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Abstract. Comparing with the exact solutions of the
model system of one and two particles coupled to an axial
rotor, the quality of the semi classical tilted axis cranking
approximation is investigated. Extensive comparisons of
the energies and M1 and E2 transition probabilities are
carried out for the lowest bands. Very good agreement is
found, except near band crossings. Various recipes to take
into account finite K within the frame of the usual princi-
pal axis cranking are included into the comparison. A set
of rules is suggested that permits to construct the excited
bands from the cranking configurations, avoiding spu-
rious states.

PACS: 21.60.Ev; 21.60.Jz

1 Introduction

Tilted Axis Cranking (TAC) is a systematic microscopic
approach to high spin physics, which provides a semi
classical description of the energies and the intra band
transition matrix elements for both high-K and low-K
bands. After the existence of tilted solutions for a fixed
shape had been demonstrated in [1], the interpretation of
the solutions has been given in [2, 3], where also the
stability of the solutions with respect to deformation has
been shown. The method has turned out to be successful
in describing the c-spectra and transition rates of rapidly
rotating nuclei (cf. e.g. [4, 5, 6]). As a complement to the
standard Principal Axis Cranking (PAC) (e.g. [7]), which
describes the DI"2 bands with good signature, the TAC
approach permits to calculate the DI"1 bands, staying
completely within the microscopic mean field approxima-
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tion. Such bands are quite common in deformed nuclei.
The PAC is a special case of the more general TAC.

Cranking mean field theories are based on the classical
treatment of the total angular momentum and the as-
sumption of uniform rotation, which have the conse-
quence that angular momentum conservation is violated.
The contact with the quantal spectra is made by means of
semi classical expressions for the energy and transition
matrix elements. Hence, it seems to be important to inves-
tigate how well these approximations work for the de-
scription of the experimental observables. There is also the
problem of how to construct the excitation spectrum from
the TAC quasi particle levels avoiding spurious states. In
order to study these questions we start from the Particle
Rotor Model (PRM) (c.f. e.g. [8]), which treats the quantal
angular momentum dynamics correctly. Introducing to
this model the same kind of approximations used for the
fully microscopic cranking theory, the TAC version [2] of
the model system of a rotor core coupled to a few particles
is derived. Comparing the exact PRM solution with the
TAC calculations, the quality of the approximation is
studied. We study the cases of one and two quasi particles
in a j-shell coupled to the axial rotor. These are simple
enough to find the exact PRM solution numerically
and permit to model the most important angular
momentum coupling schemes met in rapidly rotating
nuclei. Both energies and intra band transition probabilit-
ies are compared. The classification of excited states
and ways to avoid spurious states in the spectrum are
addressed.

The paper is organized as follows: In Sect. 2 we
briefly outline the axial PRM for the model systems
we are studying and describe the TAC approximation
in the PRM context. The detailed comparisons of
axial PRM and TAC calculations for the yrast bands
are given in Sect. 3. There, also the construction of
the excitation spectrum is discussed and the excited
bands of the PRM and TAC are compared. In Sect.
4 previous descriptions of high-K bands using the PAC
scheme [9, 10, 12] are compared with the PRM and the
TAC.



2 Formulation of the models

2.1 ¹wo quasi particles in a single j-shell coupled
to an axial symmetric rotor

The PRM Hamiltonian [8] is given by

H"h#H
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p
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n
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For convenience we will call one particle a proton (p) and
the other a neutron (n). The formalism is exactly the same
for two protons or neutrons in different j-shells. The case
of two equivalent particles is also covered by the expres-
sions below, however the Pauli principle must be taken
into account in constructing the PRM basis states and the
TAC configurations.

Expressing the angular momentum of the rotor by the
total angular momentum Il and the angular momentum j

vof the extra particles,
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the axial rotor Hamiltonian reads
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where J is the moment of inertia of the rotor and the
symmetry axis is chosen to be 3. The j-shell single particle
Hamiltonians, denoted by h

p
or h

n
, are
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where the upper sign refers to a particle and the lower one
to a hole. The parameter C

p (n)
controls the level splitting in

the deformed field. Pairing is treated by means of the
BCS-quasiparticle Hamiltonians
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The parameters j
p (n)

and D
p(n)

are the chemical potential
and pairing gap, respectively. The modification of the
angular momentum matrix elements by pairing is not
taken into account, since it does not lead to any important
changes. For the same reason the Coriolis matrix elements
are not attenuated. Of course, these simplifications are
consistently applied to both the PRM and the TAC,
derived below.

The PRM Hamiltonian is diagonalized in the stan-
dard basis Dk

p
k
n
IMKT, where DIMKT is the Wigner D-

function and Dk
p
k
n
T is the product of the j-shell states D jkT.

The angular momentum projections onto the quantiz-
ation axis (3-) are denoted by k. The eigenstates are writ-
ten as states of good signature, i.e.
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and ck
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are the expansion coefficients

(see [8] for the details). The full recoil term is included into
the diagonalization.

The B (M1) values are given by
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where j is written as a spherical tensor of rank 1,
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Since we are only interested in a comparison of TAC with
PRM, we set Dg

p (n)
!g

R
D"1, choosing the signs such that

large B (M1) values are obtained. The B (E2) values are
calculated by means of the expression
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setting the square of the intrinsic electric quadrupole
moment equal to one.

The case of one quasi particle coupled to the rotor is
straightforwardly derived from the formulae above by
dropping one particle.

2.2 The TAC approximation

In order to obtain the TAC approximation to the axial
PRM we assume:

1. The operator I of the total angular momentum is
replaced by the classical vector J

2. S j2T"S jT2

3. J
3
"S j

3
T, J

2
"0, J

1
"JJ2!J2

3

Assumption 1) expresses the semi classical character of
the TAC approximation and assumption 2) its mean field
character. The relations 3) are consequences of the axial
symmetry: There is no collective angular momentum in
3-direction. The classical vector J can always be chosen
such that its second component is equal to zero. The
absolute value of the classical angular momentum is de-
noted by J.

