175] provides the best agreement with experimental data for the evolution of bubble 
size distribution and mean bubble diameter (cases 1, 2). On the other hand, the 
Prince’s [36] breakup model delivers an overestimation of the volume fraction for 
small bubbles (case 3). Furthermore, Prince’s [36] and Luo’s [95] coalescence 
models overestimate the coalescence rate in contrast to the breakup rate calculated 
by the model of Lehr [31] and of Luo [175] (see cases 4, 5, 7, 8). With the 
combination of the powerful coalescence and breakup models (cases 6, 9), the 
number densities of both small and large bubbles are overestimated. The average 
bubble diameter goes first steeply down and then increases continuously due to the 
generation of large bubbles, see Figure 5.16. 
 
In Figure 5.16 the predictions of average bubble size are ordered by coalescence 
model or by breakup model, respectively, e.g. cases 1, 2 and 3 having an identical 
coalescence model. The comparison between the cases 1, 2, 3 shows that the 
average bubble size predicted by the Prince’s [36] breakup model is much smaller 
than that by the other two models, and the breakup model of Luo [175] is slightly 
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stronger than that of Lehr et al. [31]. However, if the Lehr’s [31] coalescence model 
is replaced by that of Luo [95] (cases 4, 5, 6) or of Prince [36] (cases 7, 8, 9), the 
breakup rate predicted by Lehr’s [31] model exceeds that by Luo’s [95] model, but 
both of them underpredict the breakup rate. In these cases, the breakup model of 
Prince [36] delivers a better agreement with the experimental data. On the other 
hand, coalescence rate predicted by Prince’s [36] model is generally larger than that 
by the other two models, see cases 1, 4, 7 and 2, 5, 8. However, if the model of 
Prince and Blanch [36] is used for the determination of breakup rate, coalescence 
rate predicted by Luo’s [95] model overtakes that by Prince’s [36] model (see cases 
3, 6, 9). That means that as bubble size decreases coalescence efficiency predicted 
by Prince’s [36] model decreases faster than that by Luo’s [95] model. In addition, 
the average bubble size decreases steeply near the inlet of the flow if the breakup of 
Prince [36] is adopted. 
 

   

   

   
Figure 5.15 Prediction about bubble size distribution at Level R (TP041) 

 

Case 1 Case 2 Case 3 

Case 4 Case 5 Case 6 

Case 7 Case 8 Case 9 
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In conclusion, from Figure 5.15 and Figure 5.16 one can see that in general: 
 

Breakup rate: Prince’s [36] model>Lehr’s [31] model>Luo’s [175] model 
Coalescence rate: Prince’s [36] model>Luo’s [95] model>Lehr’s [31] model 

 
Coalescence models 

   

 Breakup models  

   
Figure 5.16 Prediction of the evolution of average bubble size in the axial direction 

(TP041), ordered by either coalescence model or by breakup model 
 
For test point 063, predictions about the evolution of bubble size distribution and 
average bubble diameter with different combinations of models are shown in Figure 
5.17 and Figure 5.18, respectively. The information that one can obtain from the 
results about the performance of different models is similar to the previous case 
except that the predicted bubble size is larger in all cases due to the higher 
superficial gas velocity.  
 
As shown in Figure 5.17, the agreements achieved by cases 1 and 2 are still the 
best one. At the same time, the performance of cases 6 and 9 is improved in 
comparison to the example of test point 041. Furthermore, the breakup model of 
Prince and Blanch [36] is too strong in contrast to the Lehr’s [31] coalescence model, 
while the coalescence rates given by the model of Prince [36] and of Luo [95] are too 
large, if the breakup model of Lehr [31] and of Luo [175] are used (see cases 4, 5, 7, 
8). 
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Figure 5.17 Prediction of bubble size distribution at Level R (TP063) 

 
From Figure 5.18 one can see that unlike the monotonous increasing tendency of 
bubble size along the pipe in test point 041, in some cases such as 4, 6, 7 and 9 the 
average bubble size decreases slowly at the upper section of the pipe. It implies that 
the coalescence efficiency predicted by the model of Lehr [31] and of Prince [36] 
decreases as the bubble size increases while the coalescence model of Luo and 
Svendsen [95] has no such an effect.  
 
 
 
 
 
 
 
 
 

Case 1 Case 2 Case 3 

Case 5 Case 4 Case 6 

Case 7 Case 8 Case 9 
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 Coalescence models  

   
 Breakup models  

   
Figure 5.18 Prediction of the evolution of average bubble size in the axial direction 

(TP063), ordered by either coalescence model or by breakup model 
 
The evolution of bubble size distribution and average bubble diameter predicted by 
all combinations of models is depicted in Figure 5.19 and Figure 5.20 for test point 
085, respectively. For this test point, bubbles at the inlet level are of medium size 
and bubble breakup plays a more important role than the last two cases. The 
agreements between bubble size distributions predicted by cases 3, 6, 9 and 
experimental data are most satisfying, where the breakup model of Prince and 
Blanch [36] is used. That means that the breakup rate predicted by Prince’s [36] 
model gives a minimum deviation while that by the other two models is too small. 
Although the Prince’s [36] model gives an overestimation for the breakup rate at the 
beginning of the flow, it seems that it is the best option for this combination of gas 
and superficial liquid velocity. If the Prince’s [36] model is chosen to calculate the 
breakup rate, the influence of various coalescence models is trivial such as for cases 
3, 6, 9. In contrast, the other two models give too small a breakup rate. As a result, 
the bubble size is overestimated for all cases with different coalescence models, 
especially for the case 8, since the coalescence rate given by Prince’s [36] model is 
the largest.  
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Figure 5.19 Prediction of bubble size distribution at Level R (TP085) 

 
Predictions about the evolution of average bubble size provided by different 
combinations of coalescence and breakup models are illustrated in Figure 5.20. The 
decreasing trend of the average bubble size along the pipe observed in the 
measurement can only be reproduced by the breakup model of Prince and Blanch 
[36] while other two models are too weak to do that. Furthermore, the experimental 
data exhibit a continuous decrease of the average bubble size in the axial direction 
while according to the breakup model of Prince [36] the average bubble size 
decreases steeply only at a short distance away from the inlet and afterwards 
increases stably. At the outlet of the pipe, a good agreement between the simulation 
and experiment is reached. 
 
 
 
 
 

Case 1 Case 2 Case 3 

Case 4 Case 5 Case 6 

Case 7 Case 8 Case 9 
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 Coalescence models  

   
 Breakup models  

   
Figure 5.20 Prediction of the evolution of average bubble size in the axial direction 

(TP085), ordered by either coalescence model or by breakup model. 
 
A comparison of the predicted bubble size distribution and the average bubble size 
with the measurement for test point 107 is shown in Figure 5.21 and Figure 5.22, 
respectively. In this case a transition of flow regime is observed as the bubble size 
distribution evolves along the pipe. That means that the flow changes from a bubbly 
flow at Level A to a churn-turbulent flow at Level R. 
 
As it can be seen in cases 3, 6, 9, the breakup model of Prince and Blanch [36] 
delivers a good agreement for the peak of small bubbles generated by breakup but 
fails to predict the formation of large bubbles by coalescence. As a result, the 
predicted cross-sectional averaged bubble diameter is in general lower than the 
measured one, see Figure 5.22. On the other hand, the altitude of the peak of small 
bubbles is underpredicted and the peak located at a relatively larger bubble size in 
the other two cases using the breakup model of Lehr [31] and of Luo [175]. 
Furthermore, a small peak of very large bubbles can be observed in cases 7 and 8. 
However, this is caused by the overestimation of total coalescence rate and not by 
the effect of wake-entrainment since the mechanism is not included in the 
coalescence model of Prince and Blanch [36]. Therefore, for cases 7 and 8 the 
predicted average bubble diameter is much larger than the measured one, see 
Figure 5.22. 
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Figure 5.21 Prediction of bubble size distribution at Level R (TP107) 

 
The comparison between the predicted average bubble sizes in Figure 5.22 shows 
that the cases 1 and 4 give the best agreement for the evolution along the pipe, 
although they fail to predict a reasonable bubble size distribution. On the other hand, 
the average bubble size delivered by the Prince’s [36] breakup model is obviously 
smaller than the measured one and moreover, the coalescence models have scarce 
influence.  

 
In conclusion, although a number of models for the calculation of bubble 
coalescence and breakup are available in the literature, the application range of 
these models is limited. The test of some typical models in the Test Solver for the 
case of upward vertical pipe flow shows that there are no models, which are able to 
deliver reasonable predictions about the evolution of the bubble size distribution and 
the average bubble size for all test points. Therefore, further effort is required in the 
development of new models for bubble coalescence and breakup. 

 

Case 1 Case 2 

Case 6 

Case 3 

Case 4 Case 5 

Case 7 Case 9 Case 8 
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 Coalescence models  

   
 Breakup models  

   
Figure 5.22 Prediction of the evolution of mean bubble size in the axial direction 

(TP107), ordered by either coalescence model or by breakup model. 

5.4 Implementation and test of the new model  
Predictions delivered by the new model about the evolution of bubble size 
distribution, average bubble size, gas velocity and gas volume fraction are depicted 
below in Figure 5.23 ~ Figure 5.32, respectively. For the calculation of BIT source 
terms the model proposed by Pfleger and Becker [157] is adopted, which was 
introduced in Chapter 4, and constants Ck=1.44 and Cε=1.92. 

5.4.1 Cross-sectional averaged bubble size distribution at Level R  
The comparison between the predicted and measured bubble size distributions at 
Level R for different test points is shown in Figure 5.23 and as reference the inlet 
bubble size distribution at Level A is also depicted. For very low gas volume fractions 
such as test points 041 and 052, the change in bubble size distribution from Level A 
to Level R is determined mainly by coalescence, but it is not noticeable. With the 
increase in superficial gas velocity, bubble breakup begins to play a role. Bubble size 
distribution evolves from Level A to Level R in the direction of small bubble diameter. 
The tendency becomes more obvious as the superficial gas velocity increases 
further such as test points 085 and 096. On the other hand, from test point 107 on, 
bubble size distribution evolves in both directions to small and large bubble 
diameters simultaneously. That means that with an increase in the peak of small 
bubbles, new large bubbles are generated due to coalescence by wake-entrainment, 
whose contribution is more and more important as the superficial gas velocity 
increases. 
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A good agreement is in general achieved for all test points except that the volume 
fraction of small bubbles is slightly overpredicted for breakup-dominant cases such 
as test points 063 and 074, while an overestimation of the generation of large 
bubbles due to wake-entrainment is found at test points 107 ~ 129. 
 

5.4.2 Evolution of bubble size distribution along the pipe 
In order to keep track of the whole evolution process of bubble size distribution along 
the pipe, i.e. from Level A to Level R, the predicted bubble size distribution at 
different height levels are depicted below in Figure 5.24 and Figure 5.25 for test 
points 107 and 129, respectively. 
 
As shown in Figure 5.24, the evolution tendency of bubble size distribution along the 
pipe observed in the experiment is well captured by the Test Solver with the new 
closure model. Bubble size distribution from Level A to Level F evolves in the 
directions of both small and large bubble diameters, i.e. bimodal development. 
However, in the simulation, breakup is too strong while coalescence is 

   

   

   
Figure 5.23 Bubble size distribution at Level R for different test points 

TP107 TP129 

TP074 TP085 TP096 

TP041 TP052 TP063 

TP118 
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underestimated, especially at the beginning of the flow. Due to this imbalance effect, 
the peak of small bubbles increases too fast at the beginning. However, after Level 
O the increase of small bubbles slows down while a simultaneous formation of very 
large bubbles by wake entrainment is observed. 
 

  

  

  
Figure 5.24 Evolution of bubble size distribution along the pipe for TP107 

 
With the increase in the superficial gas velocity, the overestimation of breakup rate at 
the beginning of the flow is obviously alleviated, e.g. test point 129. As shown in 
Figure 5.25, the increase of the peak of small bubbles generated by breakup as well 
as the bimodal development of size distribution is well reproduced by the new model. 
The explanation for the difference between these two test cases is that in the last 
case the coalescence mechanism of wake-entrainment plays a role at the upper part 
of the pipe while in this case it has already a contribution from the beginning due to a 
large inlet bubble size. Nevertheless, the coalescence caused by this mechanism is 
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too strong so that at the upper part of the pipe, the predicted volume fraction of large 
bubbles is too large, while that of small bubbles is too small. As a result, the 
predicted average bubble size at Level R is considerably larger than the measured 
value, see Figure 5.26. The contribution of wake-entrainment can be reduced by 
using a smaller value for coefficient C35 or a larger value for the critical bubble size 
dcrit, see Eq. 3-15. 
 

  

  

  
Figure 5.25 Evolution of bubble size distribution along the pipe for TP129 

5.4.3 Evolution of average bubble size along the pipe 
The comparison between the predicted and the measured cross-sectional averaged 
bubble sizes for several test points is depicted in Figure 5.26. 
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Figure 5.26 Evolution of mean bubble size along the pipe for different test points 

 
As it can be seen, the evolution tendency of the average bubble size in the axial 
direction as well as with the increase in the superficial gas velocity is well reproduced 
by the new model. For test point 008, there is almost no coalescence and breakup of 
bubbles to be observed due to low gas volume fraction. With an increase in the 
superficial gas velocity, the bubble size increases first due to coalescence, see test 
points 030 and 041. However, for these coalescence-dominant cases, the predicted 
mean bubble size is slightly larger than the measured value due to the overprediction 
of coalescence rate. On the other hand, for breakup-dominant cases at higher 
superficial gas velocity, e.g. test points 074 and 096, the predicted average bubble 
size is smaller than the experimental data due to an overestimation of breakup rate. 
As the superficial gas velocity increases further, e.g. test points 107, 118 and 129, 
the increasing trend of average bubble diameter at the upper end of the pipe caused 
by wake-entrainment is overestimated in the simulation.   
 
