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Abstract. The integration of magnetic resonance imaging (MRI) and proton
therapy for on-line image-guidance is expected to reduce dose delivery
uncertainties during treatment. Yet, the proton beam experiences a Lorentz
force induced deflection inside the magnetic field of the MRI scanner, and several
methods have been proposed to quantify this effect. We analyze their structural
differences and compare results of both analytical and Monte Carlo models. We
find that existing analytical models are limited in accuracy and applicability due to
critical approximations, especially including the assumption of a uniform magnetic
field. As Monte Carlo simulations are too time-consuming for routine treatment
planning and on-line plan adaption, we introduce a new method to quantify and
correct for the beam deflection, which is optimized regarding accuracy, versatility
and speed. We use it to predict the trajectory of a mono-energetic proton
beam of energy E0 traversing a water phantom behind an air gap within an
omnipresent uniform transverse magnetic flux density B0. The magnetic field
induced dislocation of the Bragg peak is calculated as function of E0 and B0 and
compared to results obtained with existing analytical and Monte Carlo methods.
The deviation from the Bragg peak position predicted by Monte Carlo simulations
is smaller for the new model than for the analytical models by up to 2 cm. The
model is faster than Monte Carlo methods, less assumptive than the analytical
models and applicable to realistic magnetic fields. To compensate for the predicted
Bragg peak dislocation, a numerical optimization strategy is introduced and
evaluated. It includes an adjustment of both the proton beam entrance angle
and energy of up to 25 ◦ and 5 MeV, depending on E0 and B0. This strategy is
shown to effectively reposition the BP to its intended location in the presence of
a magnetic field.

Submitted to: Phys. Med. Biol.

Keywords: proton therapy, image-guided radiotherapy, IGPT, magnetic resonance
imaging, MR guidance, beam trajectory prediction



Modelling magnetic beam deflection in MR-integrated proton therapy 2

1. Introduction

Proton therapy is a type of external beam radiation treatment that uses high-
energy protons to treat cancer. As compared to photon-based radiotherapy, its main
advantage lies in the pronounced dose maximum, the Bragg peak, which is energy-
dependent in depth and bordered by steep dose gradients, especially at the distal edge
(Jäkel 2009). However, the gradients also make the dose distribution very sensitive
to inter- and intrafractional uncertainties resulting from setup errors and anatomical
variations (i.e., organ motion and deformation), which gives rise to considerable range
uncertainties (Lomax 2008).

The aim of real-time image-guided radiotherapy is to reduce these uncertainties by
imaging essential parts of the patient anatomy in treatment position during irradiation.
Thus, tissue motions and deformations can be tracked and dynamic beam delivery with
enhanced dose conformality and reduced safety margins is rendered possible. Magnetic
resonance imaging (MRI) has been suggested to be a promising candidate for this task,
offering a fast real-time imaging modality with excellent soft tissue contrast without
using ionising radiation for image formation (Raaymakers et al. 2008). The concept
feasibility to integrate MRI with photon-based radiotherapy into a hybrid system has
been shown by several research groups in the Netherlands (Lagendijk et al. 2014a),
Canada (Fallone 2014) and Australia (Keall et al. 2014). Because of the increased
geometrical sensitivity of proton therapy, this technique is expected to profit even
more from an integration with MRI.

So far, MR-integrated proton therapy (MRiPT) has only been described as
a hypothetical modality in simulation studies (Raaymakers et al. 2008, Wolf &
Bortfeld 2012, Moteabbed et al. 2014, Oborn et al. 2015, Li 2015, Hartman
et al. 2015, Moser 2015). Likewise challenging as in MR-integrated photon therapy,
there are specific technological and physical problems that need to be solved when
facing MRiPT. For example, there will be mutual interactions between the magnetic
field of the MRI scanner and that of the beam transport magnets and the beam steering
and monitoring system (Schippers & Lomax 2011). Probably more problematic
is the fact that, being charged particles, the therapeutic protons will be deflected
by the magnetic field of the MRI scanner (Oborn et al. 2016). Different studies
have focussed on quantifying the beam deflection effect for dosimetric and treatment
planning purposes using particle tracking with Monte Carlo simulations (Raaymakers
et al. 2008, Moteabbed et al. 2014, Oborn et al. 2015, Li 2015, Moser 2015) or analytical
models (Wolf & Bortfeld 2012, Hartman et al. 2015).

As pointed out by Oborn et al. (2015), the general consensus from these works
is that the proton beam deflection within a patient or water phantom is predictable
and so essentially correctable during treatment planning stages. However, different
approaches have been introduced to assess this effect, and neither their structural
differences nor their degree of accordance have been analyzed. Differences can be
expected, since all approaches are subject to their respective shortcomings. For
instance, previously published analytical models imply critical assumptions, and are
only applicable to the simplified case of a uniform (i.e. unrealistic) magnetic field.
Monte Carlo simulations are potentially more accurate, but very time-consuming,
which inhibits their use for routine treatment plan optimization and real-time
treatment plan adaption. Thus, a method is required to quantify and correct for
the deflection, which is optimized towards accuracy, versatility and calculation time.