With these assumptions the PRM energy becomes
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where we have introduced the expectation values il"S jlT of the particle angular momenta (alignments). The
expectation values are taken with respect to the product
wave function
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The variation dE"0 for fixed J with respect to the
amplitudes c

k
(quasi particle wave functions) leads to the
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eigenvalue problem
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This equation can be written as
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with the definition of the angular velocity x
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The choice u
2
"0 implies that i
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assumption 3). Thus, the variational problem (12) is equiv-
alent with the TAC eigenvalue problem (13) and the two
self consistency eqs. (14) for the angular velocity. These
can be rewritten as
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Eq. (15) is the TAC condition [2, 3, 4] that x and J must
be parallel at the point of self consistency (energy min-
imum). It fixes the tilt angle 0, which is the angle of total
angular momentum J with the 3-axis. Equation (16) pro-
vides the relation between u and J.

Thus, it is shown that the assumptions 1) and 2) lead
in fact to the TAC version [2] that approximates the
PRM. Let us represent it in the same way as full mean field
TAC [3, 4] is formulated. The quasi particle states are
found by diagonalization of the qp. Routhian
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The tilt angle is determined by making x parallel to J.
This is equivalent with minimizing the total Routhian

E@"Sh@T!1
2
J(u sin0 )2 (18)

with respect to 0 at fixed u. The expectation value of the
total angular momentum in the intrinsic frame system is
given by the expressions
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The total energy E (lab. frame) and the total Routhian E @
(rotating frame) are related by the standard canonical eqs.
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Naturally, the TAC expressions derived from PRM con-
tain a core contribution in addition to the quasi particle
part, whereas in the full TAC all energy and angular
momentum comes from the quasi particles. The PRM
version of TAC is discussed in detail in [2].

2.3 Relation of TAC to the rotational states

Before comparing the smooth functions J (u), E (J),2
obtained in TAC with the discrete values I, E(I),2 cal-
culated in the PRM, the relationship between the classical
TAC quantities and the quantal PRM quantities must be
established. One must distinguish between two cases:

1. TAC solution DuT: The energy minimum lies at
a tilt angle 0 that is different from 0° or 90°. The
signature symmetry is broken and the quasi particle
configuration is wave packet composed of all
possible I-states. It is associated with a DI"1
rotational band of parity n, whose states are
inter-connected by strong M1 and E2 transitions.

2. PAC solution Da,uT: The energy minimum lies at
the tilt angle 0"90°. The signature a is a good
quantum number and the quasi particle configura-
tion is wave packet composed of all possible I"a
mod 2 states. It is associated with a DI"2 rota-
tional band of parity n and spin I"a mod 2, whose
states are inter-connected by strong E2-transitions.

This distinction is a consequence of the mean field approx-
imation. The two types of solutions with different sym-
metry have to be interpreted differently, leading to well
known problems for the transitional cases. The gradual
appearance of signature splitting along a band cannot be
described by the TAC. This question will be discussed in
more detail below.

In order to include the lowest order quantal correction
the spin I of the PRM must be associated with the angular
momentum J (u)!1/2 of TAC [8, 10]. For example, E (I)
of the PRM is compared with E (J"I#1/2) calculated in
TAC. The inclusion of this quantal correction consider-
ably improves the agreement between PRM and TAC.

Analyzing the experiments it is often useful to trans-
form the quantal values of energy and spin to the fre-
quency u and the Routhians E @ of the cranking theory
[10]. We will do the same with our PRM results. In the
case of a DI"1 band we use

J"I, u"E (I )!E (I!1),

E@"1
2
[E(I)#E(I!1)]!uJ. (21)

Due to the quantal correction one must associate J with
I#1

2
, while the rotational frequency u is the transition

energy from I to I!1 corresponding to the mean value
I!1

2
. Hence, the angular momentum J of the transition is

given by I, the upper spin value.
For DI"2 bands with signature splitting we use

J"I!1
2
, u"1

2
[E (I)!E(I!2)],
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2
[E(I)#E (I!2)]!uJ. (22)

This corresponds to the prescription of [10], setting K"0
(no projection of the angular momentum on the 1-axis).
Equations (21) and (22) provide discrete points J (u) and
E@(u) that are compared with the corresponding points on
the continuous curves calculated by means of TAC. In
some figs. we shall show continuous functions E@ (u) for
the PRM that are obtained by interpolation from the
discrete points.
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By semi classical correspondence one finds [2, 3, 12]
for the intra band M1-transition strength1
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The B (M1) value calculated at angular momentum J(u)"
I must be compared with B (M1, IPI!1) of the PRM
(cf. discussion of the definition of u). The stretched BE(E2)
values are given by [2, 4, 12]:2
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The TAC value calculated for J (u)"I!1/2 is compared
to the B (E2, IPI!2) value in the PRM.

The expression (24) for the B (E2) values is applicable
both for TAC and PAC solutions. The expression (23) for
the B (M1) values gives 0 for PAC solutions, because the
transversal component of the magnetic vector is zero for
symmetry reasons. In this case the two branches of the
band among which the magnetic transition takes place
must be interpreted as two intrinsic configurations with
opposite signature. The B(M1) value is then given by the
expression suggested by Hamamoto and Sagawa [14]3
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where q is p or n depending on whether the proton or the
neutron changes its configuration and j

$1 are the spheri-
cal components defined by (8), but with respect to the
1-axis.

3 Comparison of the PRM and TAC

Particles, holes and quasi particles in the h
11@2

shell are
studied as examples. Different coupling schemes are con-
sidered, which correspond to different choices of the con-
stant C in the single particle Hamiltonian (4). We consider
two values, DC D"0.25MeV and 0.10MeV corresponding
to a well deformed and weakly deformed nucleus (b+
0.25 and 0.1), respectively. Let us adopt the classification
of coupling schemes suggested in [15]. For prolate shape,
the value C"0.25 MeV corresponds to a particle at the
bottom of the shell, which becomes very easily rotational
aligned (RAL-rotational aligned). The value C"!0.25
MeV corresponds to a hole at the top of the shell, which is
aligned with the symmetry axis of the deformed field
(DAL-deformation aligned). For oblate shape the particle

1Deriving (23) from the microscopic expression (14) of [3], one
singles out the contributions of the valence particles and defines the
rest as the core contribution. Introducing l
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2 [4] contains an unfortunate misprint, missing a factor of 1/4
3The expression l

n$1"(gq!g
R
) j

$1, q used for the magnetic mo-
ment operator accounts for the conservation of angular momentum.
It can easily be guessed from the quantal expressions given in [8]

and the hole change their roles. A mid-shell quasi particle
(k+7/2) is modeled by the quasi particle Hamiltonian (5)
with C"0.25MeV, D"0.8MeV and j"2 MeV. It cor-
responds to a coupling that prefers an angle of about 45°
with respect to the 3-axis (FAL-Fermi aligned). In prin-
ciple the same classification applies for the small deforma-
tion. However, the rotation perturbs the idealized schemes
considerably.