The comparion between the predicted radial profiles of Sauter mean bubble diameter 
and the corresponding measurements for different height levels, i.e. Level F, I, L, O 
and R, is shown in Figure 5.27. 
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Figure 5.27 Radial profile of Sauter mean bubble diameter for different levels and 

test points 
 
Again for test point 008 there are almost no coalescence and breakup events 
observed. The slight increase of bubble size from Level F to Level R is purely due to 
the pressure expansion, which is slightly underestimated in the simulation. Test point 
030 is one example where coalescence is more important than breakup. However, 
according to the new model, the coalescence rate is too large especially at the 
beginning of the flow, e.g. Level F. In the case of test points 052 and 063, 
coalescence is almost in equilibrium with breakup. The change of the bubble size 
from Level F to Level R is the smallest. Nevertheless, as the superficial gas velocity 
increases further, e.g. test points 074 and 085, breakup becomes more important 
than coalescence. The mean bubble size decreases from Level F to Level R. The 
predicted bubble size is in general smaller than the measured one, especially at 
Level F. In addition, bubbles migrate more rapidly to the pipe center and the 
deviation between the simulation and measurement increases with superficial gas 
velocity.  
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Finally, note that simulated results exhibit a small increase near the pipe wall, which 
might be caused by too strong a wall lubrication force for small bubbles. In this work, 
the correlation of Tomiyama [151] is adopted. 
 
The influence of the Tomiyama [151] and of Antal [153] wall force correlations on the 
predicted Sauter mean diameter and the gas volume fraction of small bubbles is 
illustrated in Figure 5.28. It can be seen that if the Antal [153] correlation is used for 
the calculation of wall force, the Sauter mean bubble diameter agrees well with the 
measured one in the near-wall region, see Figure 5.28 (a). As shown in Figure 5.28 
(b), the Tomiyama [151] model delivers too strong a repelling force for small bubbles 
in the near-wall region so that the volume fraction of small bubbles (d≤6 mm) is too 
low and the mean bubble diameter is then overestimated. Furthermore, the mean 
bubble diameter calculated by using the Antal correlation is in general larger than 
that by the Tomiyama [151] model. This is caused by the fact that more small 
bubbles accumulate long in the near-wall region, which will result in a higher 
coalescence rate. 
 

  
(a) (b) 

Figure 5.28 Influence of wall lubrication force on Sauter mean diameter and gas 
volume fraction of small bubbles (TP085, Level R) 

5.4.4 Radial gas volume fraction profile at Level R 
The predicted and measured radial profiles for gas volume fraction at Level R are 
depicted in Figure 5.29 for several test points. The comparison indicates a good 
agreement with the measurement. However, for wall peak cases with low superficial 
gas velocities such as test points 041 and 052, the predicted peak near the wall is 
generally lower than the measured one. This discrepancy might be caused by too 
large a wall lubrication force for small bubbles given by the Tomiyama [151] 
correlation. On the other hand, for the core-peak cases with large superficial gas 
velocities such as test points 107 and 129, the predicted peak at the pipe center is 
slightly higher than the experimental data, which is caused by the imbalance 
between the lift force and turbulent dispersion force. The influence of bubble forces 
on the radial gas volume fraction profile will be shown in Figure 5.33 ~ Figure 5.35. 
 

d ≤ 6 mm 
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Figure 5.29 Radial gas volume fraction profiles at Level R for different test points 

5.4.5 Evolution of radial gas volume fraction profiles along the pipe   
In order to explain clearly the migration or redistribution process of gaseous bubbles 
from the injection position at the pipe wall to the pipe center, the radial gas volume 
fraction profiles at different height levels are shown in Figure 5.30 and Figure 5.31 
for two test points, respectively.  
 
As shown in Figure 5.30, for the case of test point 085, the predicted gas volume 
fraction at all levels is similar to the measured one except that the migration velocity 
is slightly overestimated.  
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Figure 5.30 Evolution of radial gas volume fraction from Level A to Level R (TP085) 

 
As indicated in Figure 5.31, the problem of the overprediction of bubble migration 
velocity becomes more serious as the superficial gas velocity increases. For the test 
point 118, the profile of the gas volume fraction at Level I is already similar to that at 
Level R. For this discrepancy, there might be three main reasons, i.e. errors in 
bubble forces, inlet conditions for the liquid phase as well as bubble aspect ratios. 
That means that bubble forces acting toward the pipe center such as lift force for 
large bubbles are too large for high superficial gas velocities. Due to the lack of 
experimental data, the inlet liquid velocity is calculated for a given gas volume 
fraction profile by using Sato [8] model given by Eq. 4-35 and Eq. 4-36, which was 
developed originally for fully developed bubbly flows and might give an 
overestimation at the entrance. This is also proved by the parameter study in §5.2. 
Finally, the bubble aspect ratio is calculated according to the Wellek correlation (see 
Eq. 4-12), which is only valid for the ellipsoidal shape. As a result, the horizontal 
extension of spherical-cap or Taylor bubbles will be dramatically overestimated 
according to Eq. 4-12.  
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The rapid redistribution of large gaseous bubbles from the injection position at the 
pipe wall to the whole pipe cross section will result in an overestimation of the bubble 
coalescence, as shown in Figure 5.23 and Figure 5.26. As the bubble size increases 
due to the overestimated coalescence rate, the bubble force or migration velocity will 
increase in turn. That means that there is a positive feedback between the bubble 
size and the gas redistribution velocity.  
 

  

  

  
Figure 5.31 Evolution of radial gas volume fraction from Level A to Level R (TP118) 

5.4.6 Radial gas velocity profile 
The radial profiles for gas velocity at Levels A, F, I are depicted in Figure 5.32 for 
different test points.  
 
It can be seen that the agreement between the calculation and the measurement is 
in general very satisfying. However, for almost all test points the predicted velocity at 
Level A is larger than the measured value, especially for the test points with low 
superficial gas velocitites. This proves further that the liquid velocity calculated by the 
Sato [8] model given in Eq. 4-35 is too large since the relative velocity between the 

Level A Level F 

Level I Level L 

Level O Level R 



Validation of the new model in frame of Test Solver 

136 
 

gas and liquid phase is almost constant. Another discrepancy is that for large 
superficial gas velocities such as test points 118 and 129, the velocity profile 
changes much faster from a wall-peak to a core-peak than in comparison to 
measurements. This is coupled with the overprediction of the redistribution of the gas 
volume fraction from the pipe wall to the pipe center discussed above.  
 

   

   

   
Figure 5.32 Radial profile of gas velocity at Level A, F and I for different test points 

5.4.7 Influence of turbulent dispersion force  
The influence of turbulent dispersion force on the radial gas volume fraction profile is 
shown in Figure 5.33. It can be seen that by reducing the coefficient of turbulent 
dispersion force to a half (CTD=0.5), the migration of bubbles from the pipe wall to 
the center is obviously slowed down, see Level I. However, for such a low turbulent 
dispersion force, the gas volume fraction at the pipe center is too high by comparison 
with the measurement at the upper section of the pipe such as Levels L and O. As 
discussed before, this is caused by the fact that the smoothing effect of turbulent 
dispersion force is too weak to overcome the accumulation effect of lift force. 
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Figure 5.33 Influence of turbulent dispersion force on radial gas migration velocity 

(TP118) 

5.4.8 Influence of lift force  
The influence of lift force on the evolution of gas volume fraction is depicted in Figure 
5.34. 

 

  

  
Figure 5.34 Influence of lift force on radial gas migration velocity velocity (TP118) 
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As it shows if the amplitude of transverse lift force decreases to one half (CL=0.5), 
the velocity of bubbles migrating from pipe wall to the pipe center will increase 
dramatically at the beginning, e.g. at Level F. This is because for this case due to the 
effect of gas injection, the velocity gradient is positive at the beginning (see Figure 
5.32). That means that large bubbles (d>5.8 mm) will migrate towards the pipe wall, 
while small bubbles (d<5.8 mm) move to the pipe center according to the lift force 
correlation of Tomiyama [151]. On the other hand, for the case of TP118, the 
injected average bubble size is much larger than 5.8 mm (ca. 30 mm). That means 
that under the effect of lift force most of the bubbles will accumulate in the near wall 
region. Therefore, under positive velocity gradients reducing the lift force will 
increase the migration velocity of the gaseous phase to the pipe center. However, 
after Level I the liquid velocity gradient changes again to negative, which means 
under the effect of lift force large bubbles will migrate to the center while small 
bubbles to the wall. In this case, a smaller lift force coefficient will suppress the 
accumulation of large bubbles at the pipe center.  

5.4.9 Influence of wall lubrication force  
Beside the turbulent dispersion force and lift force, the wall lubrication force is also 
included in the radial momentum equation for the gaseous phase.  
 

  

  
Figure 5.35 Influence of wall lubrication force on radial gas migration velocity 

(TP118) 
 
From Figure 5.35 one can see that the influence of wall lubrication force on the radial 
gas velocity is noticeable although it in principle should be only active in the thin 
layer adjacent to the wall [153]. In other words, the wall lubrication force computed 
according to the correlation of Tomiyama [151] given in Eq. 4-15 and Eq. 4-16 has a 
considerable influence on the gas volume fraction at the pipe center. It is clear that 
the migration of bubbles to the pipe center is decelerated over the whole pipe height 
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by reducing the wall lubrication force since it acts always towards the pipe center. As 
a result, the gas volume fraction at the pipe center decreases for a low wall 
lubrication force coefficient which is similar to the effect of lift force. In addition, the 
coefficient calculated according to Eq. 4-16 is dependent on the Eotvos number or 
bubble diameter, which is too large for small bubbles as indicated in Figure 5.28. 

5.4.10 Contribution of each coalescence and breakup mechanism  
As introduced in Chapter 3, the new model for bubble coalescence and breakup 
includes different mechanisms. The breakup mechanisms compass turbulence, 
eddy-shear, laminar-shear and interfacial stresses. The contribution of each breakup 
mechanism to the evolution of bubble size distribution is depicted Figure 5.36. The 
red plus sign is the measured bubble size distribution at Level A. The black solid line 
is the bubble size distribution at Level R predicted by the model only including 
turbulence-induced breakup. Similarly, the other three lines represent the prediction 
of bubble size distribution at Level R with only one breakup mechanism of eddy-
shear, laminar-shear and interfacial stresses, respectively.  
 

  

  
Figure 5.36 Contribution of each breakup mechanism for different test points 

(coalescence not included) 
 
It can be seen that for test cases with low superficial gas velocity, e.g. test points 008 
and 041, no breakup events are observed as the bubble size distribution evolves 
from Level A to Level R, since the bubble size distribution at Level R predicted by 
different mechanisms is almost the same. The increase of bubble size is caused 
purely by pressure expansion. From test point 074 on, breakup begins to play a role 
in the evolution of bubble size distribution. The mechanism of interfacial stresses is 
the most important mechanism and followed by the turbulence-induced breakup 
while the other two mechanisms, i.e. eddy-shear and laminar shear stress, have no 
effect due to the low viscosity of water. Therefore, the mechanism of interfacial 
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stresses might be responsible for the overestimation of breakup rate for the breakup-
dominant cases such as test point 074, see Figure 5.23. On the other hand, as the 
superficial gas velocity increases the turbulence-induced breakup of bubbles 
becomes more important, since the dissipation rate increases with the increase in 
the superficial gas velocity. For the case of test point 107, the two breakup 
mechanisms have an almost equivalent contribution. 
 
Similarly, the coalescence mechanisms of turbulence, eddy-capture, laminar shear 
rate, interfacial slip and wake-entrainment are taken into account in the new model. 
The bubble size distribution at Level R predicted by including only one of the 
mechanisms and the measurement at Level A is shown in Figure 5.37. For test point 
008, all mechanisms have no effect on the bubble size distribution at Level R, which 
means no coalescence is observed in this case. However, from test point 041 on, the 
turbulence-induced coalescence begins to occur, which is responsible for the 
overestimation of coalescence rate in these cases. For test point 074, three 
mechanisms except the eddy-capture have an influence on the bubble size 
distribution at Level R, especially the mechanism of wake-entrainment. Furthermore, 
with the increase of superficial gas velocity, the contribution of wake-entrainment 
becomes more remarkable, which is the most important mechanism for the cases 
with high superficial gas velocity such as test point 107. 
 

  

  
Figure 5.37 Contribution of each coalescence mechanism for different test points 

(breakup not included) 

5.4.11 Contribution of the mechanism of wake-entrainment  
The influence of the coefficient C35 in Eq. 3-15 on the evolution of average bubble 
size in the axial direction of the pipe is depicted in Figure 5.38. Three different values 
are used for the coefficient C35, which affects the coalescence rate caused by wake-
entrainment. As it can be seen for the simulations at test point 074, predictions about 
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the average bubble size with the coefficient of 0.3, 0.1 and 0.05 are all smaller than 
the measurement. This indicates that the breakup rate caused by interfacial stresses 
(see Figure 5.36) is too large or that the contribution of other coalescence 
mechanisms is underpredicted. On the other hand, for test points with higher gas 
volume fractions, e.g. 107, 118 and 129, the value of C35 has a considerable 
influence on the evolution of average bubble size. In other words, wake-entrainment 
is the most important coalescence mechanism for these test points. The coefficient 
of 0.1 used for C35 delivers the best agreement with the experiment for the three 
cases.  
 

