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Abstract. In this article, we demonstrate how colloidal self-assembly and non-equilibrium dynamic pro-
cesses can be enhanced by anisotropic particles. As an example, we study spherical particles with radially
off-centered net magnetic moment in an oscillating field. Based on complementary data from a numerical
simulation of spheres with shifted dipole and experimental observations from particles with hemispheri-
cal ferromagnetic coating, it is explained how this magnetic asymmetry gives rise to dynamic structural
and orientational phenomena on a two-particle basis. We further present the behavior of larger ensem-
bles of coated particles. It illustrates the potential for controlled reconfiguration based on the presented
two-particle dynamics.

PACS. 45.20.dc Rotational dynamics – 45.50.Jf Few- and many-body systems – 82.70.Dd Colloids

1 Introduction

1.1 Motivation

Driving particle systems by time-dependent fields can in-
duce a large variety of structural and dynamic phenom-
ena [1,2]. The particular beauty and appeal of these pro-
cesses lie in the fact that the behavior of interacting par-
ticles far away from equilibrium is often not intuitively
comprehensible and contrasts strongly with the behavior
under equilibrium conditions. Magnetic colloids are suit-
able mesoscale systems for the study of collective, non-
equilibrium dynamics [3]. Remote and homogeneous con-
trol is feasible via external magnets, providing an un-
screened interaction widely independent from environmen-
tal conditions such as temperature and pH-value. Further,
the diversity of magnetic materials and synthetic fabri-
cation methods enhances the pool of available building
blocks [4–9] with respect to shape and magnetization dis-
tribution.

Studies of colloids under time-dependent fields have fo-
cused on two aspects, on the directed self-assembly of com-
plex, reversible structures and on emergent dynamics [3].
Both result from the combination of the interaction of the
particles with the field and the interparticle interaction,
which is dominated typically by magnetic and hydrody-
namic interactions. In present studies on non-equilibrium

phenomena, primarily particles with isotropic magnetiza-
tion distribution have been employed [10–13]. There, the
wealth of observed and reported phenomena is controlled
by the field parameters [3,14], such as intensity, direction
and frequency, and/or the environment (surface/interface)
[15,16].

In this paper, the possibility of symmetry breaking via
particles with anisotropic magnetization distribution will
be presented as a method to increase the available choice
of tuning parameters. Anisotropic particles have already
been studied efficiently in the context of complex structure
formation under equilibrium conditions [7,17–23]. Here,
we will show how the magnetic anisotropy provides novel
types of dynamic behavior and directed self-assembly un-
der time-dependent fields by magnetostatic interaction.

1.2 Magnetically anisotropic particles

An anisotropic magnetization distribution can be realized
experimentally by, e.g., patchy particles [24] or so-called
capped (Janus) particles [23,25,26], a sphere with hemi-
spherical magnetic coating. Theoretical models assume a
sphere with off-centered magnetic moment [27,28], e.g., a
point dipole. As the key feature, the magnetic center in
those particles is shifted away from their geometric center.
This shift can have drastic consequences on the assembly
behavior, since the the magnetic potential does not only
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depend on the relative orientation between the particles
but also on the distance between their magnetic centers.
For particles with fixed net magnetic moment, two ex-
treme cases have been reported, the one with the mag-
netic moment shifted laterally (Fig. 1 a) [27,29,30] and
the one with a shift radially away from the particle center
(Fig. 1 b) [28,25], but also intermediate cases exist [31,24].
Particles with a radial magnetic shift (Fig. 1 b) provide
a particularly interesting assembly behavior. In equilib-
rium, they exhibit a non-parallel magnetic configuration
(Fig. 1 c) [28,32,33], which is atypical for ferromagnetic
systems. The same holds for particles with lateral shifts
only in the case of large shifts. To our knowledge, those
have not been in the focus of reports, yet, an will also not
be studied here.

Any external field that is applied to particles with
non-collinear magnetic order will align them and, thus,
induce a change of the relative orientation angle. Due to
the magnetic shift, this reorientation involves a change
of the distance between the magnetic centers. Since the
magnetic interaction is strongly distance dependent, the
periodic change of the distance induced by time-dependent
fields promises novel dynamic phenomena. So far, the dy-
namic behavior of ferromagnetically capped particles has
been reported only for the case of an intermediate lateral
shift [26], exhibiting collinear magnetic order. The behav-
ior under rotating fields coincides with the one observed
for isotropic ferromagnetic particles [12]. Both form planar
compact clusters, and the hydrodynamic coupling of the
rotating particles leads to an in-plane rotation of the clus-
ters as a whole [26]. It should be noted that for the capped
particles used in those studies more diverse assembly be-
havior occurs under precessing fields [34]. This is caused
only by a soft-magnetic contribution of the utilized coat-
ing, giving rise to complex magnetization dynamics in the
coating itself.