To be realistic, the core moment of inertia is chosen to
be J"30 and 15MeV~1 for the large and the small
deformation, respectively. The agreement between TAC
and PRM, discussed below, is not sensitive to the value
of J. In order to make small energy differences better
visible, the term !hu2/2, with h"30MeV~1 (rigid rotor
Routhian) is subtracted from both the TAC and the PRM
Routhians shown in Figs. 14, 15 and 16. It represents just
a shift of all energies by the same amount and h must not
be confused with the moment of inertia J of the PRM.

3.1 One particle or hole

The upper panel of Fig. 1 shows the single particle
Routhians. The slope of the trajectories is proportional to
the component of the angular momentum perpendicular
to the vector x,

Le@(u, 0 )

L0
"u(!cos 0 i

1
#sin0 i

3
)"!ui

M
. (26)

A particle in the lowest states prefers 0"90°, i.e. RAL
coupling. A hole in the highest states prefers 0"0°, i.e.
DAL coupling. The lowest state in lower panel is a mid-
shell quasi particle that obeys FAL coupling. It has its

Fig. 1. Upper panel: Single particle Routhians as functions of the tilt
angle 0 for C"0.25MeV and u"0.3MeV. Lower panel: Quasi
particle Routhians for the same parameters and D"0.8MeV and
j"2 MeV. For 0"90° the signature a is !1/2 for the levels with
odd numbers and 1/2 for the others
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minimum around 0"45°. Since the curve is rather flat,
i
M

is relatively small, i.e. the FAL quasi particles tend to
align with x.

In addition to the particle energies, the total Routhian
E@(0 ) in (18) contains the core term !1

2
J(u sin 0)2,

which is minimal at 0"90°. It shifts the minimum of
E @ (0) towards the 1-axis, which is the direction of the
collective angular momentum R. Figure 2 shows E@(0 ) for
the case of one hole.

Not all minima of E @ (0 ) correspond to a band. If
0"0°, the wave function does not depend on u. It repres-
ents one and the same state, the band head. Take the case
of a hole shown in Fig. 2 as an example. As long as the
curvature of the hole state (negative curvature of the
highest level in Fig. 1) is larger thanJu2 (curvature of the
collective term) the minimum remains at 0"0° and the
band has not yet started. When the two curvatures are
equal the band head is reached. At this point the minimum
bifurcates from a maximum at 0"0°, moving towards
90°. The movement of the minimum can be seen in the
Fig. 2. For small frequencies the curves E @ (0 ) become very
shallow. Superficially, one could conclude that there will
be large fluctuations in the orientation and the TAC
solution becomes invalid. However, this is not the case,
because at the band head the PRM wave function reduces
to one component with k"11/2, i.e. it becomes narrow
instead of wide. This means that not only the curvature of
the function E @(0) goes to zero but also the mass coeffic-
ient associated with the oscillation in 0, such that the
width of the wave function goes to zero. Thus, the TAC
approximation should work well at the band head.

Figure 3 compares the TAC calculations for one par-
ticle and one hole with the corresponding PRM ones. In
the case of the particle (RAL) only the PAC solution 0"
90° is found. The signature is good, it is, respectively,
a"!1/2 and 1/2 for the levels 1 and 2 in Fig. 1. The
energies of the two PAC configurations agree well with
the ones of the two DI"2 bands calculated in the PRM.
As suggested in [14], for a PAC solution one has to
calculate the B (M1) values as the non-diagonal matrix

Fig. 2. Total Routhians of the lowest two hole states (C"!0.25
MeV) as functions of the tilt angle 0 for u"0.3, 0.6, 0.9 and 1.2MeV.
For 0"90° the signature is a"!1/2 for the lower curve and 1/2 for
the higher one of each pair. The arrows indicate the minima

elements of the M1 operator between the states of oppo-
site signature by means of (25). The comparison in Fig.
3 shows fair agreement.

In the case of the hole (DAL), the minima of E@(0 ) in
Fig. 2 represent the DI"1 TAC band as long as 0(90°.
As seen in Fig. 3, the TAC calculation very accurately
reproduces both the energies and the B (M1) values, which
must now be calculated by means of (23). It is noted that
the TAC curve in Fig. 3 starts at u"0.183MeV, where
we find the band head (zero curvature at 0"0° in Fig. 2).
In accordance with the discussion above, TAC describes
very well both the energies and the transition probabilities
near the band head.

At u+0.7MeV one notices the onset of signature
splitting in the function J (u) derived from the PRM. It is
more evident in the B (M1) values for the corresponding
angular momentum of about 25. Both signatures are at-
tributed to one and the same TAC solution, which pro-
vides the mean value with good accuracy. The onset of the
staggering is the precursor of the transition 0P90°, which
occurs for u+1.2MeV, as seen in Fig. 2. In the cranking
approach this transition leads to a discontinuity, because
one must switch from the interpretation of the TAC solu-
tion as a DI"1 band to the PAC interpretation, where to
each configuration of given signature a DI"2 band of the
appropriate I is associated.

To formulate a rule that prevents over-counting of
states, it is helpful to consider a symmetric graph like
Fig. 2. For u(1.2MeV there are always two degenerate
minima symmetric to 90°. This is the manifestation of the
breaking of the signature symmetry. These two minima
generate the DI"1 TAC band, since they may be com-
bined into an odd and an even superposition, correspond-
ing to the two degenerate signature partners I"1/2#2n
and I"!1/2#2n. The left minimum arises from the
hole in level 12 (cf. Fig. 1) and the right one from the hole
in level 11 continued diabatically through the the crossing
at 90°. Hence, the configuration based on a hole in 11 also
belongs the DI"1 TAC band. At 0"90°, the upper
curve of each pair in Fig. 2 corresponds to a mixture of
50% of level 11 and 50% of level 12. It has an overlap of
almost 100% with the signature 1/2 combination of the
minima of the lower curves. Consequently, the narrow
minimum at 90° in the upper curve of each pair must be
considered as spurious. It must be discarded, because it
does not represent an additional band.4

For u'1.2MeV the two minima in the lower curve of
each pair have merged into one at 90°, where the signature
is a good quantum number. Now the minima at 0"90° of
both the lower and upper configurations of each pair are
associated with a DI"2 PAC band. They are interpreted
as the two signature partners with I"$1/2#2n, in the
same way as we did for the RAL particle on the levels
1 and 2. The signature splitting is given by the distance
between the two curves in Fig. 2 at 0"90°.