The aim of the current work therefore is three-fold. Firstly, we analyze and
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compare results published so far in terms of dosimetric accuracy and discuss the
limitations of the different methods. Secondly, we present a new model to estimate
the trajectory of a mono-energetic proton beam traversing a water/air phantom inside
a uniform transverse magnetic field and evaluate its performance against results of
the previous models. Thirdly, we use the new model to introduce a fast and accurate
beam correction strategy for repositioning the Bragg peak to its intended location in
the presence of the magnetic field. To help understand the limitations of previously
published analytical models, a condensed review and analysis thereof is given in section
2. On this basis, a new model to estimate and compensate for the magnetic field
induced proton beam deflection is presented in section 3. The setup for the subsequent
evaluation and comparison of this model in relation to existing approaches is detailed
in section 4. Obtained results are given in section 5. In section 6, the main findings
and most important implications are discussed. A short conclusion and outlook to
further investigations are provided in section 7.

2. Analysis of existing analytical models

For a better understanding of the following chapters, previously published analytical
models are shortly reviewed in this section. Being first order approaches, the methods
model a mono-energetic proton beam traversing a simple water/air phantom inside a
uniform transverse magnetic field.

2.1. General considerations

Consider a uniform magnetic field in vacuum of flux density ~B = B0 · ~ez which is
aligned parallel to the z-axis and translation invariant. Let a monoenergetic proton
pencil beam of kinetic energy E0 with an initial velocity ~v0 = v0 · ~ex perpendicular to

~B traverse the field (see figure 1a). The entrance velocity v0 = c ·
√

E0(E0+2m0c2)
(E0+m0c2)2

is

connected to E0 through the proton rest mass m0 and the speed of light c. Carrying
the elementary electric charge q, the proton’s equation of motion is governed by the
Lorentz force

~F =
d~p

dt
= γm0

d~v

dt
+m0~v

dγ

dt
= q(~v × ~B) (1)

with the relativistic momentum ~p = γm0~v and the Lorentz factor γ = 1√
1−( v0

c )2
. As

v0 is constant, which yields dγ
dt = 0, this differential equation has a simple analytical

solution

vx = v0 cos(
qB0

γm0
t), vy = v0 sin(

qB0

γm0
t), vz = 0 (2)

for the velocity components vx, vy and vz in x-, y- and z-direction, respectively. The

protons thus move in a circular course with an angular frequency ω0 = qB0

γm0
. The

radius of this course, the gyroradius, is given by

r =
v0
ω0

=
γm0v0
qB0

. (3)

Now consider a setup geometry with a water phantom placed inside a virtual
gantry-based MRiPT system. The distance between the proton beam nozzle and the
water phantom’s surface is denoted by dair. As opposed to the vacuum situation,
protons deposit energy when traversing media until stopping at a finite range R0.
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(a) (b)

Figure 1: Setup geometry with omnipresent uniform transverse magnetic field ~B.
Starting from the beam nozzle, the proton beam (orange) traverses an air gap of
length dair before entering a water phantom. It is deflected by the magnetic field
resulting in a deflection and retraction from its intended Bragg peak position T to the
position U (a). The geometrical representation of the beam trajectory (b) is discussed
in the text.

The range in water can be approximated by a power-law range-energy relationship
(Bortfeld 1997)

R0 = αEp0 (4)

with p ≈ 1.75 and α ≈ 2.43× 10−3 MeV−pcm (Wolf & Bortfeld 2012). The protons
slow down quasi continuously (ICRU 1993) and hence the gyroradius decreases with
increasing depth according to equation 3, which leads to a curled-up beam trajectory.
Consequently, the Bragg peak experiences both a lateral deflection ∆y from the beam’s
entrance direction ~ex and a longitudinal retraction ∆x from its expected depth (see
figure 1a).

2.2. Analytical integration model (AI model)

The authors of the first analytical model (Wolf & Bortfeld 2012) have assessed
the Bragg peak deflection and retraction by an analytical integration of geometric
deflection steps. In accordance with figure 1b and equation 3, they have described the
deflection angle φ between the particle motion and the x-axis by

dφ

ds
=

1

r(s)
=

qB0

γ(s)m0v(s)
(5)

with the gyroradius r(s), the relativistic velocity v(s) and the Lorentz factor γ(s) =
1√

1−( v(s)
c )2

as functions of the travelled distance s along its curved path. A small angle

approximation dy
ds = sinφ(s) ≈ φ(s) has been applied, yielding the lateral deflection

as function of s

y(s) =

∫ s

0

φ(s′)ds′ . (6)
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The deflection at the end of the trajectory in a water phantom without air gap
(i.e. dair = 0) has thus been obtained by analytical integration as

∆y = y(s = R0) (7)

=
7

30

qB0α
2

√
2m0

(2m0c
2)3

[√
1 +

E0

2m0c2

(
3

(
E0

2m0c2

)2

− 4

(
E0

2m0c2

)
+ 8

)
− 8

]
.