  

  
Figure 5.38 Influence of the coefficient for coalescence caused by wake-entrainment 

on the evolution of average bubble diameter in axial direction 

5.4.12 Influence of two-phase turbulence modeling 
Turbulence is one of the most important mechanisms that lead to bubble 
coalescence and breakup in a turbulent gas-liquid flow. Turbulence parameters such 
as turbulence dissipation rate are important input parameters for bubble coalescence 
and breakup models. Therefore, it is necessary to study the influence of different 
two-phase turbulence modeling methods. 
 
As discussed in §4.2, turbulence modulation induced by bubbles has to be 
considered in the turbulence modeling of bubbly flows. It may be taken into account 
by adding additional viscosity term or source terms to the k and ε/ω transport 
equations. Various models for BIT source terms are implemented in the Test Solver 
and calculations are done for several test points with different superficial gas 
velocities. Since BIT turbulence is directly dependent on bubble size, for the first step 
models for bubble coalescence and breakup are not included to exclude the 
influence of bubble size. Some examples of the predicted turbulence parameters 
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such as turbulent kinetic energy, eddy dissipation rate and eddy viscosity as well as 
liquid velocity profile are shown below in Figure 5.43 ~ Figure 5.46. 
 
Time scale calculated by different BIT models  
As discussed previously, the main difference between available models for BIT 
source terms lies in the adopted characteristic time scale τ, which is shown in Figure 
5.39 for different test points. It can be seen that the time scale computed by Eq. 4-29 
and Eq. 4-30 is dependent on radial position as well as gas volume fraction. It 
decreases with an increase in the superficial gas velocity or in the dissipation rate ε. 
The average bubble size is used in Eq. 4-29 and Eq. 4-34. In addition, the time scale 
provided by the Troshko [163] model is independent on the radial position.  
 

  

  

  

Figure 5.39 Time scale τ for the destruction of BIT kinetic energy predicted by 
different BIT models (Level R) 

 
Furthermore, the time scale calculated by the Morel [159] model is distinctly smaller 
than that by the models of Pfleger [157] and Politano [158]. That means that the 
additional energy dissipation rate introduced by bubbles is high and as a result the 
liquid eddy viscosity is low if the BIT energy production is comparable. As discussed 
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above, since the occurrence of low eddy viscosity or dispersion force will result in an 
unreasonable accumulation of bubbles at the pipe center, a BIT model with a small 
time scale might bring instability during the calculation. Therefore, as shown in 
Figure 5.40, for the case using the BIT model of Morel [159], one has to adjust the 
coefficient Cε to a smaller value in order to achieve reasonable results, e.g. instead 
of 1.0 suggested by Morel [159] a value of 0.6 used in this work. For cases with small 
bubbles or low gas volume fractions the time scale predicted by the Troshko [163] 
model is even smaller than that by the Morel [159] model. As a result, in such a case 
the coefficient Cε has to be adjusted to a value smaller than that used in the Morel 
[159] model to stabilize the calculation, e.g. a value of 0.06 used in this work. Figure 
5.40 shows the influence of the coefficient Cε on the radial profile of gas volume 
fraction calculated by the Morel [159] model. It can be seen that a small value of 
coefficient Cε can help to dampen the unreasonable accumulation of large bubbles 
at the pipe center or the positive feedback between the gas volume fraction profile 
and the shear lift force. 
 

  

  
Figure 5.40 Influence of the coefficient Cε on the turbulence parameters and liquid 

velocity profile (Morel [159] BIT model, Level R, TP063) 
 
As shown below in Figure 5.41, the BIT kinetic energy according to different models 
has a similar dependence on the radial position for different test points. The fact that 
the absolute value calculated by the Pfleger [157] model is higher than that by the 
other models is caused by the coefficient Ck used in Eq. 4-27. The difference 
between the Politano [158] model and others becomes larger as the superficial gas 
velocity increases. This is caused by the fact that the drag coefficient is not included 
in the Politano [158] model (see Eq. 4-33), which increases with the bubble size. In 
addition, BIT kinetic energy provided by the model of Morel [159] is equal to that 
given by the Troshko [163] model. 
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Figure 5.41 BIT source of kinetic energy predicted by different models (Level R) 

 
Unlike the case of BIT kinetic energy, BIT dissipation rate is quite different from each 
other due to the time scale used by different models, see Figure 5.42. Generally 
speaking, the model of Pfleger [157] and of Politano [158] have a similar 
performance with a high peak at the near-wall region since the time scale calculated 
by Eq. 4-30 in this region is very small in comparison to that at the pipe center, see 
Figure 5.39. On the other hand, the BIT dissipation rate according to other two 
models of Morel [159] and Troshko [163] has a similar shape as the kinetic energy 
source shown in Figure 5.41 and the influence of time scale is trivial for a reduced Cε. 
 
Without bubble coalescence and breakup 
The turbulent kinetic energy of liquid phase calculated according to different BIT 
source models is depicted in Figure 5.43 for different test points. In general, at low 
gas volume fractions, turbulence is mainly generated by the classical shear 
production which increases with the eddy viscosity and velocity gradients while the 
additional BIT production source is negligible. For upward bubbly flow inside a 
vertical pipe, at low superficial gas velocity, liquid velocity profiles are more uniform 
than the profile of a single-phase with equal superficial liquid velocity, see Figure 
5.46. Therefore, a suppression of shear-induced turbulence due to the existence of 
bubbles is observed in these cases such as test points 008, 041 and 052. The shear-
induced turbulence is the lowest for test point 041 since its liquid velocity gradient is 
the smallest, see Figure 5.46. With the increase of the superficial gas velocity, the 
gas volume fraction turns into a core-peak profile, and bubbles at the pipe center will 
increase the velocity gradient in comparison to the case of single-phase flow. As a 
result, the shear-induced turbulence in the liquid phase increases as bubbles are 
introduced into the flow (see the comparison between the prediction without BIT 
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models and single-phase profile). Similar phenomena were observed in the 
experimental work of Shawkat et al. [177]. 
 

  

  
Figure 5.42 BIT source of dissipation rate predicted by different models (Level R) 

 
On the other hand, as the number of bubbles introduced into the flow increases, e.g. 
αg>1.0%, the BIT source cannot be neglected any more. For example, from test 
point 041 on, the contribution of BIT to the overall turbulence is larger than that of the 
shear-induced turbulence and moreover, increases as the superficial gas velocity 
increases. However, the performance of different BIT models is quite different in the 
capture of the influence of BIT. For wall-peak cases, the Sato [8] model overpredicts 
the turbulent kinetic energy especially at the wall region because it considers the BIT 
turbulence by an additional viscosity term which directly influences the shear-
induced turbulence while in the core-peak cases where the BIT turbulence is the 
most important the model gives an underprediction for the contribution of bubbles. In 
summary, the Sato [8] model can hardly describe the influence of bubbles on the 
liquid turbulence correctly.  
 
As discussed above, the main difference of BIT models with additional source terms 
for k and ε transport equations, e.g. models of Morel [156], Pfleger and Becker [157], 
and Politano et al. [158], lies in the characteristic time scale τ. At the test points 
where the BIT begins to be important, e.g. test points 063 and 074, the turbulent 
kinetic energy predicted by the Morel [159] model is the largest at the pipe center 
and the liquid eddy viscosity is the lowest compared to other three approaches, see 
Figure 5.45. The low eddy viscosity will be a source of instability during the 
calculation by recalling the positive feedback between the lift force and gas volume 
fraction profiles due to insufficient dispersion. However, as the superficial gas 
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velocity increases further, both turbulent kinetic energy and dissipation rate will 
increase, but the kinetic energy increases more rapidly so that the liquid eddy 
viscosity increases. This will suppress the positive feedback and reduce the 
unreasonable peak of gas volume fraction at the pipe center. If this effect is 
successfully damped, the difference between the three BIT models with additional 
source terms for k and ε equation is only caused by the coefficients Ck and Cε. For 
example, in the case of test point 096, the turbulent kinetic energy predicted by the 
Pfleger [157] model is larger than that by Morel and Politano [158] models. That is 
because Ck,Morel=Ck,Politano=1.0 while Ck,Pfleger=1.44, and meanwhile the drag 
coefficient CD is not included in the Politano [158] model, which is larger than 1.0. On 
the other hand, the Sato [8] model with additional viscosity term predicts the smallest 
BIT turbulent kinetic energy for test cases with large superficial gas velocities, and 
delivers a profile similar to that of neglecting BIT source. 
 

  

  

  
Figure 5.43 Turbulent kinetic energy predicted by different BIT models (Level R) 
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The turbulence dissipation rate predicted by different BIT models for several test 
points at Level R is shown in Figure 5.44. The influence of BIT models as well as 
superficial gas velocity is similar to the case of turbulent kinetic energy illustrated in 
Figure 5.43. At test point 008, the contribution of bubbles is negligible. From test 
point 041 on, the additional BIT dissipation rate has a significant contribution to the 
overall one, which is even higher than the classical shear-induced dissipation. As the 
superficial gas velocity increases further (e.g. test point 063), shear-induced 
dissipation rate also increases due to an increase in the shear-induced production at 
high liquid velocity gradients. For test points 063 and 074, the accumulation of large 
bubbles at the pipe center, which is caused by the positive feedback due to a surplus 
of the lift force compared to the turbulence dispersion, results in a higher dissipation 
rate by the Morel [159] model. For test point 096, the dissipation rates predicted 
respectively by the Morel [159] and the Pfleger [157] models are similar to each 
other and larger than that by the Politano [158] model. The difference is mainly 
caused by the time scale τ, the turbulent kinetic energy k as well as the prefactor Cε. 
Again, the Sato [8] model gives an overprediction of dissipation rate in the near wall 
region due to the additional viscosity term described in Eq. 5-4. 
 

  

  

  
Figure 5.44 Turbulence dissipation rate predicted by different BIT models (Level R) 
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As it shows in Figure 5.45, the Sato [8] model gives a maximum viscosity for all 
cases while the Morel [159] model always has the smallest value for the chosen test 
points, but its difference to other models decreases at the superficial gas velocity 
increases. At low gas volume fractions, e.g. test points 008, 041 and 052, the 
approach with additional source term for k and ε shows a suppression of eddy 
viscosity by the introduction of bubbles which is already proved experimentally [177]. 
On the other hand, the Sato [8] model with an additional viscosity term cannot 
reproduce this effect, while it always delivers a viscosity larger than that of single-
phase flow. Furthermore, it is reasonable to observe that the liquid eddy viscosity 
increases with the superficial gas velocity or gas volume fraction, since it is 
proportional to the square of the turbulent kinetic energy, which increases with the 
gas volume fraction. Furthermore, the increasing speed according to the Sato [8] 
model is the largest followed by the Morel [159] model. The eddy viscosity calculated 
by the Pfleger [157] and Politano [158] models increases more slowly with an 
increase in the gas volume fraction than that by the Morel [159] model. That means 
that the energy dissipation rate predicted by the two models increases more rapidly. 

 

  

  

  
Figure 5.45 Liquid eddy viscosity predicted by different BIT models (Level R) 
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Liquid velocity profle predicted by different BIT models is shown in Figure 5.46. For 
the test points with low superficial gas velocities, where the bubble size is small, 
bubbles locate preferably in the near wall region. This will smooth the liquid velocity 
profile and dampen the turbulence intensity. As the bubble size increases with the 
superficial gas velocity, large bubbles will migrate to the pipe center under the effect 
of the lift force, and increase the liquid velocity gradient and thus the turbulence 
intensity. 

 

  

  

  
Figure 5.46 Liquid velocity profile predicted by different turbulence models (Level R) 

 
With bubble coalescence and breakup 
By including bubble coalescence and breakup models, predictions with different BIT 
models are performed for four different test points. The influence of the BIT models 
on the evolution of average bubble size is shown in Figure 5.47. As it can be seen 
from the comparison between different test points, the influence of BIT is trivial for 
the test points with small superficial gas velocity and increases with an increase in 
the superficial gas velocity. This is reasonable since the BIT turbulence increases 
with the gas volume fraction. Moreover, the main contribution of turbulence to the 
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evolution of bubble size is to increase the breakup rate, which begins to take effect 
at a high superficial gas velocity, see Figure 5.37 and Figure 5.38. 

 

  

  

Figure 5.47 Influence of BIT models on average bubble size 
 
For the test point 118, the average bubble diameter is the largest if the Politano [158] 
BIT model is used, while it is the smallest if the Pfleger [157] model used. That 
means that the turbulence dissipation rate predicted by the Pfleger [157] model is 
larger than that by the Politano [158] model, since the turbulence-induced breakup 
rate is directly determined by the dissipation rate. The results predicted by the model 
of Morel [159] and of Troshko [163] are similar to each other if the value of 0.6 and 
0.06 is used for Cε in two models, respectively. On the other hand, at low gas volume 
fractions, the Sato [8] model delivers a slightly large mean bubble size with 
comparison to other three models. However, the bubble size, which is predicted by 
using the Sato [8] BIT model, decreases more rapidly than the other models, as the 
superficial gas velocity increases. That means that the dissipation rate calculated by 
Sato [8] model increases more rapidly than the other kind of models with the 
increase of superficial gas velocity. 