In this article, we focus on the more general, since
material-independent, case of particles with fixed net mo-
ment provided by hard-magnetic materials. We will demon-
strate how under oscillating fields the interaction between
particles with radially shifted net magnetic moment ex-
hibits unique dynamic phenomena and that this is com-
prehensible on the basis of the two-particle interaction.
First, a numerical calculation based on the interaction of
two dipolar particles will be presented. Afterwards, the
findings will be substantiated by particles with a hemi-
spherical hard-magnetic coating as an experimental real-
ization of particles with radially shifted magnetization.

a) b) c)

Fig. 1. Sketches of spherical particles with a fixed net magnetic
moment (red arrow) that is shifted a) laterally or b) radially
away from the particle center (black dot). c) Two particles with
radial shift form a dumbbell with a non-collinear, antiparallel
magnetic order.

2 Simulation: Oscillating sd-particles

2.1 Numerical system

The simplest model of a particle with a radially off-centered
net magnetic moment is a sphere with embedded dipole
that is shifted away from the particle center. The shift
ξ ∈ [0, ..., 1] (Fig. 2 a) is measured in particle radius rp. So-
called shifted-dipole particles (sd-particles) have already
been studied intensively under equilibrium conditions [28,
33,35]. As the principal result, the relative orientation be-
tween sd-particles in equilibrium depends on the value
of ξ. Two particles in equilibrium align non-parallel for
ξ ≥ 0.4 and become (staggered) antiparallel for ξ ≥ 0.6
(Fig. 1 c). To study the dynamics of particles with an
antiparallel equilibrium orientation, in the investigations
presented here a value of ξ = 0.6 is applied. The separate
role of rotational motion by magnetostatic interaction un-
der oscillating fields can be examined in a spatially fixed
(non-deforming) cluster. Therefore, a dumbbell of two sd-
particles p1 and p2 is considered. The absolute positions
of both sd-particles are locally fixed at their geometric
center in the xy-plane. The particles are free to rotate in
any direction φ, θ (Fig. 2 a) such that the dipoles move on
a sphere with a radius given by ξ.

For interacting particles p1,2 with shifted magnetic
dipole m (unit vector m̂) and stray field Bp that are ex-
posed to an external field Bex, the equation of rotation is
obtained by balancing the rotational drag with the torques
between the magnetic particles and between particles and
the field. Note that due to the dipole shift, besides the
aligning torque m×Bp, also the gradient force (m ·∇)Bp

between the dipoles is relevant. Both convert into effective
torques acting on the particles, such that

frΘ̇(t) = m×Bex +m×Bp + ξm̂× ((m · ∇)Bp). (1)

Θ̇ is the angular velocity of an object with rotational fric-
tion coefficient fr and orientation Θ = (θ, φ) (Fig. 2 a).
An ensemble of n particles gives a system of n coupled
equations of rotation given by Eq. 1, which can be solved
numerically (appendix A).

An oscillating field Bex = Bex
0 sin(ωt) with angular fre-

quency ω is applied normal to the assembly plane (Fig. 2 a).
For two particles, we further define that the field points
perpendicular to the plane spanned by the two dipoles in
equilibrium. This assumption is based on the fact that in
a planar assembly of dipolar particles all dipoles sponta-
neously lie in the assembly plane [36].

2.2 Interaction between two sd-particles

Starting with the field-free equilibrium state of two sd-
particles, p1 and p2, where both dipoles adopt a stag-
gered antiparallel configuration, an oscillating field Bex

perpendicular to the dipoles is switched on. The time-
dependent trajectory of the dipoles is recorded in three-
dimensions, given by angular (φ, θ) or spatial (x, y, z) co-
ordinates (Fig. 2 a). Three features have been observed
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Fig. 2. a) The orientation of sd-particles with dipole shift ξ in the xy-assembly plane is given by the radial angle θ and the
azimuthal angle φ. Oscillating fields Bex are applied vertically (z-axis). b) Transient radial oscillation θ(t) (left axis) of two
sd-particles p1 and p2 (ξ = 0.6) in contact after a field Bex (right axis) is switched on and c) steady-state oscillation after some
time.

that distinguish the behavior of sd-particles from those of
normal dipolar particles. They are related to the radial
oscillations θ(t) of both dipoles, the phase of θ(t) with re-
spect to the field oscillation, and the azimuthal orientation
φ. The latter is defined as the angle that is enclosed by the
in-plane component of the dipole and the line connecting
the particle centers.