In an analogous manner, the longitudinal position x(s) has been obtained by assuming
dx
ds = cosφ(s) ≈ 1− φ(s)2

2 which yields

x(s) = s− 1

2

∫ s

0

φ2(s′)ds′ . (8)

This term has been treated non-relativistically (i.e. γ = 1 and v(s) =
√

2E(s)
m0

) and

thus the overall retraction length was quantified by

∆x = R0 − x(R0) =
q2B2

0α
3E3p−1

0

2m0

2p2

(4p− 1)(3p− 1)
. (9)

The model was stated to be applicable to slab phantom geometries of arbitrary
material thickness and composition by addition of the deflections obtained in each
layer. For air gaps, energy loss has been assumed to be negligible, yielding

dair = xair(s) = s− q2B2
0s

3

12m0E0
and yair(s) =

qB0s
2

2
√

2m0E0

. (10)

An advantage of the AI model is that the whole curved beam trajectory can be
calculated from x(s) and y(s), which is important for treatment planning and
dosimetric verification. However, the model cannot be easily adapted to realistic,
inhomogeneous magnetic fields mainly because of the pathlength parametrization,
but also due to the need for an analytical description of the magnetic flux density
distribution.

2.3. Trigonometric model (TG model)

In the work of Wolf and Bortfeld (2012), no concrete compensation strategy for the
beam deflection has been proposed. This problem has been adressed by a more recent
paper (Hartman et al. 2015). Here, a simplified analytical model has been introduced
in order to propose a beam deflection correction strategy. Several assumptions
have been made to enable a direct trigonometric quantification of the proton beam
deflection without the use of more complex methods such as integration. Firstly, the
change of the gyroradius due to energy loss in matter has been neglected, i.e. r(s) = r0.
Secondly, longitudinal beam retraction was not taken into account, i.e. ∆x = 0 and
x(s = R0) = R0. Following these approximations and figure 1b, the lateral deflection
in the water phantom (with dair = 0) has been expressed as

∆y = r0

(
1− cos

[
arcsin

(
R0

r0

)])
, (11)

which can be simplified to

∆y = r0 −
√
r20 −R2

0 . (12)
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As a third approximation, the proton motion was assumed to be non-relativistic (γ = 1

and v(s) =
√

2E(s)
m ), which yields a (constant) gyroradius of

r0 =

√
2mE0

qB0
≈ 14.4

√
E0

B0
T cm (MeV)−

1
2 . (13)

The airgap of thickness dair in front of the water phantom has been accounted for by
replacing R0 with (R0 + dair), assuming that energy loss in air is negligible.

A correction strategy for the deflection has been proposed by applying an angle
correction to the entrance direction ~v0 of the beam. According to figure 1b, it was
obtained by

∆γ = arctan

(
y(R0)

x(R0)

)
= arctan

(
∆y

R0

)
. (14)

The authors stated that this angle correction could be implemented either by pencil
beam scanning magnets or by an isocentric gantry rotation around the phantom.

2.4. Summary

Although both the AI and the TG model offer a reasonable first approach to the
problem of magnetic proton beam deflection in a transverse uniform magnetic field,
they have their respective shortcomings. The AI model relies on a small angle
approximation which is problematic for large deflection angles, treats retraction
non-relativistically and does not offer a compensation strategy for the Bragg peak
deflection. The TG model neglects relativistic effects, beam retraction and the
decreasing gyroradius as a function of penetration depth. Neither the AI nor the
TG model seems applicable to a realistic, i.e. non-uniform, magnetic field and patient
anatomy. Aiming to provide a solution which is more accurate and versatile than
these two models, but faster than Monte Carlo approaches, we therefore present and
verify an alternative model in the following sections.

3. New model formulation

The model we propose is an iterative analytical method to reconstruct the trajectory
of a monoenergetic proton beam based on first physics principles and geometrical
considerations. It contains less critical approximations than currently available
analytical models and offers a correction strategy for the predicted beam deflection
and retraction.