 
In Figure 5.48 and Figure 5.49, the radial profiles of gas volume fraction and gas 
velocity are predicted by different BIT models. In comparison to the case of bubble 
size shown in Figure 5.47, the influence of BIT models on gas volume fraction and 
velocity is more intuitive, since the turbulence models directly influence the turbulent 
dispersion force, which determines the radial migration of bubbles. Firstly, as shown 
in Figure 5.49 the Sato [8] model delivers a low value of liquid velocity near the pipe 
wall, which implies a large profile parameter C0 and average drift velocity in the drift-
flux model. As a result, the cross-sectional average of the gas volume fraction 
calculated by the drift-flux model is lower than that by other models. 
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Figure 5.48 Influence of BIT models on radial gas volume fraction profile(Level R) 
 
On the other hand, for cases with low superficial gas velocity, e.g. test point 085, the 
gas volume fraction at the pipe center predicted by Morel’s [159] and Troshko’s [163] 
model is higher than the measurement, while the models of Pfleger [157] and 
Politano [158] achieve a better agreement. This is because for this test case, the 
turbulent dispersion calculated by the first two models is a little bit too weak as 
shown in Figure 5.52. However, as the superficial gas velocity increases the eddy 
viscosity predicted by the Morel [159] model and Troshko [163] model increases 
more rapidly than that by the other two models and overtakes it at the test point 107.  
As a result, for this case, the radial gas volume fraction is more flat than that given 
by the Pfleger [157] and Politano [158] models.  
 
The influence of BIT models on the radial gas velocity profile is shown in Figure 5.49. 
For the chosen test points, the influence of different BIT models is negligible except 
that the Sato [8] model predicts too low a velocity in the near wall region. This is 
because according to the Sato [8] model bubbles are dispersed far away from the 
pipe wall by the turbulent dispersion force due to a large viscosity, see Figure 5.52. 
The Morel [159] and Troshko [163] models overpredict the fractions at the pipe 
center for test points with low gas fractions such 085 and 096. For test points with 
high gas volume fractions such as 107 and 118, the overprediction occurs when the 
Pfleger [157] and Politano [158] models are used. The explanation is the same as 
that used for the radial gas volume fraction profile in Figure 5.48, i.e. too weak a 
turbulent dispersion force, but the root cause is the definition of time scale adopted 
by different models. 
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Figure 5.49 Influence of BIT models on radial gas velocity profile (Level R) 
 
The turbulence parameters, i.e. turbulent kinetic energy, dissipation rate and eddy 
viscosity calculated by using the k-ε model with additional BIT source or additional 
viscosity terms are depicted in Figure 5.50 ~ Figure 5.52, respectively.  
 
The influence of BIT models on the turbulence parameters is more intuitive than that 
on bubble size and gas volume fraction. As shown in Figure 5.50, the turbulent 
kinetic energy predicted by using the BIT model of Pfleger [157] is the largest for all 
chosen test points while the smallest if the Sato [8] model used. The results given by 
the Morel [159] and Troshko [163] models are similar to each other and larger than 
those by the Politano [158] model. For test points with low gas volume fractions, the 
prediction delivered by the Morel [159] and Troshko [163] models are close to that of 
Politano [158] model while for high gas volume fractions cases they are close to that 
of Pfleger [157] model. That means that the kinetic energy predicted by the former 
two models increases more rapidly than that by the latter two ones as the superficial 
gas velocity increases from 0.0574m/s to 0.219m/s. The main reason is that the 
dissipated energy increases more rapidly according to the Politano [158] and Pfleger 
[157] models, see Figure 5.51. 
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Figure 5.50 Influence of BIT models on the turbulent kinetic energy (Level R) 
 

  

  

Figure 5.51 Influence of BIT models on liquid turbulence dissipation rate (Level R) 
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From Figure 5.51 one can see that in comparison to other four models, the model of 
Sato [8] gives too small a value at the pipe center while too large a one in near-wall 
region. That is because that according to the Sato [8] model, the influence of bubbles 
on the turbulent kinetic energy and dissipation rate is only considered by the 
viscosity in the turbulence production term, which might be not enough for the pipe 
center since there the velocity gradient is almost zero, while it is too strong for the 
high shear region. In addition, the predicted dissipated energy increases with the 
superficial gas velocity, but the increasing speed according to the Sato [8] model is 
the largest and followed by the Pfleger [157] model. On the other hand, the 
dissipation rate calculated respectively by the model of Morel [159] and of Troshko 
[163] increases more slowly as the superficial gas velocity increases. Therefore, at 
test point 118 the liquid eddy viscosity predicted by the two models exceeds that by 
the model of Pfleger [157] and Politano [158], see Figure 5.52. 
 

  

  

Figure 5.52 Influence of BIT models on liquid eddy kinematic viscosity (Level R) 
 
As discussed above, too low a viscosity will result in an overprediction of gas volume 
fraction at the pipe center while too large a viscosity will cause a uniform distribution. 
As shown in Figure 5.52, for test points with low gas volume fractions such as TP085, 
the eddy viscosity calculated according to the Sato [8] model is in general the largest 
while that by the Morel [159] model is the smallest. However, as the superficial gas 
velocity increases from the test point 085 to 118, the viscosity provided by the model 
of Morel [159] and of Troshko [163] increases much faster than that by the Politano 
[158] and the Pfleger [157] models. As a result, the viscosity calculated by the 
Pfleger [157] model is the smallest while that by the Troshko [163] model is the 
largest for the test point 118. 
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5.5 Discussions 
By using the simplified Test Solver, a comparative study of available bubble 
coalescence and breakup models is carried out for the case of upward vertical pipe 
flow. The bubble size distribution as well as the average bubble diameter as a 
function of axial position is studied by nine different combinations of three couples of 
the most popular models. Since under adiabatic conditions bubble coalescence and 
breakup is the single source or sink responsible for the change of bubble size 
distribution, the position of the peak of the bubble size distribution as well as the 
cross-sectional averaged bubble diameter can affect the equilibrium between bubble 
coalescence and breakup. With a higher breakup rate, the peak moves from a larger 
bubble size to a smaller bubble size since there are more breakup events. As a 
result, the average bubble diameter decreases. With higher coalescence rates, the 
peak moves from a smaller bubble size to a larger bubble size since there are more 
coalescence events, and the average bubble diameter increases. Therefore, from 
Figure 5.15 ~ Figure 5.22, one can see that the breakup rate predicted by Prince and 
Blanch [36] is much higher than that by Lehr’s [31] and Luo’s [95] models. For small 
bubbles, the breakup rates predicted by the latter two models are comparable with 
each other but the breakup rate predicted by Luo’s [95] model increases more slowly 
as bubble size increases so that for large bubbles the breakup rate predicted by the 
Lehr’s [31] model is larger than that by the Luo’s [95] model. On the other hand, the 
coalescence rates given by the model of Prince and Blanch [36] and of Luo and 
Svendsen [175] are much higher than that by Lehr et al. [31]. For large bubbles, the 
coalescence rate given by Prince’s [36] model is larger than that by Luo’s [175] 
model. However, the coalescence rate predicted by Luo’s [175] model decreases 
more slowly as bubble size decreases so that for small bubbles the coalescence rate 
predicted by Luo’s [175] model is slightly larger than that by Prince’s [36] model.   
 
In summary, the performance of various models for bubble coalescence and breakup 
is quite inconsistent for different combinations of gas and liquid superficial velocities. 
The predicted results severely depend on the chosen models, and the dependence 
on bubble size is inconsistent. That means that some models give good predictions 
for small bubbles, while others are more suitable for large bubbles. 
 
Finally, the new model for bubble coalescence and breakup is extensively examined 
in the Test Solver. Simulations are performed for a large number of test points with 
different combinations of gas and liquid superficial velocities. Predictions about the 
evolution of bubble size distribution, average bubble size, radial gas volume fraction 
and velocity profile are compared with the measurement correspondingly. In addition, 
the influence of bubble forces (turbulence dispersion, lift and wall lubrication force) 
and BIT turbulence models on the predicted bubble size and gas volume fraction is 
analyzed. Furthermore, the contribution of each coalescence / breakup mechanism 
to the evolution of bubble size distribution of different test points is studied in detail. 
Generally speaking, a relatively good agreement between the prediction and the 
measurement is achieved for all test points. 
 
However, as it can be seen from Figure 5.23 and Figure 5.26, for the coalescence-
dominant cases such as test points 008 ~ 052, the predicted bubble size is larger 
than the measured one while for breakup-dominant cases with higher superficial gas 
velocity, the predicted bubble size is smaller than that in the measurement. From the 



Validation of the new model in frame of Test Solver 

156 
 

analysis of the contribution of each of coalescence / breakup mechanisms, see 
Figure 5.36 and Figure 5.37, it can be supposed that the mechanism of turbulence 
could introduce deviations in the coalescence-dominant cases, since the turbulence-
induced coalescence is the most important one for these cases. On the other hand, 
the mechanism of interfacial stresses might be responsible for the overestimation of 
breakup rate in breakup-dominant cases. In addition, the bubble size is in general 
overestimated at the upper section of the pipe for the cases where the mechanism of 
wake-entrainment plays an important role. Furthermore, the deviation with the 
experimental data increases as the superficial gas velocity increases. That means 
that the coalescence rate predicted by wake-entrainment is overpredicted by the new 
model for high superficial gas velocities.  
 
On the other hand, the peak of the predicted gas volume fraction at Level R for wall-
peak cases, see Figure 5.29, is lower than the measured one. This discrepancy 
indicates that the wall lubrication force calculated according to the correlation of 
Tomiyama [151] is too large for small bubbles. In addition, the redistribution process 
of gaseous phase from the injection position at the pipe wall to the whole cross 
section is overestimated, especially for cases with large gas volume fractions (Figure 
5.31). The bubble migration velocity is found to be dependent on the bubble forces, 
i.e. turbulent dispersion, lift and wall lubrication forces (see Figure 5.33 ~ Figure 
5.35). Generally speaking, the turbulent dispersion force has an effect of smoothing 
the radial distribution of gaseous phase. For small coefficients, the redistribution of 
gaseous bubbles will be retarded. However, this will result in an unreasonable peak 
of gas volume fraction at pipe center in comparison with the experiment. This is 
caused by the accumulation effect of the lift force under the negative velocity 
gradient in an upflow. For a small lift force, the spread of the gas volume fraction will 
be accelerated in the immediate vicinity of the injection position for large superficial 
gas velocities. This is because the injection at large superficial gas velocities will 
cause an increase in the liquid velocity near the pipe wall and result in a positive 
velocity gradient in the radial direction. In this case, large bubbles will be kept in the 
near-wall region under the effect of lift force. On the other hand, as the two-phase 
mixture flows away from the injection position, the liquid velocity profile forms a core-
peak, i.e. negative velocity gradient. In this case, a smaller lift force will suppress the 
accumulation of large bubbles at the pipe center and smooth the radial profile of gas 
volume fraction. Finally, if the wall lubrication force is too strong, most of bubbles are 
pulled far away from the wall and the force has a remarkable influence on the 
redistribution of the gaseous phase over the whole cross section. By reducing the 
wall lubrication force by one-half, the migration of the gas can be decelerated and at 
the same time the agreement with measurement is improved at the pipe center. In 
addition, Eq. 4-12 proposed by Wellek [152] used for the calculation of the horizontal 
extension of a deformed bubble will contribute to the overestimation of the migration 
of spherical-cap or Taylor bubbles from the pipe wall to the center, since this 
correlation is only valid for ellipsoidal bubbles.  
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6 Validation of the new model in ANSYS 12.1 CFX-Solver 
In this work, the generalized new model for bubble coalescence and breakup is 
implemented in the commercial CFD code ANSYS CFX-12.1 through user 
FORTRAN subroutines. They serve to supplement the inhomogeneous MUSIG 
approach, which is available in CFX as a beta feature, with alternative closure 
models. Simulations are carried out for air-water flows in a large upward vertical pipe 
under steady-state conditions. Both air and water are considered as isothermal. In 
order to take into account the pressure expansion of gas volume fraction with the 
increasing pipe height, air is considered as a compressible ideal gas. All simulations 
are computed with fluid-specific turbulence models, i.e. k-ε or SST turbulence model 
for the continuous phase whereas zero-equation dispersed phase turbulence model 
for the gaseous phase. 
 
Simulations are carried out for several TOPFLOW test cases with different 
combinations of gas and liquid superficial velocities, e.g. test points 072, 074, 083, 
085, 094, 096 and 118 (see the test matrix in Table 4.2). The results are compared 
with the experimental data as well as the results provided by the Test Solver and the 
standard closure models in CFX. The new model is shown to be capable of capturing 
the evolution of the bubble size distribution and the gas volume fraction along the 
pipe and notable improvements are observed with comparison to the results 
provided by the standard closures. 

6.1 Setups 
For swifter computations, a mesh of a 1 m long pipe is used for the mesh study and 
simulations in the first phase. Further simulations are also run on an 8m pipe in order 
to obtain the comparison between the predicted results and the measured ones over 
the whole test section of TOPFLOW facility. 

6.1.1 Mesh details 
By assuming that the flow inside the pipe is axisymmetric, a 2D geometry mesh is 
chosen for the calculation. It is a small sector of the cylindrical pipe geometry with an 
opening angle of 5 degrees consisting of one layer of cells in the circumferential 
direction. The details of the mesh resolution are shown in Table 6.1 and non-uniform 
distribution of mesh cells is adopted (see Figure 6.1). In order to study the influence 
of space discretization on the numerical results, four different meshes are used for 
the mesh study of 1 m pipe flow and the results can provide a reference for the 8m 
pipe simulations. 