First, the radial oscillation θ(t), parallel to the field
direction, will be discussed. In Fig. 2 b, the radial oscilla-
tions θ(t) of p1 and p2 right after switching on the field
is depicted. Initially, both dipoles oscillate uniformly with
the same amplitude since they experience almost identi-
cal boundary conditions. Due to the frictional retardation,
they lag behind the field oscillation Bex(t). With ongoing
oscillations, the dipoles gradually obtain a relative phase
shift and altered amplitudes θA. For p1 the phase lag to
Bex(t) and θA slightly decrease, and for p2 both quantities
increase. After a transient oscillation (here, ≈ 4000 time
steps), the dipoles eventually obtain a steady-state oscilla-
tion (Fig. 2 c) with constant amplitude and phase lag that
depend on the field amplitude Bex

0 . Note that the parti-
cles obtain different phase lags. The relative phase shift
between the oscillations of the dipoles results from the
interparticle interaction. This symmetry break can be un-
derstood only in the full picture of the steady-state dipole
motion at different amplitudes Bex

0 , which will be pre-
sented next.

Three-dimensional steady-state trajectories of the dipoles
of two interacting sd-particles have been recorded for a
range of field amplitudes Bex

0 (Fig. 3 a). The amplitude
zA = ξ sin θA of the radial oscillation, which is caused by
the torque exerted by the external field, increases with Bex

0

[37]. Interestingly, the radial oscillation is accompanied by
an azimuthal reorientation in the xy-plane. This is the
second observed feature. The in-plane reorientation of the
dipoles is clearly visible in the top view of the trajectories
by projection onto the xy-plane (Fig. 3 b). With increasing
field amplitudes Bex

0 , the dipoles gradually change from
a staggered antiparallel configuration towards a collinear
state. This can result from the dynamic interparticle in-
teraction only, since this behavior is not obtained for two
particles in a static field. The enforced periodic change of

the radial orientation entails a periodic change of the dis-
tance and the angle enclosed between both shifted dipoles.
Based on the anisotropic nature of dipole interaction, the
sd-particles react by a gradual azimuthal reorientation un-
til a field-dependent steady-state oscillation is reached.

-1-0.5 0 0.5 1 1.5 2 2.5 3 -1
-0.5

0
0.5

1

-1

-0.5

0

0.5

0

1

2

3

4

5

6

x / rp y / rp

p
1

p
2

B ex

 1

z / rp

-1 -0.5 0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

0.5

1

x / rp

y / rp

a)

b)

p
1

p
2

Fig. 3. Steady-state oscillations of two interacting sd-particles
p1 and p1 (ξ = 0.6) in oscillating fields Bex in a) a three-
dimensional view and b) the top view. The trajectories display
the trace of the dipole position. The color coding corresponds
to the field amplitude Bex

0 measured in µ0m

32πr3p
.

The third feature becomes obvious by closer inspec-
tion of the steady-state trajectories at different values of
Bex

0 (Fig. 4 a). They reveal that the in-plane orientation
of the dipoles during one cycle of the oscillation is not
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Fig. 4. Dependence of the
steady-state oscillation of
two interacting sd-particles
(ξ = 0.6) on the field am-
plitude Bex

0 . a) Steady-state
trajectories and their projec-
tions onto the xy-plane of
the dipole in p1 during one
field cycle with period time
T at different field ampli-
tudes Bex

0 , from left to right:
Bex

0 = 1, 2, 3, 4, 5, 5.5,
and 6

µ0mp

32πr3p
. The trajectory

is color coded according to
the time of the field cycle,
see color bar on the bottom.
b) Absolute value |φ| of the
loop knot in the trajectory
and c) in-plane oscillation
amplitude φA of the dipoles
in p1 and p2 as a function of
the field amplitude, Bex

0 .

constant but periodically changes. The dipoles perform a
trajectory in the form of a double loop. This is fascinat-
ing since it implies that under a uniaxial, oscillating field
the two-particle interaction causes a periodic reorientation
perpendicular to the field direction. The sense of direction
of the loop is uniquely defined. This means that the dipoles
follow a pathway that breaks time-reversibility.