3.1. Incremental reconstruction of the proton beam trajectory

Consider the geometry presented in section 2 and figure 2 and let the proton beam’s
entry position to the magnetic field be ~x0 = (x0, y0, z0). The initial gyroradius caused
by the magnetic field is (cf. equation 3)

r0 =
γm0v0
qB0

=

√
2m0E0(1 + E0

2m0c2
)

qB0
. (15)

The first relevant point of the trajectory is the entrance position of the proton beam
at the surface of the water phantom ~x1. Energy loss inside the airgap is considered to
be negligible, therefore ~x1 is obtained by

~x1 = R(∆φ0) · ~x0 , (16)
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(a) (b)

Figure 2: Geometrical representation of the proposed model. The proton beam
deflection in air is calculated trigonometrically assuming no energy loss (a), whereas
a changing gyroradius due to energy loss is taken into account in water (b). Symbols
are explained in the text.

with the rotation matrix R(∆φ0) rotating the point ~x0 counterclockwise through an

angle ∆φ0 about the center of rotation ~O0 = (x0, y0 + r0, z0) (see figure 2a). ∆φ0
satisfies

∆φ0 = arcsin(
dair
r0

) . (17)

Inside the water phantom, energy loss is modeled by the continuous slowing down
approximation (ICRU 1993) and discretized into small steps of constant energy and
hence constant gyroradius (see figure 2b). The energy step size ε is chosen for
every simulation such that the studied parameters, i.e. ∆y, ∆x and the correction
parameters, are independent of ε within the decimal precision they are given in.
Following equation 4, for each energy step i (i = 1, ..., n with n = bE0

ε c) the travelled
path length in water, si, can be calculated from (see eq. 4)

si = R0 − αEpi , (18)

which results in an incremental deflection angle of

∆φi =
si+1 − si

ri
=

∆si
ri

(19)

with the energy-dependent gyroradius ri =

√
2m0Ei(1+

Ei
2m0c2

)

qB0
(in analogy to equation

15). The next particle position ~xi+1 is obtained by applying the rotational matrix of

angle ∆φi to ~xi, i.e. ~xi+1 = R(∆φi) ·~xi. Here, the center of rotation ~Oi is determined
by (cf. figure 2a)

~Oi =
ri

| ~Oi−1 − ~xi|
( ~Oi−1 − ~xi) . (20)

Thus, the proton trajectory is fully reconstructed until reaching the Bragg peak at
step i = n. The overall deflection ∆y and retraction ∆x are then obtained as the
projections of the difference between the Bragg peak positions ~xn with and without
magnetic field. It was verified that the total traveled pathlength is equal to the proton
range within 0.1 mm accuracy, i.e. sn −R0 < 0.1 mm.

The algorithm has been realized in MATLAB (Release 2015b, The MathWorks,
Inc., Natick, Massachusetts, United States).
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Figure 3: The proposed correction algorithm includes a correction of the proton energy
∆E0 and entrance angle ∆γ such that the actual Bragg peak location U coincides with
the intended position T.

3.2. Correction strategy

As an advancement to the TG model, we propose a correction strategy that
simultaneously adjusts the proton beam entrance angle and energy (see figure 3).
The angle correction ∆γ compensates for the lateral deflection of the Bragg peak and
can only be applied by pencil beam scanning magnets. The energy correction ∆E0

accounts for the retraction caused by the path curvature and has not been considered
before. Both correction parameters are optimized such that the distance to agreement
(DTA) between the corrected Bragg peak position ~xn,corr = ~xn( ~B, γ0 +∆γ,E0 +∆E0)
and the intended position ~xn,0 = ~xn(0 T, γ0, E0)

DTA = |~xn,corr − ~xn,0| (21)

is minimized. This bi-parameter optimization is performed numerically using the
MATLAB Optimization Toolbox function fminsearch, which implements the simplex
search method (Lagarias et al. 1998).

As an alternative to the angle correction, a patient shift has been suggested
by Moteabbed et al. (2014). However, the deflection of a single Bragg peak strongly
depends on the beam energy, entrance angle and the irradiated geometry, and therefore
cannot completely be compensated for by a constant shift. For the same reason, we
agree with Oborn et al. (2015) that MRiPT can only be realized using a pencil beam
scanning technique.
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4. Setup and parameter choice

The new method described in section 3 has been used to predict the trajectories of
monoenergetic proton pencil beams of energies E0 between 60 MeV and 250 MeV in
a uniform transversal magnetic field of magnetic flux density B0. Selected examples
for B0 were 0.5 T as a commonly used flux density in open MRI systems, 1.5 T as
typical value for diagnostic images, and 3 T because of its allowance for very fast
sequences, which are important for on-line image-guidance (Lagendijk et al. 2014b).
The trajectories were studied in two different geometries: one with a water phantom
alone, and one with an air gap between the phantom and the beam nozzle of thickness
dair. The parameter dair = 25 cm was chosen by way of example as a typical distance
between the beam nozzle and the patient.