Thus, within the TAC theory signature splitting ap-
pears suddenly at the change from the TAC to PAC

4The kinks in the first excited configuration in Fig. 2 correspond to
the crossing of the levels 11 and 10. The branch where the hole is on
level 10 does represent an excited band
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Fig. 3. Energy, angular momentum and B (M1) values of the lowest
bands for a particle and a hole coupled to the rotor. Circles: PRM-
hole, squares: PRM-particle, full line: TAC-hole, dashed line: PAC-

particle. The dashed dotted curve is calculated by means of (37),
combining the tilted geometry with the PAC calculation

interpretation. TAC only describes the two limiting cases
of no or substantial splitting, the gradual onset cannot
be accounted for. Around u"0.9MeV or angular mo-
mentum 30 one must switch from the TAC interpretation
without signature effects to the PAC interpretation with
finite signature effects. The pair of curves for u"0.9MeV
can be interpreted in two ways: Either the two minima at
82° and 98° generate the lowest DI"1 band. Then the
narrow minimum at 0"90° of the higher of the two
curves must be discarded. Or the minimum and the max-
imum at 0"90° are interpreted as the two signature
branches. As seen in Fig. 3 the best match of the B(M1)
values is achieved if one changes from the TAC to the
PAC interpretation near u"0.9MeV, somewhat before
the two minima in the lower curve have merged. This can
be attributed to the zero point fluctuations.

The signature splitting of the energies is barely visible
in Fig. 3. For the FAL quasiparticle, discussed next, one
also encounters a noticeable discontinuity in the energies.

3.2 One mid-shell quasi particle

Figure 4 illustrates the case of a quasi particle in the
middle of the shell, where pairing must be taken into
account. The chemical potential lies between the 7/2 and
9/2 level. The configuration corresponds to a FAL quasi

particle on the lowest level in lower panel of Fig. 1. We
define the band head from the criterion that in a band the
energy must increase with I. For the PRM yrast energies
this is the case from the 11/2P9/2 transition on. The
corresponding frequency u"0.05MeV agrees well with
the lowest value of u for which we find a TAC solution. At
the band head there is a rapid change from DAL coupling
to the FAL coupling. Though the agreement is not perfect,
the TAC is still a good approximation near the band head.
At u"0.7MeV and I"25 the tilt angle 0 reaches 90°.
The change from the TAC interpretation to the PAC
scheme with signature splitting leads to a more pro-
nounced discontinuity in the energies than for the case of
one hole discussed above. Up to about spin 18 the TAC
solution describes the signature average of the energy and
of the B(M1) values well. Above spin 25 the PAC solution
becomes a good approximation. Again, the best possible
match is achieved around spin 20, somewhat below where
the two TAC minima merge into the PAC minimum.

3.3 Yrast band of two holes

The coupling of a DAL proton hole and a DAL neutron
hole (both in level 12 of Fig. 1) to the rotor is illustrated in
Fig. 5. As seen in Fig. 6, the TAC reproduces the PRM
energies and transition probabilities very well. The growth

268



Fig. 4. Energy, angular momentum and B (M1) values of the lowest
band for a mid-shell quasi particle. Circles: PRM, full lines: TAC and
dashed lines: PAC (in the upper two panels only signature 1/2,
!1/2 is shown as a full line). The dashed dotted curve is calculated
by means of (37), combining the tilted geometry with the PAC
calculation

of the B (M1) and B (E2) values reflects the well known
strong coupling behavior [8]. The strong coupling limit is
obtained from the general expressions (23) and (24) by
assuming that J

3
"K, i

1, q"0 and i
3,q"kq , where K and

k are kept fixed. Quoting also the exact strong coupling
expressions [8], one has
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Fig. 5. Geometry of angular momentum for the combination of
a proton DAL hole with a neutron DAL hole
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The TAC approximates the Clebsch-Gordan coefficients
by their asymptotic values.

At larger frequency deviations from the strong coup-
ling limit appear. In Fig. 5, the strong coupling limit
corresponds to i

p
and i

n
being parallel to the 3-axis. It is

seen that for increasing u there is a substantial deviation
from this limit developing. This tilt of the vectors i to-
wards J explains the decrease of the B(M1) values at large
spin, which are proportional to the square to the trans-
versal component of i.

3.4 Yrast band of a particle and a hole

The coupling of a RAL proton (in level 1 of Fig. 1) and
a DAL neutron hole (in level 12 of Fig. 1) to the well
deformed rotor (C"0.25MeV) is illustrated by the vector
diagram 7. As seen in Fig. 8, TAC approximates the PRM
well for the ‘‘rotational part’’ of the yrast sequence, where
the energy increases with the angular momentum. Near
the minimum of E (I), which represents the band head, the
TAC ceases to work. The B (M1) values drop to zero,
whereas they continue to grow in the PRM. The problem
arises, because the RAL proton dealigns when u goes to
zero. In the PRM it remains rotational aligned even in the
region below the minimum. This is a consequence of zero
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Fig. 6. Energy, B(M1) and B(E2) values of the lowest band for the
combination of a proton DAL hole with a neutron DAL hole. Full
circles: PRM, dashed line: TAC. A rigid rotor contribution with
h"30 MeV~1 has been subtracted from the energy. Several pre-
scription to treat finite K within the PAC are included. Dotted line:
BFFP, open circles: RMB and dashed-dotted: FM

point fluctuations that are not included in TAC. This
discrepancy is in contrast to a situation when strong
coupling is approached at the band head, like the case of
a proton hole combined with a neutron hole, discussed
above. In this case TAC works very well near the band
head, because u is finite there.

Figure 9 compares the wave functions of the PRM
with the ones of TAC. The upper panel shows the prob-
ability of the different projections k of the h

11@2
single

Fig. 7. The geometry of angular momentum for the combination of
a proton RAL hole with a neutron DAL hole

particle states5 and the lower one shows the distribution
of the total projection K"k

p
#k

n
. The mean value of

K of the PRM distribution is close to the J
3
value of TAC.