The form and the location of the loop depend on the
field amplitude Bex

0 . The form is described by its height,
measured by the amplitude θA, and its width, the am-
plitude φA. In accordance with the above discussion, the
radial amplitude θA increases with Bex

0 (Fig. 4 a). The in-
plane position of the equilibrium oscillation loop of the
dipole can be adjusted by Bex

0 as visible by the projection
of the loops onto the xy-plane in Fig. 4 a. Here, the posi-
tion is defined by the loop knot, which always lies in the
assembly plane (z = 0). Its in-plane orientation φ is given
by the angle that is enclosed by the center-to-loop knot
vector and the line connecting the particle centers. Fig. 4 b
shows that the absolute value |φ| is a gradually decreas-
ing function of the field intensity Bex

0 for both dipoles and
|φ| eventually converges to zero. The gradual in-plane re-
orientation implies that the dipoles experience a dynamic
transition from an anti-parallel to a collinear orientation.
In the example presented in Fig. 4 b, the latter is reached
at about Bex

0 = 6
µ0mp

32πr3p
. It should be noted that for lower

shift values ξ of the dipoles the curves will shift towards
smaller field intensities Bex

0 since the values |φ| in equi-
librium decrease. Further, since φ correlates with θ, φ is
also inversely proportional to ω. Consequently, increasing
ω leads to a stretching of the curves in Fig. 4 b towards
higher field amplitudes.

The width of the loop trajectory, φA, depends on Bex
0

in a non-monotonic way (Fig. 4 c). It becomes 0 (the width
of the loop vanishes) either if the field vanishes (triv-
ial case) or if the dipoles are already oriented in parallel
(φ1 = φ2 at Bex

0 > 6
µ0mp

32πr3p
for the example in Fig. 4 c).

Between these limits the oscillation loop has a finite width
that exhibits a maximum at a certain field value. In the
presented example, the maximum occurs at around Bex

0 ≈
5

µ0mp

32πr3p
. With increasing dipole shift ξ the values (φA, B

ex
0 )

of the turning point increase as well. This finding suggests
that the trajectory follows a non-reversal pathway (double
loop) only below a critical field value, where φA ̸= 0◦, and
becomes a reversible line trajectory otherwise. Since parti-
cles with centered dipole (ξ = 0) always align parallel they
only perform such a line trajectory in oscillating fields.
The loop trajectory is, thus, an effect that arises from
the dynamic interaction of two particles with anisotropic
magnetization distribution only.

3 Experiment: magnetically capped particles

3.1 Experimental particle system

Experimentally, particles with off-centered net magnetic
moment have been realized by silica microspheres with
hemispherical magnetic coating (appendix B). To obtain
a stray field with dipolar character, exhibiting rotational
and mirror symmetry, a hard-magnetic thin film ([Co/Pd]
multilayers) with perpendicular magnetic anisotropy is de-
posited. The net magnetic moment of such a particle points
parallel to the Janus director, such that the orientation of
the net magnetic moment and the magnetic cap coincide.
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Fig. 5. Microscopy im-
ages of two capped par-
ticles in contact while
exposed to an oscillat-
ing out-of-plane field Bex

(ωB = 38πHz). a) Time
sequence during one field
cycle (Bex

0 = 0.7mT). b)
Snapshots of two parti-
cles at different field am-
plitudes Bex

0 given below
the images. (Scale bar:
5µm)

Under an optical microscope, the contrast between the
projected transparent silica hemisphere and the intrans-
parent magnetic hemisphere visualizes the in-plane orien-
tation of the net magnetic moment of such a particle [32].
The imaged projection of the transparent hemisphere van-
ishes for an out-of-plane orientation of the cap (either up
or down) and becomes maximally visible for an in-plane
orientation. Therefore, the size of the projected transpar-
ent hemisphere gives a measure for the radial angle θ of
the net magnetic moment.