The lateral deflection ∆y and longitudinal retraction ∆x were calculated as
functions of E0 and B0 with both the new model and the two analytical models (AI and
TG, as discussed in section 2). Currently being the most accurate method for proton
trajectory prediction, published values obtained by Monte Carlo particle tracking
(Raaymakers et al. 2008, Moteabbed et al. 2014, Li 2015, Moser 2015) were compared
to the results gained with the three models. Correction parameters ∆γ and ∆E0 were
calculated and compared to the TG method, and beam trajectories obtained with
both correction methods were reconstructed in order to evaluate whether a distance
remains to the intended Bragg peak position.

The required decimal precision of results was chosen to be 0.1 mm for ∆x and
∆y, 0.1 ◦ for ∆γ, and 0.1 MeV for ∆E0. Accordingly, the energy step size ε was
reduced until these parameters were constant on the first decimal place, yielding a
required step size of ε = 0.1 MeV. This corresponds to a steplength in water ∆s (see
eq. 18 and 19) of up to 0.3 mm for high proton energies (Ei = 250 MeV) and down to
4× 10−4 mm for low energies (Ei = 0.1 MeV).

Calculations were carried out on a PC workstation with 8 GB RAM and a 64 Bit
Intel Core i3-3220 dual core processor running at 3.3 GHz. The calculation for one
experiment (defined by E0, B0 and dair) took less than 0.07 s for ∆x and ∆y, and less
than 28 s for ∆γ and ∆E0 for all studied energies and magnetic flux densities.
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5. Results

5.1. Bragg peak deflection and retraction

We first compare results obtained with our model to those of the two analytical models
discussed in section 2. A discussion of differences and an interpretation of results follow
in section 6.

Figure 4a depicts the Euclidean distance of Bragg peak positions obtained by
the AI and TG model to those obtained with the new model in water. As can
be appreciated from this figure, the distance increases with increasing energy and
magnetic flux density from 0 cm for 60 MeV and 0.5 T up to 2.1 cm for the TG model
and 0.4 cm for the AI model at 250 MeV and 3 T.

For a comparison of the models inside the air gap, the difference in water phan-
tom entrance positions behind an air gap of thickness dair = 25 cm are depicted in
figure 4b. The distance to the TG model’s results increases with increasing proton
energy up to 2.8 mm for 250 MeV and 3 T. As opposed to that, for the AI model it
increases with decreasing energy up to 4.8 mm at 60 MeV and 3 T.

In the next step, we compare the AI, TG and our new model to published results
obtained by Monte Carlo particle tracking in a water phantom (dair = 0). An overview
of calculated deflection and retraction values ∆y and ∆x in water is given for different
uniform magnetic flux densities and beam energies in table 1. Differences of the three
analytical models to the reference results are displayed in figure 5.

For all the models, the differences increase with increasing proton energy and
magnetic flux density. This can be expected, as ∆x and ∆y increase with increasing
path length and Lorentz force, so that differences due to approximations become
more pronounced. However, deviations of the three models behave differently from
each other.

For the AI model, the lateral deflection ∆y agrees within 2.5 mm with Monte
Carlo reference results up to proton energies of 200 MeV for all B0 considered, but
only within 8 mm for 250 MeV at 3 T. The calculated longitudinal retraction ∆x agrees

(a) (b)

Figure 4: Euclidean distance between positions calculated with previously published
analytical models and with the new model. (a): Distance in water between Bragg peak
positions inside the phantom alone, (b): distance in air of beam entrance position to
the water phantom behind an airgap of dair = 25 cm.
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Table 1: Predicted lateral deflection ∆y and longitudinal retraction ∆x of a
monoenergetic proton beam with initial energy E0 at the Bragg peak. The beam
traverses a water phantom (dair = 0) in a uniform transverse magnetic field of flux
density B0. Results are given for the new method and the AI and TG models (eq. 7,
9 and 11) in relation to published Monte Carlo results (ref.).

B0/ E0/ ∆y / mm ∆x / mm Reference
T MeV new model AI TG ref. new model AI ref. (ref.)

0.35 60 0.2 0.2 0.2 0.2 0.0 0.0 0.0 Moser et al. 2015
150 2.7 2.7 2.4 2.5 0.0 0.0 0.1 Moser et al. 2015
250 12.4 12.4 11.2 11.8 0.3 0.3 1.2 Moser et al. 2015

0.5 90 0.9 0.9 0.8 1.0 Raaymakers et al. 2008
90 1.2 Moteabbed et al. 2014
200 9.2 9.2 8.2 10.0 Moteabbed et al. 2014

1.0 60 0.5 0.5 0.4 0.5 0.0 0.0 0.0 Moser et al. 2015
150 7.8 7.8 6.9 7.3 0.3 0.3 1.5 Moser et al. 2015
250 35.4 35.5 32.3 32.8 2.3 2.6 3.5 Moser et al. 2015

1.5 90 2.6 2.6 2.2 3.0 Moteabbed et al. 2014
200 27.4 27.5 24.8 28 Moteabbed et al. 2014