The distribution of the PRM are wider than the ones of
the TAC, i.e. the PRM has a stronger K-mixing than TAC.
This is a consequence of the zero point fluctuations miss-
ing in TAC. The fact that the distributions have similar
centroids explains the good results of TAC for the ener-
gies, B (M1) and B (E2) values, because they are diagonal
matrix elements that are mainly determined by the mean
values of the angular momentum contributions. For non-
diagonal transition matrix elements the difference in the
widths of the distributions are expected to ensue stronger
deviations.

Figure 8 also displays the weakly deformed case
C"0.1MeV. As illustrated by the vector diagram 10,
only at the band head the classification into a RAL proton
and a DAL neutron hole makes sense. At higher spin there
is a strong reorientation of both i

p
and i

n
towards the

J axis. This is the characteristic shears mechanism [3, 6]
discovered recently in the light Pb-isotopes. Also in this
case, the agreement between PRM and TAC is quite
reasonable. There is a transition TACPPAC around
I"15. It is seen as the onset of signature splitting in the
PRM results. The tilt angle becomes 0"90° near u"0.5
MeV. The same problems as discussed for the one particle

5The PRM wave function is ‘‘desymmetrized’’. This means we solve
the PRM problem within the basis (6) and additionally within the
basis of ‘‘wrong signature’’ that combines the two terms $K with
the opposite sign. The two solutions are degenerated (if the signature
splitting is negligible). The superposition of the two solutions with
equal weights gives the asymmetric k-distribution that can directly
be compared to the TAC
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Fig. 8. Energy, angular momentum, B(M1) and B(E2) values for lowest band of the combination of a proton RAL hole with a neutron
DAL hole. Circles: PRM C"0.25MeV, squares: PRM C"0.10MeV, full lines: TAC, dashed lines: PAC signature

Fig. 9. The structure of the wave function for TAC (dashed) and
PRM (full). Upper panel: The k-distributions for the proton and
neutron. Lower panel: The distribution total K"k1#k2. The
average K values are indicated by the arrows. For obtaining the
PRM values the wavefunction has been desymmetrized (cf. footnote
p. 12)

case arise. The signature splitting appears as a sudden
jump.

The physics of shears bands has been discussed on the
basis of the TAC [3, 6]. The comparison shows that within
PRM, which treats the angular momentum as a quantal
quantity, the shears mechanism shows up in the same way
as in the semi classical TAC. This is demonstrated by the
vector diagram 10, where we compare the angular mo-
mentum expectation values calculated in TAC with the
ones calculated from the PRM wave functions. The higher
frequency is chosen just below the value where the TAC
solution collapses into the PAC (i.e. 0P90°). In our
model study we consider only one particle and one hole,
each carrying 5.5 units of angular momentum. Many of
the shears bands in the Pb-isotopes are composed of at
least two particles and two holes, each of which carrying
a similar amount of angular momentum. For these bands
the TAC solution survives to higher frequencies. Some of
the observed configurations are possibly one particle—one
hole excitations. Like the one we study here, they seem to
develop signature splitting [6].

3.5 Yrast band of a mid-shell proton and neutron

Figures 11 and 12 shows the combination of a mid-shell
FAL quasi proton and a mid-shell FAL quasi neutron

271



Fig. 10. The geometry of angular momentum for shears bands. The
left panel (+u"0.25, 0.50MeV) shows the TAC calculation and the
right panel (I"8, 14) the PRM calculation. For obtaining the PRM
values the PRM wavefunction has been desymmetrized (cf. footnote
p. 12)

Fig. 11. The geometry of angular momentum for the combination
of a FAL quasi proton with a FAL quasi neutron

(both in level 1 of Fig. 1 lower panel). As illustrated by
the vector diagram 11, the two quasi particles have an
orientation angle of about 45°, which somewhat in-
creases with the frequency. This is characteristic for the
FAL coupling. Also for this coupling, the agreement be-

tween PRM and TAC is quite good. When calculating the
B (M1) values for the PAC limit one must take into ac-
count the fact that the first excited configuration is
twofold degenerated (proton or neutron excited). These
two configurations are mixed by the PRM Hamiltonian.
Accordingly, one must calculate the non-diagonal
matrix element (25) between the PAC states D1T and
( D2T#D2@T)/J2.

3.6 Excited bands

Figure 13 shows E @ (u"0.5MeV, 0 ) for the lowest con-
figurations of two DAL holes. In order to avoid over
counting states, we must extend the discussion started in
Sect. 3.1. Consider first the bundle of configurations 1—4,
generated by putting the neutron and a proton holes on
the levels 11 and 12 in Fig. 1. The configurations 2 and
3 are degenerated. There are four configurations of given
signature at 0"90°, two with even I and two with odd I.
This is the number of DI"2 bands that is associated with
this bundle. In the TAC regime, the two symmetric min-
ima of configurations 1 and 4 generate a K"11, DI"1
band. The two minima of the configurations 2 and 3 at 90°
generate a K"0, DI"1 band. This exhausts the number
of physical configurations. The kink formed by 1 and 4 at
90° must be discarded. With increasing u, the minima of
1 and 4 move towards 90°. We keep the TAC interpreta-
tion until these two minima approach 90°. Then we shift
to the PAC interpretation, where all configurations at
90° are accepted. Now the good signature a confines I.
Configuration 1 has a"1"(!1/2)#(!1/2) (odd spin)
followed by the degenerate configurations 2 and 3 with
a"0"(!1/2)#(1/2), (1/2)#(!1/2) (even spin) and
configuration 4 with a"1"(1/2)#(1/2) (odd spin). It is
important that the shift from the TAC to PAC interpreta-
tion is made for the whole bundle at the same u. The
degenerate configurations 5 and 6 are generated by put-
ting the proton and neutron holes on levels 12 and 10 and
the configurations 7 and 8 by putting them on 9 and 11.
They form two K"10, DI"1 bands.

Figure 14 shows that this interpretation leads to the
right spectrum and that TAC provides a very good de-
scription of the PRM energies and transition probabilit-
ies. The only discrepancy is the energy difference between
the two K"10 bands. It is caused by the two body part of
the recoil term in the PRM Hamiltonian, which is not
taken into account in TAC. The B (M1) and B (E2) values
for the excited bands are well reproduced by TAC. The
transition to the PAC regime is not reached in this
example, but it will be seen in the following ones.