3.2 Two-particle interaction

In equilibrium, two such particles form a dumbbell where
the caps have a staggered (|φ1 + φ2| ̸= 180◦) antiparal-
lel orientation. A time-sequence of two such particles in
contact under an oscillating field Bex during one field cy-
cle T has been recorded (Fig. 5 a). At first glance, one
can see that the two particles do not oscillate uniformly
as the sizes of their projected transparent hemispheres do
not coincide in each frame. Specifically, the out-of-plane
oscillation θ(t) of particle p2 crosses the zero point (max-
imally visible transparent hemisphere) in the second im-
age of Fig. 5 a, while the one of p1 crosses the zero point
in the first image. Thus, the oscillation θ(t) of particle
p2 lags behind the one of particle p1. One can also see
that particle p1 oscillates with smaller amplitude since the
minimum projected area of the transparent hemisphere
is larger than the one of particle p2. These findings are
consistent with the results of the numerical investigation
presented in Fig. 2 c.

As for the periodic change in the in-plane orientation
of the particles, characterized by the width φA of the loop
trajectory, the simulation suggests only small values. Ex-
perimentally, this oscillation cannot be resolved by the
recorded microscopy movies since the error of the image
analysis of about about ±3◦ is on the same order of mag-
nitude as φA.

In accordance with the numerical study, it can be de-
tected that the relative orientation between two particles
in an oscillating field depends on the field intensity. For
different field amplitudes, we have extracted those snap-
shots during the oscillation where the caps obtain an al-
most in-plane orientation (Fig. 5 b). Starting from a state

where the caps enclose an angle ∆φ = φ1 − φ2 = 180◦,
they gradually change their relative orientation with in-
creasing Bex

0 . The relative orientation, ∆φ, decreases. A
gradual transition from antiparallel to parallel in-plane
orientation of the caps is achieved (Fig. 5 b).

3.3 Reconfiguration of particle assemblies

The relative reorientation between interacting capped par-
ticles from non-collinear to a collinear state can also be ob-
served in larger particle assemblies under oscillating fields.
If an equilibrium assembly deviates from a linear chain,
the reorientation, additionally, can lead to a spatial re-
configuration of the assembly. This is attributed to the
anisotropy of the magnetostatic interaction. The way of
reconfiguration depends on the type of the structural pat-
tern that exists in equilibrium. We have shown earlier that
the capped particles self-assemble into two different struc-
tural patterns, staggered chains [32] and compact clus-
ters [25], with non-collinear magnetic orientations. The
observed configurations are a result of the magnetostatic
interaction between the caps, providing an off-centered
broad magnetization distribution. To demonstrate the dy-
namic reconfiguration as result of the relative reorienta-
tion in the particle-particle interaction under oscillating
fields, selected examples of both structural patterns will
be presented in the following (Fig. 6).

In a staggered chain in equilibrium, the caps obtain
alternating orientations perpendicular to the chain direc-
tion. This means that net magnetic moments exhibit a
staggered antiparallel magnetic orientation, which resem-
bles the field-free arrangement of two particles (Fig. 5 b).
Under oscillating fields perpendicular to the assembly plane,
such staggered chains undergo a continuous transforma-
tion into linear chains (Fig. 6 a). This is visualized by
the increasing staggering angle (red angle). The stagger-
ing transition is initiated by the reorientation of the caps.
Based on the particle-particle interaction, neighboring par-
ticles undergo a transition from an antiparallel to a par-
allel configuration. Since each particle is connected to two
neighbors in the chain, the collinear alignment of all particle-
particle interactions can only be realized if the particles
approach a linear chain. It can be assumed that the reori-
entation is supported by the magnetic interaction between
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Fig. 6. Transformation
of particle clusters while
exposed to an oscillating
out-of-plane field. a) Re-
versible expansion of a
staggered chain under in-
creasing field amplitudes
Bex

0 as noted below the
images (ω = 10πHz).
b) Time sequence of the
abrupt transition of a
compact cluster into a
ring (Bex

0 = 1.6mT,
ω = 38πHz). The time
is noted in the images.
(Scale bar: 5µm)

next-nearest neighbors since two particles at farther dis-
tance prefer a parallel orientation. This can be understood
from the fact that the relative offset of the net magnetic
moment with respect to the interparticle distance becomes
smaller for distant particles, leading to a preferred head-
to-tail orientation [33].