3.0 60 1.5 1.5 1.3 1.4 0.1 0.1 0.1 Moser et al. 2015
90 5.1 5.1 4.5 5.0 Raaymakers et al. 2008
120 12.0 12.1 10.7 11.0 1.0 1.0 2.0 Li 2015
150 23.2 23.5 21.1 22.8 2.5 2.6 3.5 Moser et al. 2015
180 39.7 40.3 36.9 38 5.3 5.7 6.0 Li 2015
250 103.4 106.6 103.1 98.9 20.7 23.1 20.5 Moser et al. 2015

4

6

8

-4

-2

0

2

60 90 120 180150 200 250
Initial energy / MeV

(a)

5

0

-5

-10

-15

-20

-25
120 150 180 250

(b)

Figure 5: Difference in Bragg peak deflection ∆y and retraction ∆x between results of
the analytical models and Monte Carlo results for the studied set of proton energies and
magnetic flux densities (see table 1). Positive values indicate an overestimation of the
three models in relation to the particle tracking results, and negative values indicate
an underestimation. Colored bars individually span from zero (i.e., no stacking).
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within 1.5 mm with the reference for all studied setups, except for 250 MeV and 3 T
(3 mm). Here, the lateral deflection tends to be overestimated, whereas retraction by
trend seems to be underestimated.

For the TG model, the deflection ∆y agrees with Monte Carlo results within 2 mm
for all setups except for 200 MeV and 1.5 T, and 250 MeV and 3 T, where the deviations
amount to 3.2 mm and 4.2 mm, respectively. The TG model tends to underestimate
∆y. The full neglection of the longitudinal retraction of the Bragg peak leads to
differences in ∆x of up to 2.1 cm for 250 MeV and 3 T.

Results obtained with our new model show an agreement with the reference re-
sults in ∆y within 2 mm for all studies setups, except for 250 MeV at 1.5 T (2.6 mm)
and 3 T (4.6 mm). The retraction ∆x agrees within 1.5 mm for all studied energies
and magnetic flux densities. The new model shows a trend of overestimating lateral
deflection and underestimating longitudinal retraction.

A statistical comparison of the accuracy of the three models in relation to the
Monte Carlo results is displayed in figure 6. Regarding the lateral deflection ∆y,
the three models show only small differences in both median and average deviation,
which amount to 0.5 mm and 1 mm, respectively. However, the upper percentiles (i.e.
75 % and 91 %) deviate stronger from zero for the TG model than for the other two
models, and the AI model shows a strong outlier of 8 mm at 250 MeV and 3 T. For
the longitudinal retraction ∆x, the median and average deviation of the new model
and the AI model are comparably low (below 1 mm), but only the new model shows a
smaller 91 %-percentile and no outlier. As retraction is neglected in the TG model, all
studied statistical measures are highly increased as compared to the two other models.
The sample size for this inter-model comparison has been limited to 11 and 16 data
points for retraction and deflection, respectively.

Figure 6: Boxplots of absolute differences in Bragg peak deflection ∆y and retraction
∆x between the different models and Monte Carlo reference results (see table 1).
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5.2. Beam correction parameters

To compensate for the deflection of the Bragg peak, calculated correction parameters
∆γ and ∆E0 are presented for different proton energies E0 and magnetic flux densities
B0 in table 2. The beam energy correction calculated with our model ranges from
∆E0 = 0.1 MeV (0.2 %) for 60 MeV and 0.5 T up to ∆E0 = 4.7 MeV (2 %) for 250 MeV
and 3 T. The angle correction ranges from ∆γ = 3.6 ◦ for 60 MeV and 0.5 T up to
∆γ = 24.4 ◦ for 250 MeV and 3 T. The difference to the correction angle from the TG
model is smaller than 0.5 ◦ for magnetic flux densities up to 1.5 T, but exceeds to 3.8 ◦

(16 %) at 250 MeV and 3 T.

Table 2: Beam energy and angle correction parameters for different initial energies and
magnetic flux densities for a distance between the phantom surface and the entrance
position of the beam to the magnetic field of dair = 25 cm.