The excitation spectrum of a RAL proton combined
with a DAL neutron hole is illustrated in Fig. 15. The left
column of Table 1 lists the configurations. The config-
urations 1 and 2 correspond to the proton on level 1 in
Fig. 1 and the neutron hole on 11 or 12. Configurations
3, 4 and 5, 6 correspond to the neutron hole and 11 and 12
combined with the proton on levels 2 and 3, respectively.
According to the rules, these configurations generate the
three lowest DI"1 bands. It is noted that for u"0.1
MeV band (1, 2) has already started (minimum at 54°)
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Fig. 12. Angular momentum, B(E2), and B (M1) values for the
lowest band of the combination of a FAL quasi proton with a FAL
quasi neutron. Full circles: PRM. Left lower panel: Full line: TAC,
dashed lines PAC. The dashed dotted curve is calculated by means

of Eq. (37), combining the tilted geometry with the PAC calculation.
In the other panels: Long dashes: TAC, dotted lines: BFFP, open
circles: RMB dashed dotted lines: FM

Fig. 13. Routhian as a function of the tilt
angle for the combination of a DAL proton
hole with a DAL neutron hole

band (3, 4) is just about to start (very shallow minimum at
34°) and (4, 5) has not started yet (minimum lies at 0°). This
agrees with the beginnings of the corresponding the PRM
curves in Fig. 15. For u"0.9MeV, the minima of the
configurations 1 and 2 lie at 83° and 97°. The approach of
90° shows up as the onset of signature splitting in the
PRM energies. The configurations 7 and 8 correspond to
the particle on level 1 and the hole on level 9 and 10. They
come down relative to the configurations 3—6. The reason

is evident from Fig. 1. The splitting between the RAL
levels 1 and 2 and between 1 and 3 grows linearly with u,
whereas the splitting between the DAL levels 12 and 13
and between 9 and 10 does not change very much with u.
In accordance one can see in the upper panel of Fig. 15 the
bands (7) and (8) come down and cross bands (3, 4) and
(5, 6). For u"0.7MeV the minima of the configurations
(7) and (8) reach 90°. Accordingly, we interpret configura-
tion (7) as the a"0 (even I ) and 8 as the a"1
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Fig. 14. Excitation spectrum of the combination of a DAL proton
hole with a DAL neutron hole. The upper panel shows the
Routhians calculated by means of (21) and (22) from the PRM
energies. A rigid rotor contribution with h"30MeV~1 is subtrac-
ted from the Routhian. Full drawn lines correspond to even spin
(a"0) and dashed lines to odd spin (a"1). The cranking results are
shown by circles, where open circles denote one DI"1 TAC band
and closed circles denote two DI"1 TAC bands of the same energy.
The TAC configurations are labeled in the same way as in Fig. 13. In
the lower two panels only full lines are used for the PRM results (no
specification of the signature)

(odd I ) band. In the PRM calculation the signature split-
ting of these two bands sets in at somewhat lower u. At
u"0.9MeV the signature splitting between the bands
(7) and (8) agrees well with the one estimated from the
cranking calculations. For the other configurations the

symmetric minima are still sufficiently far from 90°, such
that the TAC interpretation applies. This is in accordance
with the small signature splitting the PRM gives for these
bands. The example demonstrates that the coexistence
and crossing of TAC and PAC bands can be treated in the
cranking approach when applying the rules to avoid over
counting.

The excitation spectrum of a FAL quasi proton com-
bined with a FAL quasi neutron is shown in Fig. 16 and
the right part of Table 1 lists the lowest configurations.
For low u the TAC interpretation applies. The configura-
tions (1, 2) correspond to a K"7, DI"1 band and (3, 4)
to a K"0, DI"1 band. The configurations (5, 6, 7, 8)
give rise to two K"6 DI"1 bands. They are degen-
erated in the TAC scheme, but split in the PRM
calculation by the recoil term. Around u"0.7MeV
one must change to the PAC interpretation. Now all
configurations at 90° are accepted and assigned to
DI"2 bands, according to the signatures given in the
table. As seen, at u"0.9MeV the PAC interpretation
works rather well. Again the degenerated PAC configura-
tions (3, 4) are split in the PRM calculation by the recoil
term.

The combination of two FAL quasi protons is also
shown in Fig. 16. Only the configurations given in the
table are allowed by the Pauli principle. Otherwise the
cranking results are identical with the case of unlike par-
ticles, discussed above. However, the interpretation is dif-
ferent. From the bundle (1, 2, 3, 4) only configuration 3 re-
mains, which has its minimum at 90°. Accordingly, it is
interpreted as an even spin PAC band. It represents the
well known s-band.6 At low u, configurations (5) and (7)
have minima symmetric to 90°. Accordingly, they are
interpreted as a DI"1 band, which corresponds to the
t-band discussed in [3]. Around u"0.7MeV the two
minima approach 90° and one must shift to the PAC
interpretation, which assigns (5) and (7) to an odd spin and
even spin band, respectively. The PAC interpretation be-
comes more accurate at u"0.9MeV. The TAC descrip-
tion is not as good as for the lowest bands in the case of
unlike FAL quasi particles. At low u, the PRM calcu-
lation gives already a substantial splitting of the two
signature branches of the t-band, which is in contrast to
the TAC calculation. The origin of the discrepancy can be
traced back to the interaction of the t-band with the
s-band, which is seen as the quasi crossing of the config-
urations (3) and (5) at 68° in the middle panel of Fig. 16. At
low u the energy difference between the s- and the t-band
is small and the interaction causes a repulsion. However,
this interaction can only act between even spin members,
because the s-band has only even spins. Thus, the even
spin part of the t-band is pushed up, whereas the odd spin
part remains unshifted. This results in a signature split-
ting. The PRM wave functions show indeed a strong
mixing of low- and high-K components for even spins,
whereas for odd spins the wave function is centered
around K"7.