The images in Fig. 6 a at different field intensities are
steady-state configurations. The staggering angle is a unique
function of the field amplitude Boop

0 at a constant field
frequency. This means that the line can be expanded and
contracted reversibly upon changingBoop

0 . Staggered chains
rebuild from linear chains via the reorientation of the caps
from parallel to antiparallel. Note, that above a critical
field intensity the line breaks up into single particles if a
critical angle θcr of the magnetostatic interaction is ex-
ceeded (last image in Fig. 6 a). Linear lines rebuild upon
reducing Boop

0 , ensuring the reversibility of the transition.
In contrast to the two-particle problem, particles within
long chains have almost identical environments. Due to
that the particles oscillate uniformly with coinciding am-
plitudes and no phase shift. Symmetry breaking is only
present for particles at the end of the chains due to the
lower coordination of the end particles. Qualitatively, this
leads to non-uniform oscillations with different amplitudes
and phase lag as described for the two-particle interaction
(Fig. 2).

If the particles form compact clusters the response to
oscillating fields differs from that of the staggered chain.
The primary reason is that particles can have more than
two (up to six) nearest neighbors. Therefore, it is impossi-
ble to obtain a gradual transition into a linear configura-
tion between all nearest neighbors simultaneously. Some
bonds between particles have to be broken up to obtain
a collinear state. Below a critical field amplitude, the ra-
dial oscillation amplitude θA, which gradually increases
with Boop

0 , is in the attractive regime of the interparticle
interaction and the cluster remains stable. Above a criti-
cal field amplitude, where θA reaches the repulsive regime
between neighboring particles, bonds can break up. Since
θA of each particle depends on the local magnetic envi-
ronment, the response of a cluster also depends on its
exact magnetic configuration. For most cases, a sudden
break-up of the cluster with immediate re-assembly into

linear chains has been observed at a critical field ampli-
tude. For a configuration as depicted in Fig. 6 b, the par-
ticles can also assume another metastable state. Above a
critical field, an abrupt transition from a compact clus-
ter into a ring has been observed (Fig. 6 b). Such a form
minimizes the magnetostatic energy associated with the
open ends of a linear chain on the cost of a non-zero an-
gle between the magnetic moments of neighboring parti-
cles. This ring remains stable for an intermediate range of
field amplitudes. It breaks up into single particles when
the magnetostatic interaction between nearest neighbors
becomes repulsive above a critical oscillation amplitude.
Therefore, this structural transition has no linear depen-
dency on the field amplitude. Either compact cluster form
(low fields), rings form (intermediate fields) or the cluster
disassembles into single particles (high fields).

4 Discussion and Conclusion

In this article, we have demonstrated that an anisotropic
magnetization distribution in spherical particles causes
unique dynamic phenomena when exposed to time de-
pendent fields. We have presented numerical and exper-
imental results on the rotational motion for the specific
case of particles with a fixed net magnetic moment that
is radially shifted away from the particle center, provid-
ing a stray field with dipole character. For two interact-
ing particles under oscillating fields, three features have
been detected that are not present for typical dipolar par-
ticles. First, the particles perform a non-uniform steady
state oscillation in the external field by obtaining differ-
ing oscillation amplitudes and phase lags with respect
to the external field. Second, the oscillation parallel to
the field is accompanied by a relative reorientation be-
tween the particles perpendicular to the field direction.
The equilibrium state of a staggered antiparallel orien-
tation, a result of the shifted magnetization, gradually
changes into a time-averaged collinear steady state with
increasing field amplitudes. Third, in the steady state os-
cillation the dipoles perform a trajectory in the form of
a double-loop as long as they do not reach the collinear
state. The trajectory has a defined pass sense. This means



Gabi Steinbach, Sibylle Gemming, Artur Erbe: Anisotropic particles under oscillating fields 7

that for a non-collinear configuration these interacting
particles break time-reversal symmetry under oscillating
fields.

These findings suggest two additional control mech-
anisms for particle ensembles based on the two-particle
interaction. First, orientational ordering can be manip-
ulated by changing an external parameter that induces
a transition from a non-collinear into a collinear state.
Depending on the structure of an initial particle assem-
bly, this can be realized by a gradual or an abrupt tran-
sition upon increasing the field intensity. Here, this has
been demonstrated for two selected clusters with open and
compact structures. For open structures, the gradual, con-
trolled reorientation from non-collinear to collinear order
might be of particular interest for applications with op-
tically anisotropic particles [38]. Further, the relative re-
orientation of the particles is accompanied by a structural
reconfiguration due to the anisotropy of the magnetic in-
teraction. This possibility for structural reconfiguration
of a particle assembly between dense/compact and lin-
ear structures gives the second control mechanism. While
such a manipulation has been reported already previously
for isotropic particles [39,40], the advantage in the pre-
sented mechanism lies in the reversibility of the transfor-
mation and the potential to couple orientational (optical)
and structural ordering.