B0/ E0 / New correction parameters TG model
T MeV ∆E0 / MeV ∆γ/◦ ∆γ/◦

0.5 60 0.1 3.6 3.3
100 0.1 3.2 3.3
150 0.1 3.3 3.3
200 0.1 3.6 3.6
250 0.1 4.0 4.0

1.5 60 0.5 10.7 11.1
100 0.5 9.6 10.0
150 0.6 9.8 10.1
200 0.8 10.7 11.0
250 1.1 12.0 12.3

3 60 2.0 21.5 24.6
100 2.1 19.3 21.5
150 2.5 19.7 21.9
200 3.3 21.6 24.3
250 4.7 24.4 28.2

As an example, proton trajectories modelled with the new model for both
correction parameter sets are depicted for E0 = 200 MeV and B0 = 3 T in figure 7.
As the correction method of the TG model does not include an energy correction,
the Bragg peak retraction is not compensated for. Additionally, the lateral deflection
∆y is overcompensated by a too large correction angle. Therefore, the DTA between
the intended Bragg peak position without a magnetic field and its corrected position
inside the field (see equation 21 and figure 8) is non-zero. It ranges from 0.3 mm
for 60 MeV and 0.5 T up to 4.3 cm for 250 MeV and 3 T. With the new correction
method presented here, the calculated DTA is below 0.1 mm for all studied E0 and
B0 configurations.

In addition to these differences, we dispute that the beam angle correction can be
implemented by a gantry rotation, as stated by Hartman et al. (2015). To see this,
assume for example the intended Bragg peak position (indicated by ”T” in figure 1a)
to coincide with the gantry’s isocenter of rotation. A gantry rotation will then result
in a concentric displacement of the actual Bragg peak position U around T, but it will
not compensate for the deflection, i.e. render U = T. Transferring this consideration to
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Figure 7: 200 MeV proton beam trajectory through an airgap of thickness dair = 25 cm
and a water phantom calculated with the new model. Grey: without magnetic field,
orange: B0 = 3 T. The new correction method (∆γ = 21.6 ◦, ∆E0 = 3.3 MeV, solid
line) and that of the TG model (∆γ = 24.3 ◦, ∆E0 = 0, dotted line) have been applied
to the beam. The Bragg peak position is indicated by the arrowhead of the trajectory.

Figure 8: Remaining distance, DTA, between intended and achieved Bragg peak
positions when the correction of the TG model is applied. Trajectories were calculated
with the new model for a water phantom behind an airgap of dair = 25 cm. With the
new correction method, DTA < 0.1 mm for all studied E0 and B0 configurations.

arbitrary positions of T, it follows that a gantry rotation alone around a fixed isocenter
cannot compensate for the proton Bragg peak deflection. Hence we conclude again
that the compensation can only be realized by a pencil beam scanning system, which
adjusts the entrance angle of the beam.

6. Discussion

6.1. Bragg peak deflection and retraction

The differences we found between the calculated beam deflection ∆y and retraction
∆x at the Bragg peak can be contributed to the principles of the models as described
in sections 2 and 3.

Wolf and Bortfeld (2012) applied a small angle approximation to quantify ∆y
and ∆x in their AI model (see chapter 2). This approximation becomes inaccurate for
large pathlengths. For example, the deflection angle at the phantom entrance position
behind the air gap (dair = 25 cm) is for 200 MeV and 3 T already as high as 41 ◦ (see

eq. 17). Thus, the assumptions of dy
ds = sinφ(s) ≈ φ(s) and dx

ds = cosφ(s) ≈ 1− φ(s)2

2
constitute a systematic overestimation of the lateral deflection ∆y = y(R0) and an
underestimation of the longitudinal retraction ∆x = R0 − x(s). The deflection angle
in water increases with increasing beam energy and magnetic flux density, giving rise
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to increasing discrepancies relative to the reference data. In addition, the neglection
of relativistic effects for the calculation of ∆x contributes to an increasing uncertainty
with increasing energy. These trends can be clearly observed in figures 4a and 5a. In
air, the effect of a decreasing gyroradius with decreasing energy dominates, therefore
the travelled pathlength and deflection angle increase with decreasing energy. As
the accuracy of the model decreases with increasing deflection angle, this leads to an
opposite trend as compared to the lateral deflection, as is appreciated from figures 4b
and 5a.

Similarly, we can observe how the approximations brought forward by Hartman
et al. (2015) affect the accuracy of the TG model’s predictions. The model neglects
retraction, the changing gyroradius due to energy loss and relativistic effects. The
accuracy of these approximations decreases with increasing magnetic flux density and
proton energy, as is depicted in figure 4. Note that differences in figure 4b are solely
due to the neglection of relativistic effects, which leads to an underestimation of the
gyroradius. The trend to underestimate the deflection in water, as depicted in figure
5a, can be ascribed to the overestimation of the gyroradius by assuming r(s) = r0.
In addition, it was shown that the assumption of a negligible longitudinal Bragg peak
retraction exceeds an accuracy of 2 mm already at intermediate energies (see figure 5a).