6The PRM calculation does not show its crossing with the g-band,
because the 0 quasi particle configuration is not included
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Fig. 15. Upper panel: Excitation spectrum the combination of
a RAL proton with a DAL neutron hole. The Routhians are cal-
culated by means of (21) and (22) from the PRM energies. A rigid
rotor contribution with h"30MeV~1 is subtracted from the
Routhian. Full drawn lines correspond to even spin (a"0) and

dashed lines to odd spin (a"1). Circles denote a TAC solutions
(both signatures), squares and triangles PAC solutions with a"0
and 1, respectively. Lower panels: The cranking Routhians as func-
tions of the tilt angle (no specification of the signature). The config-
urations are labeled in the same way in all panels

3.7 Construction rules for the excitation spectrum

We have discussed in detail that the cranking configura-
tions must be interpreted differently if the tilt angle is 90°

(PAC) or deviates from this value (TAC). The coexistence
of TAC and PAC minima in the excitation spectrum
and the fact that with increasing frequency the TAC
minima approach 90° make it necessary to bring the two
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Table 1. The lowest configurations of
a RAL proton and a DAL neutron hole
(left columns) and two FAL quasi par-
ticles (right columns). The single particle
or quasi particle states are labeled as in
1. The first and fourth columns enumer-
ate the configurations, the second, fifth
and sixth columns indicate the config-
urations and the third and seventh col-
umns give the signature of the config-
urations at 0"90°

conf. n l~1 a conf. n l n n a

1 1 12 1 1 1 1 1
2 1 11 0 2 2 2 1
3 2 12 0 3 1 2 1 2 0
4 2 11 1 4 2 1 0
5 3 12 1 5 1 3 1 3 1
6 3 11 0 6 3 1 1
7 1 10 1 7 2 3 2 3 0
8 1 9 0 8 3 2 0

9 1 4 1 4 1
10 4 1 1
11 2 4 2 4 0
12 4 2 0

interpretations into one frame. This can be achieved by
the following set of rules:

1. Consider the Routhians E @(u, 0) as functions the
tilt angle 0 in the intervals 0°404180°. A min-
imum is associated with a DI"2 band.

2. For 0"90° the PAC interpretation applies: The
signature of the configuration is known and fixes
I mod 2.

3. For minima at 0O90° the TAC interpretation ap-
plies: For each minimum at 0(90° there is one
with the same energy at 180°!0. These two min-
ima combine into two degenerated DI"2 bands of
opposite signature, i.e. into a DI"1 band.

4. Minima at 0° and 180° are disregarded. A band
starts when the minima begin to move away from 0°
and 180° (band head).

5. Configurations with a minimum at 0O90° belong
to a group that forms a bundle emerging from
0"90°. Continue the functions E@ (u, 0 ) diabati-
cally through 90° (i.e. draw a line with constant
slope even if the calculation may connect the con-
figurations in a different way). Each pair of minima
symmetric to 90° (including the ones at 90°) of such
a bundle generates a DI"1 band (cf. rule 3). Kinks
at 90° are disregarded. This is the TAC interpreta-
tion of the bundle that eliminates spurious states.

6. When all minima of the bundle are close to 90° (say
D90°!0 D(10°) change to the PAC interpretation
for the whole bundle. Now the diabatic construction
of rule 5 is abandoned. Each configuration at 90°
(also if maximum) is interpreted as a DI"2 band
with I mod 2 given by the signature.

7. PAC interpretation is applied to all minima at
0"90° that do not belong to bundles.

8. Calculate the B (M1) values by means of (23) if the
TAC interpretation applies and by means of (25) if
PAC interpretation applies.

9. Calculate the B (E2) values by means of (24), irre-
spective of the interpretation.

4 Treatment of KO0 bands in PAC

Conventionally, all bands have been described in the
frame of the PAC. In the case of the high-K bands, the

problem is encountered that the expectation value J
3
"

i
3
"0. This follows from the conservation of signature

[10]. The finite value of K causes substantial corrections
to the energies and, in particular, to the transition rates. In
order to be able to describe the bands with finite K within
PAC, two recipes have been used to estimate J

3
. Ring et

al. [9] (referred to as RMB) suggest

J
3
"JSD j2

3
DT , (30)

where the expectation value is calculated as a function of
u. Bengtsson and Frauendorf [10] and Fässler and
Plozajczak [11] (referred to as BFFP) assume

J
3
"K, (31)

where K is kept constant, equal to the band head spin. The
latter approach may be viewed as an approximation to the
TAC, which assumes that i

3
does not change as a function

of u. This assumption is justified if the particles respon-
sible for i

3
are sufficiently strongly coupled to the de-

formed field. Both recipes are used to obtain the energies
E (J) from E (J

1
), calculated by means of PAC, where

(19) is used to express J in terms of J
1
. Applying

the approximation BFFP to the TAC expressions (23, 24)
for the B (M1) and B (E2) values, one obtains the vector
model of Dönau and Frauendorf [12] (referred to as DF)
for the transition probabilities. This becomes evident
from7

cos0"
J
3

J
"

K

I#1/2
. (32)

Comparing PAC with the PRM, we found a third recipe
to give the best approximation (referred to as FM). The i

3values are calculated for each particle separately by means
of the expression

i
3p (n)

"JSp(n) D j2
3
Dp (n)T . (33)

Their sum is J
3
. The individual values of i

3
are used in (23)

to calculate the B(M1) values.

7 In [12] the angle a"90°!0 is used
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Fig. 16. Upper left panel: Excitation spectrum of the combination of
a FAL proton with a FAL neutron hole. Upper right: Excitation
spectrum of the combination of a two FAL protons or neutrons
(upper right). The Routhians are calculated by means of (21) and (22)
from the PRM energies. A rigid rotor contribution with h"30
MeV~1 has been subtracted from the Routhian. Full drawn lines

correspond to even spin (a"0) and dashed lines to odd spin (a"1).
Circles denote a TAC solutions (both signatures), squares and tri-
angles PAC solutions with a"0 and 1, respectively. Full symbols
denote two fold degeneracy. Lower panels: The cranking Routhians
as functions of the tilt angle (no specification of the signature). The
configurations are labeled in the same way in all panels

As seen in Figs. 6 and 12, BFFP works well at lower u,
where i does not deviate very much from the 3-axis. The
drop of the B(M1) values at high spin cannot be obtained
assuming a fixed J

3
, because it is a consequence of the re-

orientation of i towards J. This reorientation increases the
tilt angle 0 and the B(E2) value. Hence, the fixed K pre-
scription, gives very good results in the lower part of a band
but becomes progressively inaccurate with increasing spin.
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RMB that uses J
3
"JS j2

3
T works well for the case of

one quasi particle (cf. [9 13]).8 However, as seen in Figs.
6 and 12, it deviates considerably from the PRM in the
case of two quasi particles. Near the band head a one
quasi particle state of good signature is given by

D$T+
1

J2
( DkT$D!kT), S$D j2

3
D$T+k2, (34)

what amounts to J
3
+k. For the lowest two quasi particle

states

D$$T+1
2
( Dk

p
T$D!k

p
T)( Dk

n
T$D!k

n
T) (35)

and one finds

J
3
"JS$$D j2

3
D$$T+J1

2
(k2

p
#k2

n
) (36)

instead of J
3
+k

p
#k

n
. Thus, for multi quasi particle

states RMB fails. As can be seen in Figs. 6 and 12, the
version FM suggested in this paper avoids this problem,
because J

3
is calculated as the sum of the individual

contributions i
3p (n)

"JSp(n) D j2
3
D p (n)T.