 
Table 6.1 Mesh information 

 
Mesh 
No. 

Height of the 
Pipe [m] 

Total 
nodes 

Δxmax 
[mm] 

Δxmin 
[mm] 

Δzmax 
[mm] 

Δzmin 
[mm] 

1 1.0  25x50x2 9.49556  1.2  52.608  5  
2 1.0 36x50x2 6.2682 0.9  52.608  5  
3 1.0 50x50x2 5.08147  0.5  52.608  5  
4 1.0 25x100x2 9.49556  1.2  39.062 3 
5 8.0 36x500x2 6.2682  0.9  41.531  4  

x: radius direction; z: axial direction 
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Figure 6.1 2D mesh for a 5˚ axial-symmetric sector of the vertical pipe geometry  
 
The results of mesh study are shown in Figure 6.2. The influence of meshs 1, 2, 3 
and 4 described in Table 6.1 on the prediction of bubble size distribution, average 
bubble size, gas volume fraction, gas velocity as well as turbulence parameters is 
illustrated. It can be seen that all the four meshes deliver almost identical results 
except for a small deviation at the near-wall region. For example, mesh 1 and mesh 
4 with 25 nodes in the radial direction give a smaller value for the turbulence 
dissipation rate near the wall than the other two meshes. The results show that the 
number of nodes in the radial direction has a stronger effect than that in the axial 
direction. A mesh with Δxmax≤6.2682 mm and Δxmin≤0.9 mm can provide mesh-
independent predictions. According to the conclusion, the mesh 3 and mesh 5 are 
used in this work for the 1 m and 8 m pipe simulations, respectively. 
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Figure 6.2 Influence of different meshes on the results (TP072, Level F) 

6.1.2 Boundary conditions 
Four kinds of boundary conditions (wall, outlet, symmetry and inlet) are applied to 
the quasi 2D mesh used in this work: 
 
Wall 
With the consideration of the viscosity difference of air and water, the outer wall of 
the vertical pipe has been set as hydraulically smooth walls with a non-slip boundary 
condition applied for the continuous liquid phase and a free-slip boundary condition 
for the gaseous phase. With a non-slip condition it means that the fluid has the same 
velocity as the wall, and in this work it is zero. A free-slip condition means that the 
gas velocity is tangent to the wall and not retarded by the existence of the wall. 
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Outlet 
The upper boundary condition is set to be an outlet boundary condition. The use of 
‘artificial walls’ by the solver to stop the flow entering the domain is suppressed by 
expert parameter settings. The average static pressure is selected which means that 
the static pressure is allowed to vary locally on the outlet boundary such that the 
average pressure is constrained in a specified manner. In this work, the option of 
averaging over the whole outlet is used. The reference average pressure at the 
outlet is calculated according to the experimental condition that 0.25Mpa is fixed at 
the injection position (z=0.0m) and to the hydrostatic pressure drop along the pipe, 
i.e. Δp=ρgL. 
 
Symmetry 
Two symmetry boundary conditions are applied to the front and rear planes of the 
computational domain, see Figure 6.1. At a symmetrical boundary, the gradient of all 
variables is equal to zero. 
 
Inlet 
The inlet boundary of the computation domain is located at z=0.221 m, which means 
that the measurement for injection at Level A can be used as inlet conditions (see 
Table 4.1 and Figure 4.6). For the gaseous phase a mass flow rate related to the 
prescribed superficial gas velocity is applied while a velocity inlet condition is used 
for the liquid phase. The gas volume fraction profile and bubble size distribution are 
taken from the experimental data. The gaseous phase is divided into two velocity 
groups in the MUSIG model (d1<6 mm, d2>6 mm) corresponding to the sign change 
of lift force. The volume fraction of each group is obtained by multiplying the total 
measured gas volume fraction profile with a corresponding fraction of each group. 
One major difficulty in the setup of inlet conditions is that no measurement 
information is available for the liquid phase. Two methods are adopted in this work 
for the determination of liquid conditions at the inlet, i.e. assuming a fully-developed 
single-phase flow (single-phase) or using the corresponding results from Test Solver 
(two-phase). For the first method, the liquid inlet conditions have been shown in 
Figure 5.10. 

6.1.3 Initial conditions 
The velocity fields and volume fractions of air and water are in principle initialized 
with the given profiles at the inlet. The initial distribution of hydrostatic pressure 
pini=ρg(L-z) is applied as an initial guess for the whole pressure field in the pipe. 

6.1.4 Convergence criteria 
The criteria for the judging of convergence are based on the maximum normalized 
residuals of each conservative equation and the overall flow balances (overall 
conservation). If all the maximum residuals are less than 10-4 and the imbalance is 
less than 0.01, the simulation is regarded to be converged. 

6.1.5 Discretization of bubble size 
Two different approaches are used for the discretization of bubble size, i.e. equal 
and unequal discretization. For the 1 m pipe calculations, the bubble size is 
discretized unequally. With the consideration that there is a narrow peak of the 
bubble size distribution between d=0 ~ 12 mm, a fine discretization with Δd=0.5 mm 
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is used for the first 24 MUSIG sub-size groups while the width of other groups is 
fixed to 2 mm. For the 8m pipe case, the bubble size is discretized equally with a 
width of 2 mm. The influence of the discretization approaches on the predicted 
bubble size distribution of test points 072 and 074 is shown in Figure 6.3. It can be 
seen that the equal discretization with an interval less than 3 mm is comparable to 
the unequal approach. 
 

  
Figure 6.3 Influence of discretization on the predicted bubble size distribution at 
Level F (SST model+Morel [159] BIT model, Ck=Cε=1.0, two-phase liquid inlet) 

6.2 Results 
Predictions about the evolution of bubble size distribution, gas velocity and volume 
fraction along the pipe as well as the influence of liquid inlet conditions and bubble 
forces are shown below in Figure 6.4 ~ Figure 6.36, respectively. 

6.2.1 Evolution of bubble size distribution along the pipe 
From the test matrix (see Table 4.2) one can see that test points 072, 074, 083 and 
085 are in the bubbly flow regime while 094, 096 and 118 are the transition cases 
between bubbly flow and churn-turbulent flow. The first 6 cases are simulated by 
using the 1 m mesh while simulations for the 8m long pipe are carried out only for 
the test point 118 due to the high computational cost. 
 
With the consideration that lift force changes its sign for bubble diameter of around 6 
mm according to the correlation of Tomiyama [178], in the calculation the gaseous 
phase is divided into 2 velocity groups in the MUSIG approach, i.e. N=2. Each of 
them is further subdivided into M sub-size groups (M1, M2), see Figure 2.1. 
 
1 m pipe 
The predictions of 1 m pipe for bubble size distributions at Level A ~ F are shown in 
Figure 6.4 ~ Figure 6.9 for different test points, respectively. 
 
The evolution of bubble size distribution of the test point is depicted in Figure 6.4. In 
the simulation, the whole bubble size range is divided into 30 sub-size classes 
(M1=12, M2=18). The inlet bubble size range is between 1 ~ 20 mm and the initial 
average bubble size is about 9.5 mm. For this case the change of bubble size 
distribution from Level A to Level F is not noticeable. In other words, coalescence 
and breakup rates of bubbles are almost in equilibrium. The amplitude of the peak 

TP074 TP072 
Exp. 
Δd=3 mm 
Δd=2 mm 
Δd=1 mm 
unequal 
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around 8 mm decreases along the flow and the size distribution becomes slightly 
broader. That means that as the two-phase mixture flows along the pipe there are a 
few small bubbles torn from large bubbles and there is simultaneous coalescence of 
large bubbles. This tendency is also predicted by the new model, but the small 
bubbles generated due to breakage are a little bit more prevalent than that observed 
by the measurement, which is consistent with the results provided by the Test Solver. 
 

  

  
Figure 6.4 Evolution of bubble size distribution along the pipe height (TP074, SST 

model+Morel [159] BIT model, Ck=Cε=1.0, two-phase liquid inlet) 
 
The evolution of bubble size distribution of test point 085 from Level A to Level F is 
depicted in Figure 6.5. In comparison to the case of TP074, due to an increase in the 
superficial gas velocity, the percentage of large bubbles increases and the initial 
bubble size exhibits a transitional bimodal distribution. The initial average bubble 
size is about 15 mm. As a result, the breakup rate is larger than that in the last case. 
In the simulation the whole bubble size range is divided into 34 size classes (M1=12, 
M2=22). Bubbles larger than 10 mm are not stable and disappear rapidly due to 
simultaneous coalescence and breakup. In the prediction the generation of small 
bubbles due to breakup is faster than that in the experimental due to an 
overestimation of breakup rate or an underestimation of coalescence rate. This trend 
is also to be observed in the predictions of the Test Solver. 
 
As the amplitude of the peak of large bubbles increases further with the superficial 
gas velocity, the distribution of the initial bubble size becomes again monomodal, e.g. 
test point 096. However, the peak moves to a large bubble diameter around 22 mm, 
and the initial average bubble size increases to 20.5 mm, see Figure 6.6. In the 
simulation, the bubble size range is divided into 38 size classes (M1=12, M2=26). 
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Figure 6.5 Evolution of bubble size distribution along the pipe height (TP085, SST 

model+Morel [159] BIT model, Ck=Cε=1.0, two-phase liquid inlet) 
 

  

  
Figure 6.6 Evolution of bubble size distribution along the pipe height (TP096, SST 

model+Morel [159] BIT model, Ck=Cε=1.0, two-phase liquid inlet) 
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One can see from Figure 6.6 that as the mixture flows upward along the pipe a peak 
of small bubbles around d=6 mm appears while the peak of large bubbles decreases 
from about 0.5(%/mm) to 0.3(%/mm). On the other hand, the position of large 
bubbles moves from about 22 mm to 29 mm, which means that there are large 
bubbles generated by coalescence as the flow goes from Level A to Level F, even 
though the whole tendency is breakup dominant. In general, the predicted breakup 
tendency and the size of daughter bubbles agree well with the experimental data. 
However, the peak of small bubbles grows too fast, which is similar to the conclusion 
of the simulation done by Test Solver. 
 
The bubble size distributions at different height levels of test point 072 are shown in 
Figure 6.7. As shown in Table 4.2, the superficial gas velocity of test point 072 is the 
same as that of test point 074 (see Figure 6.4), but the superficial liquid velocity is 
reduced by about one half. As a result, the inlet bubble size is larger than that of the 
test point 074 and the average bubble size is about 15 mm. The inlet bubble size 
distribution at Level A is weakly bimodal and has a small peak around 9 mm and 18 
mm, respectively. In the simulation the whole bubble size distribution is divided into 
34 size classes (M1=12, M2=22).  
 
Due to the breakage of large bubbles, the amplitude of the peak of small bubbles 
grows as the mixture flows from Level A to Level F. The evolution of bubble size 
distribution along the pipe is well predicted by the new model.  

 

  

  
Figure 6.7 Evolution of bubble size distribution along the pipe height (TP072, SST 

model+Morel [159] BIT model, Ck=Cε=1.0, two-phase liquid inlet) 
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The bidirectional development of the bubble size distribution observed in the test 
points 085 and 096 becomes more obvious as the superficial liquid velocity 
decreases, e.g. test points 083 and 094. The evolution of bubble size distribution of 
the test points 083 and 094 is illustrated in Figure 6.8 and Figure 6.9, respectively. In 
the case of test point 083, as the mixture flows from Level A to Level F, the peak of 
small bubbles around d=7 mm increases. Nevertheless, the peak of large bubbles at 
about d=25 mm decreases and migrates gradually to the +x direction at the same 
time. It is usually difficult to trace this tendency due to the complexity of coalescence 
and breakup mechanisms for large bubbles. From the comparison with the 
experimental data, one can see that in the predictions the peak of small bubbles 
increases too fast whereas the evolution of the peak of large bubbles is not well 
reproduced. Therefore, the breakup rate is too large at the beginning and the 
simultaneous generation of large bubbles due to coalescence is not reflected, see 
Figure 6.8. 

 

  

  
Figure 6.8 Evolution of bubble size distribution along the pipe height (TP083, SST 

model+Morel [159] BIT model, Ck=Cε=1.0, two-phase liquid inlet) 
 

In the case of test point 094, the initial bubble size distribution is again a typical 
bimodal with two peaks around d=5 mm and 28 mm, respectively. The inlet total gas 
volume fraction exceeds 8.0% and initial average bubble size is about 24 mm. The 
breakup rate is obviously larger than other cases discussed above. Similarly, in 
comparison with the measured bubble size distribution, the new model gives too 
large a breakup rate at the beginning of the flow. As a result the peak of small 
bubbles increases too fast, while the predicted volume fraction of large bubbles is 
lower than the measurement, see Figure 6.9. 
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Figure 6.9 Evolution of bubble size distribution along the pipe height (TP094, SST 

model+Morel [159] BIT model, Ck=Cε=1.0, two-phase liquid inlet) 
 
8m pipe 
In order to obtain more information about the evolution of the air-water mixture inside 
the pipe, additional simulations for a long pipe with the same height as the test 
section are performed. In contrast to the case of short pipe, the computation time for 
the simulation to converge increases dramatically. Therefore, only one example of 
test point 118 is shown in Figure 6.10 ~ Figure 6.13. 
 