Finally, a universal impact of the presented numeri-
cal results on colloidal dynamics and self-assembly can
be drawn since a very generic and simple model of a
sphere with off-centered net magnetic moment has been
exploited. For any particle system, a sufficiently large mag-
netic anisotropy can lead to an equilibrium configuration
that deviates from the dipolar head-to-tail orientation.
This non-collinear order is a prerequisite for the presented
dynamics. Therefore, similar or comparable phenomena
as presented in this article are expected to occur for any
particles with shifted magnetization that exhibit a non-
collinear equilibrium state. This article, thus, motivates
further investigation using, for example, particles with lat-
eral shifts [27], where the non-collinear state occurs for
rather large shifts. Due to the different symmetry of those
particles, the dynamic interaction under oscillating fields
are expected to lead to other realizations of orientational
and structural reconfiguration.

Appendix: Methods

Appendix A: Numerical calculation of the equation of
rotation

The numerical calculation is based on the open source soft-
ware ‘compasses’ [41], which calculates equilibrium states
of fixed, finite size arrays of dipoles. Here, the code has
been extended to implement the model of sd-particles where
the dipole is radially shifted away by ξ from the spatially
fixed center of the particles. The dipole is able to move as
response to the stray field Bd of other particles and to ex-
ternal fields Bex. The motion is restricted to a sphere with
a radius given by the value of the dipole shift ξ around

the center of the particle. Additionally, the dipole always
points normal to the surface of that sphere. Due to that
any repositioning of the dipole on the sphere must result
into a reorientation of the dipole and vice versa. Via the
stray field Bd, one dipole m1 exerts an aligning torque
τd = m×Bd on another dipole m2. For sd-particles with
fixed positions, additionally, the gradient of the stray field
of m1 exerts a translational force Fd = m2∇Bd

1 on m2.
This force is converted into a torque τF = ξm̂×Fd on the
sd-particle. The equation of rotation of the sd-particles in
a viscous environment, given by the torque balance (Eq.
1), is calculated iteratively. From the state at time t, the
magnetic moment mi of particle i at time step t + 1 can
be calculated by

m
(t+1)
i = norm

[
m

(t)
i +

1

fr
(τF + τd +mi ×Bex)

]
(2)

The function ’norm[·]’ scales the updated magnetic mo-
ments m(t+1) to retain the initial magnitude m of the
dipoles. In the calculation, a rotational friction coefficient

of fr = 100 µ0m
2

32πr3p
has been applied. Note that in the sim-

ulation the numerical time steps ∆t = (t + 1) − t are di-
mensionless and set to 1. Therefore, the numerical friction
coefficient fr has the dimension of energy. To implement
oscillating fields, the field intensity is recalculated after
each iterative step t as Bex = Bex

0 cos(ωt). The angular
frequency ω is also a dimensionless quantity and is set to
0.05.

Appendix B: Particle fabrication and experimental setup

The particle preparation and experimental setup has been
described in detail in reference [32]. In short, silica spheres
with a radius of rp = (2.27 ± 0.23)µm have been coated
by a [Co(0.28 nm)/Pd(0.9 nm)]8 multilayer on one hemi-
sphere via magnetron sputter deposition as described in
reference [42]. Such a thin film has a perpendicular mag-
netic anisotropy. When deposited on the spheres, the stray
field lines locally point perpendicular to the particle sur-
face. This leads to the demanded stray field with dipo-
lar character after magnetic saturation. A suspension of
such particles in distilled water is studied via transmission
light microscopy. Due to the density mismatch the parti-
cles sediment on the ground of the sample cell, providing
a two-dimensional particle system. We have demonstrated
previously [32] that the interaction between these particles
on close contact is governed by magnetostatic interactions
and other sources such as electrostatic interactions can be
neglected. For the magnetic control, an electromagnetic
coil is mounted parallel to the sample cell, providing low-
frequency fields of up to 3mT.

The authors are grateful to Manfred Albrecht and Dennis Nis-
sen for the preparation of the colloidal particles. This work
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