The new model presented in the current work does not rely on these assumptions
and shows an equally good or better agreement to Monte Carlo results over the
whole energy range from 60 MeV to 250 MeV. The remaining differences can be
attributed to the approximations of the model, i.e. neglecting scattering, energy-loss
fluctuations, range straggling, generation of secondary particles and energy loss in air.
Those simplifications were applied to reduce calculation time, but can in principle be
included due to the structure of the model being a simplified particle tracking method.
The tendency of overestimating lateral deflection and underestimating longitudinal
retraction might result from the spectral dispersion of the proton beam due to the
magnetic field (Moser 2015), which is not included in the model. Another factor of
uncertainty is the proton range R0, which has been approximated by equation 4 and
used as an estimate for the position of the Bragg peak. R0 deviates from measured
Bragg peak positions (Paul 2013, Schardt et al. 2008) by less than 0.4 mm up to proton
energies of 200 MeV.

On the other hand, results obtained by Monte Carlo particle tracking were used
in this publication as reference data. However, this approach is theoretical in nature
and its accuracy strongly depends on the choice of input parameters and physics
models. Consequently, dosimetric measurements have to be carried out for a reliable
evaluation of the different models. While this study primarily aimed to introduce the
new method, this will be subject to future studies.

In the presented model, the particle’s equation of motion (eq. 1) has been solved
analytically (eq. 2). As an alternative, a full numerical solution by means of a Runge-
Kutta method has been proposed recently (Moser 2015). However, as the proton
velocity is considered to be constant in each calculation step, the analytical solution
applies not only in vacuum but also in media. We therefore consider the Runge-Kutta
method to be superfluous in this case, as it will compromise the calculation accuracy
and workload.



Modelling magnetic beam deflection in MR-integrated proton therapy 16

6.2. Beam correction

The proposed strategy for a compensation of the Bragg peak deflection includes an
adjustment of the initial proton beam energy and entrance angle. It was shown that
this method effectively repositions the Bragg peak to the intended spot for all studied
beam energies and magnetic flux densities. The range difference corresponding to
∆E0 ranges between 0.01 cm (0.3 %) for 60 MeV and 0.5 T and 1.27 cm (3.3 %) for
250 MeV and 3 T (see table 2 and eq. 4). The main factor of uncertainty for the
proton range in a well-defined geometry is statistical pathlength straggling, and the
standard deviation of the range due to this effect ranges between 1.2 % for 60 MeV and
1.1 % for 250 MeV (Janni 1982, Paganetti et al. 2012). Being comparably high, the
energy correction should therefore not be neglected in MRiPT, especially for higher
proton energies and magnetic flux densities.

The reason for the remaining discrepancy of the Bragg peak position corrected
by the TG model is seen in the approximations mentioned above. The neglection of
retraction constitutes an overestimation of the total path length, and the neglection
of relativistic effects leads to an underestimation of the gyroradius and thus an overes-
timation of the beam deflection. Both approximations result in an overcompensation
of the beam deflection.

The calculation time of the new model is strongly decreased as compared to Monte
Carlo models. It can be further reduced by using a higher-performant computer and
by reducing the required accuracy, which was chosen conservatively in this study.

7. Conclusion and Outlook

Although previous work has indicated that there is general consensus that the proton
beam trajectory in a water/air phanom setting inside a transverse magnetic field is
predictable, our quantitative comparison of the different methods has shown that
predictions of different models only agree for certain proton beam energies and
magnetic flux densities. Therefore, shortcomings of previously published analytical
methods have been analyzed and quantified. The inclusion of critical assumptions
and the lack of applicability to realistic, i.e. non-uniform, magnetic flux densities
and patient anatomies have been identified as main problems. To overcome these
deficiencies, a new model has been developed and shown to be both less assumptive
and more versatile than existing analytical approaches, and faster than Monte Carlo
models.

Thus, the new model is useful to get a fast and accurate estimate for the
beam deflection and retraction which is to be expected in MRiPT, and for the
correction parameters needed for a compensation thereof. It can help in the planning
of experimental setups for dosimetric feasibility studies of MRiPT, and its simple
structure helps to understand underlying physical mechanisms. Furthermore, it can
be used as reference solution when setting up a Monte Carlo model or an experimental
study. As pointed out by Hartman et al. (2015), intensity-modulated MRiPT planning
can be realized by two Monte Carlo calculation steps - one for selection of beamlets
whose deflected Bragg peaks lie inside the target, and one for dose calculation. Thus,
another possible application of the model is to replace the first Monte Carlo step in
order to reduce the overall calculation time.

We have presented the new model in a simplicistic form for a first approach
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to the problem of magnetic deflection of the proton beam. However, the structure
of the model allows for an easy extension to more realistic cases, especially including
range straggling and non-uniform magnetic fields and material compositions. Magnetic
flux density vectors of arbitrary distribution and phantom/patient geometries can be
included due to the full reconstruction of the trajectory, which provides knowlegde
of the proton position at every iteration step. In addition to its reduced amount of
approximations, the presented model thus offers a critically enhanced applicability
compared to existing analytical models. Future studies will involve a comprehensive
benchmarking of the new model with both Monte Carlo simulations and experimental
measurements.
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