Firstly, Figure 6.10 shows the comparison between the predicted and the measured 
bubble size distribution for different height levels. It can be seen that the breakup-
dominant evolution and the size of daughter bubbles generated during the breakup 
events can be well reproduced by the new model for bubble coalescence and 
breakup. However, as discussed before, the predicted breakup rate is too large, 
especially at the beginning of the flow. That means that the peak of small bubbles 
increases too fast in comparison to the measurement and the difference gets smaller 
as the mixture flows along the pipe. On the other hand, the formation of large 
bubbles is not to be observed in the calculation, which could be caused by too weak 
a coalescence rate due to wake-entrainment. After Level I a small peak caused by 
the wake-entrainment appears near the critical bubble size dcrit, which is about 10 
mm according to Eq. 3-8. 
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Figure 6.10 Bubble size distribution at different levels (TP118, SST model+Morel 

[159] BIT model, Ck=Cε=1.0, two-phase liquid inlet) 
 

6.2.2 Evolution of radial gas volume fraction profile along the pipe  
The evolution of gas volume fraction of TP118 along the pipe is shown in Figure 6.11. 
It can be seen that the predicted velocity of gaseous bubbles migrating from the wall 
to the center agrees well with the measured results. However, since there are more 
small bubbles and less large bubbles according to the new model (see Figure 6.10), 
the predicted radial gas volume fraction profile is more flat than the measured one. 
This is because small bubbles accumulate at the near wall region while large 
bubbles preferably at the core. On the other hand, the mean diameter of the large 
bubbles is also smaller than the measured one so that the lift force is smaller, which 
also results in a flatter gas volume fraction profile. 
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Figure 6.11 Radial total gas volume fraction at different levels (TP118, SST 
model+Morel [159] BIT model, Ck=Cε=1.0, two-phase liquid inlet) 

 
The volume fractions of small and large bubbles from Level C to Level R are shown 
in Figure 6.12 for the example of test point 118. One can see that in the simulation 
both small and large bubbles migrate faster than that in the measurement. The 
volume fraction of small bubbles is higher than the measured one, however, the 
profile agrees well with the measurement. On the other hand, the fully-developed 
profile of the volume fraction of large bubbles is flatter than that provided by the 
experiment, which might be caused by a low percentage of large bubbles and a 
weak lift force due to the underestimation of the average bubble size. 
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Figure 6.12 Radial gas volume fraction profile for small and large bubbles at different 

levels (TP118, SST model+Morel [159] BIT model, Ck=Cε=1.0, two-phase liquid 
inlet) 

6.2.3 Evolution of radial gas velocity profiles along the pipe 
The radial gas velocity profile of large bubbles at different height leivels is illustrated 
in Figure 6.13 for the test point 118. It is worth noting that the velocity profiles for 
small and large bubbles are similar to each other. It can be seen that the velocity 
profile is in general similar to that of the gas volume fraction. As the peak of gas 
volume fraction migrates from pipe wall to the centre the velocity profile also 
changes from a wall-peak to a core-peak. As already mentioned before, the 
predicted migration or redistribution process is faster than that observed in the 
measurement and the gas velocity is in general smaller than the measured one. This 
is again due to the fact that the predicted average bubble size is lower than the 
measured one caused by an overestimation of breakup rate. 

Level F 

Level I Level L 

Level O Level R 
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Figure 6.13 Evolution of radial gas velocity profile at different levels (TP118, SST 
model+Morel BIT model, Ck=Cε=1.0, two-phase liquid inlet) 

6.2.4 Influence of liquid inlet conditions  
As mentioned at the beginning of the chapter, in CFX simulations there are two kinds 
of inlet conditions assumed for the velocity and turbulence parameters of the liquid 
phase, which are called two-phase and single-phase respectively in the Figure 6.14 
~ Figure 6.16. The influence of liquid inlet conditions on the evolution of bubble size 
distribution is depicted in Figure 6.14. It can be seen that the impact is in general 
trivial and only observed at the beginning of the flow. From Level C to Level F, the 
breakup rate calculated by using the two-phase inlet condition is a little bit larger 
than that by the single-phase one but after Level I the difference is imperceptible. 
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Figure 6.14 Influence of the inlet condition for liquid phase on the bubble size 
distribution (TP118, SST model+Morel [159] BIT model, Ck=Cε=1.0) 

 
As shown in Figure 6.15, the radial gas redistribution velocity from the pipe wall to 
the centre is much lower in the case of single-phase inlet than that of two-phase one 
due to a lower liquid eddy viscosity (see Figure 6.16 right side). The agreement with 
the measured gas volume fraction profiles is improved for Levels C, D, F and I if the 
single-phase inlet conditions are employed. 
 
The influence of liquid inlet conditions on the evolution of turbulence energy 
dissipation rate and liquid eddy viscosity is illustrated in Figure 6.16. It can be seen 
that at the pipe center both turbulence parameters in the case of single-phase 
condition is much lower than that of two-phase condition at Level F. This deviation 
can explain the difference in the prediction of bubble size distribution and gas 
volume fraction shown in Figure 6.14 and Figure 6.15, respectively. In addition, the 
effect of liquid inlet conditions on the turbulence parameters becomes smaller along 
the pipe and disappears after Level L. 
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Figure 6.15 Influence of liquid inlet conditions on gas redistribution process 
(TP118, SST model+Morel [159] BIT model, Ck=Cε=1.0) 

 

  
Figure 6.16 Influence of liquid inlet conditions on turbulence parameters 

(TP118, SST model+Morel [159] BIT model, Ck=Cε=1.0) 

6.2.5 Influence of wall lubrication force  
Under single-phase liquid inlet condition, the influence of models for wall lubrication 
force is analyzed. For the test point 118, predictions delivered by the models 
proposed by Tomiyama [151] and Antal et al. [153] are compared with each other. 
The evolution of bubble size distribution shown in Figure 6.17 indicates a negligible 
influence. The influence of the two wall force models on the evolution of gas volume 
fraction profiles is illustrated in Figure 6.18. It can be seen that the wall force 
predicted by the model of Antal et al. [153] is generally smaller than that by 
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Tomiyama [151]. As a result, more bubbles accumulate near the pipe wall if the the 
model of Antal et al. [153] is adopted. 

 

  

  
Figure 6.17 Influence of wall lubrication forces on bubble size distribution (TP118, 

SST model+Morel [159] BIT model, Ck=Cε=1.0, single-phase liquid inlet) 
 

  

  
Figure 6.18 Influence of wall lubrication forces on gas volume fraction profile (TP118, 

SST model+Morel [159] BIT model, Ck=Cε=1.0, single-phase liquid inlet) 
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If the k-ε turbulence model is adopted instead of the SST model for the liquid phase, 
the influence of the two wall force models on the radial gas volume fraction becomes 
much more considerable. As shown in Figure 6.19, a peak appears near the wall 
region if the model of Antal et al. [153] is used. This is because the viscosity 
predicted by the k-ε model is lower than that by the SST model. In other words, the 
total smoothing effect of turbulent dispersion force and wall lubrication force is 
insufficient to compensate the accumulation effect of the lift force. As a result, an 
unreasonable accumulation of small bubbles is observed in the near wall region. 
 

  

  
Figure 6.19 Influence of wall lubrication forces on gas volume fraction profile (TP118, 

k-ε model+Morel [159] BIT model, Ck=Cε=1.0, single-phase liquid inlet) 

6.3 Influence of two-phase turbulence modeling 
SST and k-ε model 
The influence of turbulence models used for the liquid phase on the predictions of 
turbulence parameters is shown in Figure 6.20. 
 

  
Figure 6.20 Influence of turbulence model on turbulence parameters (TP118, Morel 

[159] BIT model, Ck=Cε=1.0, Antal wall force, single-phase inlet) 
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In comparison to the k-ε model, the SST model in general delivers a smaller 
turbulence dissipation rate in the near-wall region, while a larger eddy viscosity 
especially at the beginning of the flow. This leads to the difference in the profiles of 
bubble size distribution and gas volume fraction as shown in Figure 6.21 and Figure 
6.22. 
 
From Figure 6.21 one can see that the average bubble size predicted by using the 
SST model is slightly larger than that by the k-epsilon model. As discussed 
previously, turbulence is one important mechanism leading to bubble coalescence 
and breakup, and the dissipation rate of energy is one input parameter for the 
coalescence and breakup models. Furthermore, the influence of dissipation rate on 
the breakup rate of bubbles is larger than that on the coalescence rate. That means 
that a large turbulence dissipation rate indicates an increased breakup rate. As a 
result, the SST model gives a larger average bubble size than the k-ε model. 
 

  

  

  
Figure 6.21 Influence of turbulence model on bubble size distribution (TP118, Antal 

[153] wall force, single-phase inlet, Morel [159] BIT model, Ck=Cε=1.0) 
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The influence of the liquid turbulence model on the radial gas volume fraction profile 
is depicted in Figure 6.22. As discussed above, a larger liquid eddy viscosity 
indicates a larger turbulent dispersion force, which tries to smooth the radial profile of 
gas volume fraction. As shown in Figure 6.20, the SST model delivers a larger eddy 
viscosity than the k- ε model. As a result, in the simulation with the k-ε model an 
unreasonable accumulation of small bubbles appears near the wall (see Figure 6.22), 
which is the due to too weak a dispersion force and a wall force. 
 

  

  

Figure 6.22 Influence of turbulence model on gas volume fraction profile (TP118, 
Antal [153] wall force, single-phase inlet, Morel [159] BIT model, Ck=Cε=1.0) 

 
BIT source term models 
Besides the turbulence models self, models for BIT turbulence source and 
destruction have a remarkable influence on the predictions. Figure 6.23 and Figure 
6.24 show the influence of five BIT models on the predicted turbulence energy 
dissipation rate for two different test points. It can be seen that in two cases the 
dissipation rate calculated by the Sato [8] model is obviously smaller than that by 
other models, which might lead to a smaller breakup rate of bubbles. 
 

Level C 

Level F Level I 

Level D 



Validation of the new model using ANSYS 12.1 CFX-Solver 

177 
 

  
Figure 6.23 Influence of BIT model on turbulence dissipation rate (TP072, Antal 

[153] wall force, two-phase inlet, SST model) 
 

  

Figure 6.24 Influence of BIT model on turbulence dissipation rate (TP118, Antal 
[153] wall force, two-phase inlet, SST model) 

 
The liquid eddy viscosity of test points 072 and 118 calculated by different BIT 
models is shown in Figure 6.25 and Figure 6.26, respectively. It can be seen that the 
eddy viscosity decreases as the gas-liquid mixture flows along the pipe. In addition, 
for the case of test point 072 the viscosity predicted by the Morel [159] model and 
Troshko [163] model is obviously smaller than the other models. At Level F, the 
viscosity at the pipe center predicted by these two models is even smaller than the 
maximum which induces a circulation in the flow. This problem caused by the Morel 
[159] model and the Troshko [163] model is mitigated by an increase in the 
superficial liquid velocity, e.g. test point 118. However, it is worth noting that for test 
point 118 with a high superficial gas velocity, the liquid eddy viscosity predicted by 
the Pfleger [157] model and the Politano [158] model decreases quickly as the two-
phase mixture flows from Level F to Level O (see Figure 6.26). The different 
performance of these models is caused by the time scale they define. The influence 
of time scale and superficial gas velocity on the eddy viscosity has already been 
discussed (see the corresponding results for the Test Solver in Figure 5.45 and 
Figure 5.52). 
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Figure 6.25 Influence of BIT model on eddy dynamic viscosity (TP072, Antal [153] 
wall force, two-phase inlet, SST model) 

 

  

  

Figure 6.26 Influence of BIT model on eddy dynamic viscosity (TP118, Antal [153] 
wall force, two-phase inlet, SST model) 

 
The predictions about the evolution of bubble size distribution for test points 072 and 
118 are depicted respectively in Figure 6.27 and Figure 6.28. It can be seen that the 
breakup dominant evolution tendency is underestimated by the Sato [8] model due to 
low dissipation rate. The results provided by the other four models are similar to 
each other and the position of small bubbles generated by breakup is well captured 
by these models in both cases. 
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Figure 6.27 Influence of BIT model on the bubble size distribution (TP072, Antal 
[153] wall force, two-phase inlet, SST model) 

 

  

  

Figure 6.28 Influence of BIT model on bubble size distribution (TP118, Antal [153] 
wall force, two-phase inlet, SST model) 

 
Figure 6.29 shows the influence of BIT models on the evolution of the gas volume 
fraction of test point 072. One can see that the radial profiles at Level C are almost 
the same according to different models. However, the predictions at Level F show 
that the inconsistency between different models becomes larger. According to the 
models of Pfleger [157], Politano [158] and Sato [8], the dispersion is faster than that 
observed in the measurement while the model of Morel [159] achieves the best 
agreement. 
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Figure 6.29 Influence of BIT model on gas volume fraction (TP072, Antal [153] wall 
force, two-phase inlet, SST model) 

 
For test point 118, from Level I to Level O a peak of the gas volume fraction near the 
pipe wall is observed by using the Pfleger [157] model and the Politano [158] model. 
As mentioned in the discussion about the influence of the turbulence models, this 
small peak is caused by too weak a turbulent dispersion due to low eddy viscosity 
predicted by these two models, see Figure 6.26. 
 