One may modify the PAC expression (25) for the
B(M1) values in order to incorporate the tilted geometry,

B(M1)"
3

8n
[(gq!g

R
)(J2S1 D j

$1q D2T#(sin0!1)i
3q)

!cos0 ((g
p
!g

R
) i
1p
#(g

n
!g

R
)i
1n

)]2, (37)

i
3q"S1 D j

3q D2T, cos0"i
3q/J1

. (38)

For the case of one quasi particle, this expression essen-
tially agrees with the modification of the DF formula,
suggested by Dönau [13] in order to describe signature
effects.9 As demonstrated there and in Fig. 4, it describes
rather well the B (M1) values in the whole spin range,
including the signature staggering. However, this is not
the case for two quasi particles, as shown in Fig. 12.
Though it somewhat improves the B (M1) values in the
PAC limit it fails at low spin and it does not merge the
TAC results any better than the uncorrected expression
(25). Hence, it seems only to be possible to construct an
B(M1) expression that describes both the tilted geometry
and the signature staggering if the J

3
component of the

angular momentum is generated by one quasi particle.
This should be taken as a warning when analyzing data in
terms of the DF formula, using alignments estimated from
the experimental spectra. Only for the cases when J

3comes from just one quasi particle, one may incorporate
the signature splitting by means of (37). If this is not the
case one must use the original DF expression (23). which
does not describe the signature dependence of the B(M1)
values, but only averages over the two signatures.

8Comparing the PRM with PAC, [13] had to introduce a shift in
angular momentum in order to match the results. This turns out to
be unnecessary in our comparison. The reason is that we keep the
recoil term in our PRM in contrast to [13]
9The term sin 0 i

3q in Dönau’s expression corresponds to a some-
what different 0 value

5 Conclusions

Comparing with the results of a Particle Rotor Model
calculation, we find that the Tilted Axis Cranking ap-
proach quantitatively accounts both for the energies and
the intra band transition rates of the lowest bands gener-
ated by one or two quasi particles coupled to an axial
rotor. It is expected that Tilted Axis Cranking works with
comparable accuracy for multi quasi particle bands,
which are difficult to describe in the frame of the Particle
Rotor Model.

Tilted Axis Cranking provides an accurate description
of the band head, except in cases, when substantial align-
ment of quasi particle angular momentum occurs at very
low frequency.

The interpretation of the Cranking results suggested in
[3], which associates minima at a tilt angle 0O90° with
DI"1 bands and such at 90° with DI"2 bands of the
appropriate signature, turned out to be correct. The inter-
pretation has been refined by a set of rules that permits to
construct the excited bands from the cranking config-
urations. Applying these rules leads to a one to one
correspondence with the low lying bands of the Particle
Rotor Model calculations. No spurious configurations are
generated.

The main draw back of the Tilted Axis Cranking
theory is the necessity to switch between two different
interpretations. Such change of interpretation is always
necessary when the mean field solution breaks spontan-
eously a symmetry. In the considered case the C

2
sym-

metry is broken and the signature quantum number lost.
As a consequence, the Tilted Axis Cranking theory cannot
describe the gradual onset of signature splitting, which
appears discontinuously when changing from the TAC to
the PAC interpretation. Sufficiently far from the discon-
tinuity the energies and transition probabilities are quite
well reproduced by the semi classical expressions. The
transition region may be bridged by interpolation in
a qualitative way. Other quantities like mixing ratios,
static magnetic moments and quadrupole moments, have
also been studied. Tilted Axis Cranking describes them
with comparable accuracy as the B (M1) and B(E2) values,
discussed.

As in the standard cranking theory, the mixing of
bands with substantially different quasi particle angular
momentum cannot be described by Tilted Axis Cranking.

Previous schemes to account for finite angular mo-
mentum along the symmetry axis that stay within the
frame of rotation about the principal axes have been
investigated. Generally they agree less well with the Par-
ticle Rotor Model than the Tilted Axis Cranking ap-
proach. An exception is the case of one quasi particle,
where they work well and provide even a description of
the signature effects. However, for two quasi particles this
is generally no longer the case.

The particle rotor model was used in this study as an
‘‘exact model’’ against which the semi classical Tilted Axis
Cranking was checked. The aim was to outline the limita-
tions of Tilted Axis Cranking due to the violation of
angular momentum conservation and to test its accuracy.
Tilted Axis Cranking is a microscopic theory that in many
respects goes far beyond the Particle Rotor Model. For
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example, one may easily study multi-quasi particle excita-
tions, and the consequences of changes of the deformation
or the pairing. Furthermore, it gives transparent classical
pictures of the angular momentum coupling.

The authors would like to thank F. Dönau for numerous discussions
during the completion of this work. J.M. would like to thank FZR
for the fellowship and the hospitality extended to him. He is also
partly supported by the National Science Foundation in China.

References

1. Frisk, H., Bengtsson, R.: Phys. Lett. B196, 14 (1987)
2. Frauendorf, S., Bengtsson, T.: Int. Symp. on Future Directions

in Nuclear Physics, Strasbourg 1991, AIP Con. Proc. 259, p. 223

3. Frauendorf, S.: Nucl. Phys. A557, 259c (1993)
4. Frauendorf, S., Meng, J., Reif, J.: Proc. Conf. on Phys. from

Large c Ray Detectors, Berkeley 1994, p. 54
5. Brokstedt, A. et al.: Nucl. Phys. A578, 337 (1994)
6. Baldsiefen, G. et al.: Nucl. Phys. A 574, 521 (1994)
7. Szymanski, Z.: Fast Nuclear Rotation, p. 29 ff. Oxford: Claren-

don Press 1983
8. Bohr, A., Mottelson, B.: Nuclear Structure II, p. 1 ff. New York:

Benjamin 1975
9. Ring, P., Mang, H.J., Banerjee, B.: Nucl. Phys. A225, 141 (1974)

10. Bengtsson, R., Frauendorf, S.: Nucl. Phys. A327, 139 (1979)
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