  

  
Figure 6.30 Influence of BIT model on gas volume fraction at different levels (TP118, 

Antal [153] wall force, two-phase inlet, SST model) 

6.4 Comparison with the predictions by standard closure models 
Figure 6.31 compares the results of the 1 m pipe simulations predicted by the new 
model with those by the standard ones in ANSYS CFX-12.1, which are the 
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coalescence model of Prince and Blanch [36] and breakup model of Luo and 
Svendsen [95]. It shows that for all test cases the new model can deliver acceptable 
predictions about the bubble size distribution while the standard models provide an 
unreasonable peak of small bubbles. As a result, if the standard models are used, 
the predicted breakup rate has to be multiplied by a prefactor much smaller than 1 
[7]. Furthermore, neither the new model nor the standard one can trace the 
extension of bubble size distribution curves towards larger diameter bubbles due to 
coalescence, although the performance of the new model is much better. This 
disagreement might be introduced by an underestimation of the wake-entrainment 
mechanism. However, this is inconsistent with the results obtained in the Test Solver 
where an overestimation of large bubbles generated by wake-entrainment is 
observed. This discrepancy could be caused by inherent structural differences 
between the solvers used. 

 

  

  

  

Figure 6.31 Bubble size distribution predicted by the new model and the standard 
ones (Level F, Antal [153] wall force, two-phase inlet, SST+Morel [159] model, 

Ck=Cε=1.0) 
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In Figure 6.32 and Figure 6.33, the bubble size distribution and Sauter mean bubble 
diameter of test point 118 predicted by the new model are compared with those by 
the standard closure models, respectively. Similarly to the case of the 1 m pipe 
shown in Figure 6.31, due to an inherent feature of the breakup model of Luo and 
Svendsen [95], there is almost no limit for the size of the small daughter bubbles 
generated during the breakup event. As a result, the peak of the small bubbles is 
determined by the smallest size group in the discretization of bubble size range, 
which is considered as unrealistic. On the other hand, the new model can capture 
the evolution of bubble size distribution from Level C to Level R reasonably. 

 

  

  

  
Figure 6.32 Evolution of bubble size distribution predicted by the new model and the 

standard ones (TP118, Antal wall force, two-phase inlet, SST+Morel [159] model, 
Ck=Cε=1.0) 

 
Figure 6.33 illustrates again the difference in the coalescence and breakup rate 
predicted by the new model and the standard ones by comparing the Sauter mean 
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bubble diameter. For the example of test point 118, the mean inlet bubble size is 
about 18 mm and these large bubbles are extremely unstable against breakup. As a 
result, in the lower part of the pipe, i.e. L<2m, the mean bubble diameter decreases 
steeply and later on the breakup rate is slowed down. It is clearly seen from Figure 
6.33 that the evolution tendency given by the new model agrees well with the 
measured data although the predicted value is smaller than the measured one. On 
the other hand, in the predictions using the standard models, the bubble size 
decreases much more steeply than the measurements and the bubble size is also 
greatly underestimated by comparing it to the results of the new model and the 
measurement. This effect implies a large breakup rate delivered by the standard 
model. 

 
Figure 6.33 Evolution of Sauter mean bubble diameter predicted by the new model 

and the standard ones (TP118) 

6.5 Comparison with the results of Test Solver  
The comparison between the bubble size distribution predicted by the new model in 
CFX and Test Solver for four different test points is shown in Figure 6.34. It can be 
seen that the results provided by the Test Solver and CFX are similar to each other. 
Both show the breakup dominant tendency of the evolution from Level A to Level F 
and an overestimation of breakup rate. However, it is clearly noticeable that the 
breakup rate calculated in CFX is still larger than that in the Test Solver. As a result, 
the average bubble size predicted by the Test Solver is larger than that by CFX. This 
discrepancy might be caused by the overprediction of the Test Solver for the 
migration of bubbles from the wall to the pipe center (see Figure 6.35). 
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Figure 6.34 Bubble size distribution predicted by the new model implemented in CFX 

and Test Solver 
 

  

  
Figure 6.35 Gas volume fraction predicted by the new model implemented in CFX 

and Test Solver (TP118) 
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6.6 Influence of interphase drag force 
Finally, it is worth noting that in all simulations done by the Test Solver the 
Tomiyama [151] correlation for the interphase drag force is employed while in CFX 
the drag model of Ishii and Zuber [140], of Grace [98] and of Schiller and Naumann 
[147] are by default available. The model of Tomiyama [151] is implemented in 
addition through FORTRAN subroutines. The influence of difference drag models on 
the predictions about the bubble size distribution, gas volume fraction as well as 
velocity field is shown in Figure 6.36. It can be seen that the influence of the drag 
models of Tomiyama [151], Ishii and Zuber [140] and Grace [98] is negligible while 
the predictions delivered by the model of Schiller and Naumann [147] obviously 
deviates from those by other three models. The deviation possibly results from the 
limitation of the model of Schiller and Naumann [147] for solid spherical particles or 
for fluid particles that are sufficiently small. In addition, according to all drag models, 
a negative liquid velocity or a circulation region appears at the pipe center, which is 
caused by the low liquid eddy viscosity delivered by the Morel [159] BIT model (see 
Figure 6.25). 
 

  

  
Figure 6.36 Influence of drag model (TP072, Level F, SST model+Morel [159] BIT 

model, Ck=Cε=1.0, two-phase liquid inlet) 

6.7 Discussion 
The new model for bubble coalescence and breakup is implemented in the CFD 
code ANSYS CFX 12.1 and simulations performed were for air-water mixtures in an 
upward pipe flow. Several test points with different combinations of gas and liquid 
superficial velocities are involved. Predictions of the gas volume fraction, gas velocity, 
bubble size distribution as well as mean bubble size are compared with the 
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experimental data, the results delivered by the Test Solver and by the standard 
models, respectively. In addition, the influence of inlet conditions for liquid phase, 
interfacial forces such as wall lubrication force as well as turbulence models on the 
evolution of the phase distribution is analyzed.  
 
The results show that the new model can successfully capture the evolution 
tendency of the gas volume fraction and bubble size distribution. Moreover, 
considerable improvement is achieved in comparison to the standard models. 
However, the redistribution process of the gaseous phase near the injection position 
is too fast in the prediction and the predicted bubble size is generally smaller than 
the measurement. The redistribution velocity is mainly determined by bubble forces. 
Besides the lift force and turbulent dispersion force, which are discussed in the 
results of Test Solver, the influence of wall lubrication force on the radial profile of 
gas volume fraction is also significant. In comparison to the model of Tomiyama 
[151], the wall lubrication force calculated by the Antal et al. [153] correlation in Eq. 
4-13 and Eq. 4-14 is too small and results in an unrealistic peak of gas volume 
fraction adjacent to the pipe wall. On the other hand, if instead of the k-ε model, the 
SST model is used for the liquid turbulence, this unphysical peak disappears. This is 
because the liquid eddy viscosity or turbulent dispersion predicted by the SST model 
is much larger than that by the k-ε model (Figure 6.22). From influence of the 
turbulence model on the evolution of bubble size distribution, see Figure 6.21, one 
can see that dissipation rate predicted by SST model is in general smaller than that 
by k-ε model. 
 
The radial profile for gas volume fraction is dependent not only on bubble force 
models, but also on the inlet conditions for liquid phase, since they determine directly 
the eddy viscosity near the inlet. If the velocity and turbulence parameters calculated 
by the Sato [8] model in the Test Solver are used for the inlet conditions of the liquid 
phase, the predicted migration velocity of gaseous bubbles from the pipe wall to the 
center is in general overestimated. On the other hand, if the turbulence parameters 
of a fully-developed single-phase flow with equal liquid volumetric flux are used, the 
redistribution process of gaseous phase after the injection agrees well with the 
measurement, but this will bring instability to the radial profile of gas volume fraction 
due to too low an eddy viscosity. 
 
Finally, the comparison between the predictions provided by the new model and 
those by the standard models in CFX, see Figure 6.32 and Figure 6.33, shows a 
considerable improvement. The standard models overestimate the breakup rate and 
as a result the mean bubble size is much smaller than the measured one. In addition, 
from the comparison with the results of Test solver, one can see that the breakup 
rate predicted by CFX is too large or the coalescence rate is under predicted. As a 
result, the predicted bubble size is generally smaller than the prediction given by the 
Test Solver. The overestimation of coalescence rate by Test Solver might be caused 
by an overestimation of gas redistribution velocity.  
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7 Conclusion  
Practice has shown that the modeling of bubble coalescence and breakup is one of 
the bottlenecks in the modern CFD simulation of gas-liquid poly-dispersed flows. An 
extensive literature research reveals that the performance of existing models is quite 
inconsistent with each other, since all of them are tested under certain conditions. 
The purpose of this thesis is to develop a generally-applicable model for bubble 
coalescence and breakup, which is based on available theories and models. In 
comparison with other models, the main advantages of the new model can be 
summarized as follows: 
 

1). All important mechanisms leading to bubble coalescence and breakup in a 
turbulent gas-liquid flow are considered 

2). Different correlations used for the calculation of collision frequency and 
coalescence efficiency if different mechanisms are considered 

3). The breakup model is based on pure kinematic analysis, no information about 
the size and energy of turbulent eddies is needed.  

4). Complicated integrals over the size and/or energy of eddies are successfully 
avoided  

5). Arbitrary assumptions of daughter bubble size distribution are avoided. The 
daughter bubble size distribution, which is calculated directly from the partial 
breakup frequency, obeys the most reasonable ‘M-shape’  

 
The new model is tested and validated extensively in the Test Solver and the CFD 
code ANSYS-12.1 CFX for the case of vertical air-water pipe flow. Two kinds of 
extensions of the standard multi-fluid model are available in both solvers, i.e. the 
discrete population model and the inhomogeneous MUSIG model. These extensions 
with corresponding closure models such as coalescence and breakup are able to 
predict the evolution of bubble size distribution in poly-dispersed flows and to 
overcome the mono-dispersed flow limitation of the standard multi-fluid model. In 
addition, the performance of the Test Solver is first tested by doing parameter 
studies against corresponding CFX results. The results show that it is difficult for the 
Test Solver to capture the developing process of the flow near the inlet. In other 
words, the flow develops immediately into a fully-developed flow and the inlet 
conditions have almost no influence on the flow structure downstream. This 
discrepancy is caused by the 1D simplification of the Test Solver and will bring an 
overestimation of the migration velocity of gaseous bubbles from the pipe wall to the 
pipe center. 
 
Instead of complicated 3D flow conditions, gas-liquid vertical pipe flow under 
adiabatic conditions is chosen for the validation of the new model. This is because in 
such a simple case other complicated phenomena such as liquid circulation can be 
excluded. In this case, the gaseous phase travels together with the liquid flow stably 
under well-defined boundary conditions. The evolution of phase distribution is 
determined mainly by bubble dynamics and bubble forces. In addition, unlike in a 
bubble column, the change of bubble size distribution can be observed along the 
pipe over a long vertical distance, which is the most attractive advantage for the test 
of models for bubble coalescence and breakup.  
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Experimental data obtained in the L12 test series of air-water vertical pipe flow 
performed at the TOPFLOW test facility is employed for the validation of the model. 
This database is chosen according to three key considerations. Firstly, the available 
information of databases published in the literature for gas-liquid vertical pipe flow is 
usually incomplete to fulfill the desire of the validation of the new model in the two 
selected solvers. Especially, measured data of bubble size distributions are rare. 
Secondly, in the L12 database measurements about the evolution of bubble size 
distribution and phase distribution along the pipe are comprehensive. For example, 
data of bubble size distribution, gas velocity, gas volume fraction as well as the 
decomposition of radial gas volume fractions according to the bubble size classes 
are available for 12 height positions and 48 test points with different combinations of 
gas and liquid superficial velocities (see Table 4.1 and Table 4.2). Finally, the quality 
and plausibility of the measured data was checked extensively. A clear and 
consistent trend regarding the evolution of the flow with increasing L/D and 
superficial gas velocity was found. This is a clear advantage compared to previous 
test series of TOPFLOW facility as well as to databases published in the literature. 
 
Validation simulations are carried out for a wide range of test points from the 
experiment matrix, which cover the bubbly flow, turbulent-churn flow as well as the 
transition regime. Predictions about bubble size distribution, gas velocity and volume 
fraction indicate a generally good agreement with the measurement in the whole 
selected range. Results provided by the Test Solver can reproduce well the evolution 
tendency of bubble size distribution along the pipe, which change from coalescence 
dominant regimes via breakup dominant regimes to wake-entrainment dominant 
regimes as the superficial gas velocity increases. However, the tendency is almost 
always overestimated, i.e. too much coalescence in the coalescence-dominant case 
while two much breakup in breakup-dominant ones.  
 
The analysis of the contribution of each mechanism shows that the overestimation of 
coalescence rate could be caused by the mechanism of turbulence since it is the 
most important one in the coalescence-dominant cases. On the other hand, the 
mechanism of interfacial slip or stresses is responsible for the overprediction of the 
breakup rate in breakup-dominant cases. Furthermore, according to the new model 
coalescence caused by wake-entrainment is too large for test points with very high 
superficial gas velocity.  
 
At the same time, the redistribution of the gaseous phase from the injection position 
at the pipe wall to the whole cross section can be well traced by the Test Solver with 
the new closure model. However, in the simulation, the velocity of gas redistribution 
is too large, which could be caused by the 1D simplification of the Test Solver as 
discussed above. In addition, the redistribution process is dependent on bubble 
forces such as turbulent dispersion force and lift force. Reducing the influence of the 
turbulent dispersion force will lessen the impact of the redistribution process of the 
gaseous phase after injection. However, too low a dispersion force could bring out 
an unrealistic peak of gas volume fraction profiles, e.g. small bubbles accumulated at 
the near-wall region while large bubbles at the pipe center. On the other hand, a 
smaller lift force will slow down the migration of large bubbles towards pipe center 
under negative liquid velocity gradient. However, if the sign of velocity gradient 
changes to positive, e.g. due to the acceleration of gas injection, a small lift force will 
accelerate the migration of large bubbles to the pipe center. In addition, the wall 
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lubrication force also has a noticeable influence on the radial gas volume fraction 
profile. For example, small bubbles will immediately accumulate adjacent to the wall, 
if the wall force model of Antal et al. [153] together with the k-ε turbulence model is 
adopted. This is caused by the fact that the total dispersion effect of the two forces 
for small bubbles is insufficient to resist the accumulation effect of the lift force.  
 
Simulations performed with ANSYS CFX using the inhomogeneous MUSIG 
approach with the new closure model can predict the evolution of bubble size 
distribution and gas volume fraction with acceptable agreement with the 
measurements. A considerable improvement is observed over the results delivered 
by the standard closure models available in CFX. Besides that of bubble forces, the 
influence of inlet conditions for the liquid phase is also analyzed. The results imply 
that the uncertainty in the liquid inlet conditions has a noticeable influence on the 
redistribution process of the gaseous phase. This is mainly caused by the difference 
in the predicted eddy viscosity, which is much smaller in the case of single-phase 
inlet condition than that of the two-phase inlet condition provided by Test Solver. In 
addition, the results achieved in CFX are compared with those in the Test Solver, 
which shows that they are comparable with each other. Nevertheless, the average 
bubble size predicted by CFX is in general smaller than that by Test Solver. This 
might be caused by the overestimation of the redistribution process of gaseous 
bubbles by the Test Solver, which could over predict the coalescence rate while it 
concurrently underpredicts the breakup rate. 
 
Finally, since the turbulent dispersion force, which has a deciding influence on radial 
profile of gas volume fraction, is proportional to the eddy viscosity, the influence of 
the models for liquid turbulence as well as bubble induced turbulence (BIT) 
generation and destruction is investigated in the Test Solver and CFX, respectively. 
Predictions show that the influence of turbulence modelling on the bubble size 
distribution as well as average bubble size is negligible for test points with medium 
superficial gas velocity such as 085 and 096. This is because for these cases the 
mechanism of turbulence has a trivial contribution to the total coalescence and 
breakup rate (see Figure 5.36 and Figure 5.37). Nevertheless, its contribution to the 
breakup rate increases with the increase in the superficial gas velocity. As a result, 
for those test points with high superficial gas velocity such as 107 and 118, the 
predicted average bubble size decreases with the increase of turbulence dissipation 
rate. On the other hand, the influence of turbulence modeling on the radial gas 
volume fraction profile is obvious. Furthermore, the results are quite sensitive to the 
value of the characteristic time scale used by different BIT models. A small time 
scale will reduce the predicted liquid eddy viscosity, which might bring instability to 
the radial profile for gas volume fraction. If the turbulent dispersion force, i.e. the 
eddy viscosity, is too small, there will be an unphysical accumulation of gaseous 
bubbles at the pipe center due to the effect of the lift force. In addition, the difference 
in the definitions for the characteristic time scale, the impact of the different BIT 
models on superficial gas velocity or bubble size is different with each application. 
For example, for cases with relative small superficial gas velocity but BIT source 
already plays a role, the model of Morel [159] and of Troshko [163] delivers too small 
an eddy viscosity while for cases with a very superficial gas velocity, the model of 
Pfleger [157] and of Politano [158]  will bring instability problems. Furthermore, in a 
case with low superficial liquid velocity, e.g. test point 072, if the predicted viscosity 
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is too low at the pipe center, there will be a circulation formed and a lot of small 
bubbles captured there.  
 
Although a general advancement is achieved in comparison with some typical 
models available in the literature, further investigation and improvement of the new 
model is indispensible. For example, instead of air-water vertical pipe flow, the model 
should be validated for other flow situations such as steam-water pipe flow and 
bubble column. The further validation work is not included here in order to avoid the 
amount of the current work to be too large. Obviously, it is desirable to validate the 
model in the cases where only one mechanism is dominant so that more information 
about the physics of each mechanism can be obtained. In addition, further 
improvement is indispensible regarding the modeling of two-phase turbulence since 
the BIT (Bubble-Induce Turbulence) calculated according to different researchers is 
quite inconsistent. 
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8 Nomenclature  
Symbol Denomination Unit 

a Adjustable parameter in Eq. 2-116  
αα Volume fraction of phase α  
αg Cross-sectional averaged gas volume fraction   
αg(r) Radial profile of gas volume fraction   
αg(di, r) Radial profile of gas volume fraction of bubble size group i  
αg(di) Cross-sectional averaged gas volume fraction of bubble size 

group i 
 

α j(r) Radial profile of gas volume fraction of velocity group j   
αk(r) Radial profile of gas volume fraction of MUSIG sub-size group k   
A Frontal area of the leading bubble m2 
Ae Projected area of the bubble onto the hitting eddy m2 
Ah Hamaker constant J 
αmax Maximum packing density of gas bubbles  
b Adjustable parameter in Eq. 2-116  
β Dimensionless daughter bubble size distribution function  
Bbk, Bck Birth term of gas volume fraction of size group k due to 

coalescence and breakup 
m-3·s-1 

c Tolerance limit for statistic normal distribution function  
C Ratio of the minimum required energy to the parent bubble 

surface energy 
 

C1 ~ C36 Adjustable parameters  
Ca Capillary number  
Cacrit Critical capillary number  
CD Drag coefficient   
Ce Eddy efficiency  
Cfbv fbv

2/3+(1- fbv)2/3-1  
Cfi Interfacial frictional factor  
CL Lift force coefficient  
C0 Distribution parameter in drift velocity model  
Cs Shape coefficient  
Ct Coefficient considering the difference between the actual velocity 

of bubbles and that of eddies in turbulent flows 
 

Cε1, Cε2, Cμ Turbulence model constants  
Ck Coefficient in BIT kinetic energy  
Cε Coefficient in BIT dissipation rate  
CTD Adjustable constant in turbulence dispersion force  
CVM Virtual mass coefficient  
CW Wall lubrication force coefficient  
ξ Eddy size divided by the parent bubble size   
ξmin Smallest eddy size divided by the parent bubble size  
ξ ij Size rato of bubble i to bubble j  
ξso Normalized size of bubbles sheared-off from a large bubble  
d Bubble diameter m 
D Pipe diameter m 
Dbk, Dck Death term of gas volume fraction of size group k due to 

coalescence and breakup 
m-3·s-1 
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dcrit Critical bubble size for wake-entrainment to occur m 
de Eddy size m 
deq Equivalent bubble size m 
de,max Maximum eddy size m 
de,min Minimum eddy size m 
δeff Effective thickness of instable layer at the interface m 
Δt Time interval s 
Δd Discretization of bubble size m 
DF(α) Damping factor  
di, dj, dk, dl Bubble diameter of group i, j, k, l m 
Di Impeller diameter m 
dmax Maximum stable bubble size m 
d  

Average bubble size, ( ) ( )
max max

min min

d d

g B g B
d d

d d d dd d ddα α= ⋅ ⋅∫ ∫  

 

m 

dSM 
Sauter mean diameter, ( ) ( )max max

min min

d d
g

SM g B B
d d

d
d d dd dd

d
α

α= ⋅ ⋅∫ ∫  
m 

dso Average size of the sheared-off bubbles m 
dso,max Maximum stable size of the sheared-off bubbles m 
Ekin Kinetic energy kg·m2·s-2 
ε Turbulence dissipation rate m2·s-3 
Ecrit critical energy for breakup to occur kg·m2·s-2 
Ee Kinetic energy of eddy kg·m2·s-2 

eE  Average kinetic energy of eddy kg·m2·s-2 
Emin Energy needed to create the smallest and largest daughter 

bubbles 
kg·m2·s-2 

Emax Energy needed to create two equal-sized daughter bubbles kg·m2·s-2 
E(Vj) Energy needed to create two daughters with size Vj and Vi- Vj kg·m2·s-2 
Eo Eotvos number  
erf Error function  
erfc Complementrary error function  
Eσ Surface energy kg·m2·s-2 
η Kolmogorov length scale m 
F Interaction force between bubbles N 
F( ) cumulative chi-square distribution  
Fα,D Drag force of phase α N 
Fα,L Lift force of phase α N 
Fα,TD Turbulent dispersion force of phase α N 
Fα,W Wall lubrication force of phase α N 
fbv Breakage volume fraction, Vj/Vi  
fbv,max Possible maximum breakage volume fraction  
fbv,min Possible minimum breakage volume fraction  
FD Drag force N 
fi, fk , fl Size fraction of the i, k, l group   
f(p) A functional depedency on the viscosity ratio of the dispersed 

and continuous phase 
 

Fσ Surface tension force N 
fswarm Swarm effect coefficient  
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φk Bubble-induced source term for k-equation m2·s-3 
φε Bubble-induced source term for ε-equation m2·s-4 
g Gravitational acceleration m·s-2 
G Gap of the confined flow channel m 
γ  Shear rate s-1 
γ Modification factor for coalescence frequency considering the 

reduction of free space due to the presence of themselves 
 

Γ Gamma function  
Γ(d i, dj) Coalescence frequency between bubble i and bubble j m-3·s-1 
h Collision freqeucncy between two bubbles m3·s-1 
h liquid film thickness m 
H Height of the batch stirred-tank contactor m 
hb,ij Mean distance between bubble i and bubble j m 
h0 Initial film thickness m 
hcrit Critical film thickness m 
ht,ij Mean relative turbulent path length scale of bubble i and j m 
ht Average size of eddies that driving bubbles together m 
i, j, k, l Subscript representing bubble size groups  
Jl, Jg, J Gas, liquid and total superficial velocity m·s-1 
k Wave number of eddies m-1 
k Turbulent kinetice energy m2·s-2 
L Pipe height m 
le Integral length scale m 
λ Coalescence efficiency  
m Number of daughter bubbles  
M Surface immobility parameter  
M Morton number  
mi, mk, ml Mass of size group i, k and l kg 
Mα


 Interfacial momentum transfer per unit time N 

Mj Number of sub-size groups in velocity group j   
μg Dynamic molecular viscosity of gas Pa·s 
μ l Dynamic molecular viscosity of liquid  
μb Additional BIT viscosity Pa·s 
μt Shear-induced viscosity Pa·s 
μt' μb+μt Pa·s 
n Bubble number density m-3 
N Agitation speed s-1 
N Average number of eddies arriving at the surface in unit time s-1 
ne Number density of eddies m-4 
ν Kinematic viscosity m2·s-1 
Ω(d i) Total breakup frequency of bubble i s-1 
Ω(d j, di) Partial frequency of bubble i breaking into daughter bubble j s-1 
pα Pressure of phase α Pa 
p Viscosity ratio of two phases  
Pb Breakup probability  
π Circumference ratio  
Π Modification factor for turbulence-induced coalescence 

frequency considering the limited range of turbulence 
fluctuation affecting the motion of bubbles 
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Pk Shear-induced turbulence production m2·s-3 
Pr Turbulent Prandtl number  
r Radial position or bubble radius m 
R Pipe radius m 
Ra Liquid film radius m 
req Equivalent bubble radius  m 
ri Radius of bubble i m 
rj Radius of bubble j m 
R+ Dimensionless pipe radius, τ ρ ν/  w lR   

ρα Density of phase α kg·m-3 
ρ j Density of gaseous phase velocity group j kg·m-3 
ρ l Density of liquid phase kg·m-3 
ρg Density of gaseous phase kg·m-3 
Δρ  ρ l - ρg kg·m-3 
S Source terms by coalescence and breakup  m-3·s-1 
Sij Cross-sectional collision area of bubble i and bubble j m2 
σ Surface tension N·m-1 
σ2 Variance of a normal distribution  
σε, σk Turbulence model constant  
t Time coordinate s 
tcontact Contact or interaction time of two colliding bubbles s 
tdrainage Time needed for the liquid film captured between two colliding 

bubbles to thin down to a critical thickness  
s 

T Vessel diameter m 
τ Stress N·m-2 
τ Characteristic time scale s 
τ i Inertial turbulent stress N·m-2 
τs Surface stress N·m-2 
τt turbulent stress N·m-2 
τv Vicious stress N·m-2 
τw Wall shear stress N·m-2 
u Velocity m·s-1 
ucrit Critical approach velocity m·s-1 
uD,local Local drift velocity m·s-1 
ue Eddy velocity m·s-1 

GIu  Void-fraction-weighted mean drift velocity m·s-1 
urel Relative velocity m·s-1 
ur, uri, urj Terminal rise velocity of a bubble or bubble of size group i, j m·s-1 
ut, uti, utj Turbulence velocity fluctuation around a bubble, bubble of size 

group i, j 
m·s-1 

V, Vi, Vj Bubble volume or volume of a bubble of size group i and j m3 
Vi

BOX Volume influenced by the wake of bubble i m3 
V


 Normalized bubble volume m3 
V  Mean bubble volume m3 
x, y, z Spatial coordinates m 
y+ Dimensionless distance from the wall, τ ρ ν/  w ly   

w Collision frequency between bubbles and eddies m3·s-1 
We Weber number  
Wecrit Critical Weber number  
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