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This work aims for demonstrating and understanding the key role of local demagnetizing fields
in hybrid structures consisting of a continuous thin film with a stripe modulation on top. To
understand the complex spin dynamics of these structures, the magnonic crystal was reconstructed
in two different ways – performing micromagnetic simulations based on the structural shape as well
as based on the internal demagnetizing field, which both are mapped on the nanoscale using electron
holography. The simulations yield the frequency-field dependence as well as the angular dependence
revealing the governing role of the internal field landscape around the backward-volume geometry.
Simple rules for the propagation vector and the mode localization are formulated in order to explain
the calculated mode profiles. Treating internal demagnetizing fields equivalent to anisotropies, the
complex angle-dependent spin-wave behavior is described for an in-plane rotation of the external
field.

PACS numbers: 76.50.+g, 75.30.Ds, 75.78.-n, 75.78.Cd, 42.40.-i

I. INTRODUCTION

Magnetic meta-materials, especially magnonic crystals
(MCs),1–5 experience a growing scientific attention due to
many promising applications for future devices in infor-
mation technology. The root of this development lies in
the unique properties of MCs,6–8 such as the multitude of
magnon bands with band gaps7,9–14 that can be interpret
due to Bragg diffraction.6,15–17 These properties can be
engineered or even tuned by modifying their structural or
magnetic properties.13,18–20 In addition, MCs, in partic-
ular one-dimensional systems, possess the possibility of
reprogramming the magnonic properties by a switching
between different states in the magnetic hysteresis.21–26

In previous studies, it was already shown that MCs can
be used as grating couplers,27 for magnonic logic,28–31

filter32 and sensor33 applications, and moreover, as a tool
to access important material properties, such as the ex-
change constant, at high precision.34

Internal demagnetizing fields are an essential ingre-
dient for the correct description of spin-wave modes in
different types of MCs,18 such as fully etched3,17,19,35,36

and bi-component structures.4,7,37,38 This is also the case
for hybrid MCs consisting of a periodic surface modula-
tion on top of a magnetic thin film,26,39–42 here termed
surface-modulated magnonic crystal (SMMC) with a
band structure which is simply adjustable by the size
of the modulation. There are theoretical concepts such

FIG. 1. (Color online) The strategy to understand the
spin-wave dynamics of a magnonic crystal. (a) Cross-
sectional TEM image with (b) the measured FMR-response
(Lorentzian fits in orange). (c) Magnification (black and
white) superimposed with the x-component of the simulated
demagnetizing field (colorplot). (d,e) Both properties are
used as input for dynamic response simulations with (f,g) the
resulting mode profiles of the highlighted resonance peaks.
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as plane wave method7,35,43,44 under current develop-
ment in order to fully understand the dynamics of these
structures.
In this work, the role of the internal demagnetizing

field in SMMCs is analyzed in particular in the geometry
where the external field is applied perpendicular to the
surface edges where internal fields maximize. The idea
(shown in Fig. 1) is to reconstruct the dynamics of the
system based on the two different properties: the struc-
tural shape (Fig. 1(a),(c)) and the internal demagnetiz-
ing field (Fig. 1(c)). Both properties are obtained ex-
perimentally via high-resolution magnetic imaging using
electron holography–a phase retrieval method in trans-
mission electron microscopy (TEM).45

The results were used to reconstruct the dynamic
eigenmodes of the system employing micromagnetic sim-
ulations (Fig. 1(d,e)). Comparing the results with the
measurement (Fig. 1(b)) yields the corresponding spin-
wave states (Fig. 1(f,g)) and allows to assess the role
of the internal field landscape for the dynamics of the
SMMC. Using ferromagnetic resonance measurements
and micromagnetic simulations, the in-plane frequency-
field dependence and the in-plane angular dependence of
the magnonic crystal are studied together with the spin-
wave mode profiles.
The important role of the internal demagnetizing field

for the dynamics of MCs is demonstrated. Namely,
it acts locally as demagnetizing and magnetizing field.
This study gains a fundamental understanding of the
frequency-dependent spin-wave properties in MCs. The
spin-wave behavior is examined under the rotation of
the external field from the backward-volume (k‖M) to
the Damon-Eshbach geometry (k⊥M) where k denotes
the in-plane wave vector and M the magnetization. The
angular dependence is described using the internal de-
magnetizing field as well as the mode localization for the
estimation of an effective mode anisotropy.

II. THEORY

The dispersion46 of spin waves within a perfect thin
film under an in-plane applied magnetic field H0 and
with an in-plane wave vector k is the theoretical funda-
ment for the description of the in-plane frequency-field
dependence as well as the angular dependence. Assuming
a constant magnetization profile with parallel alignment
relative to H0, the resonance equation reads42

(

ω

γ

)2

= HY(k) ·HZ(k) (1)

with the stiffness fields

HY(k) = µ0H0 + µ0MS [1− F (kd)] sin2 ϕk +Dk2 (2)

HZ(k) = µ0H0 + µ0MSF (kd) +Dk2 . (3)

Here, f = ω/(2π) is the spin-wave frequency, γ the gy-
romagnetic ratio, H0 the external magnetic field, MS
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FIG. 2. (a) Electric phase image of the cross-section of a
surface-modulated magnonic crystal (SMMC) with 10 nm
modulation height. The contrast is proportional to the
lamella thickness t in y-direction. (b) Cosine of the 20 times
amplified magnetic phase indicating the field lines of the pro-
jected x,z components of B. (c) Simulation of the magnetic
phase considering thickness variations to which the intensity
alterations of the electric phase inside the SMMC are at-
tributed. The inset depicts the simulated magnetic phase
of the marked area without variations assuming a constant
thickness of tavg = 38.3 nm instead.

the saturation magnetization, D = 2A/MS the exchange
stiffness with A being the exchange constant and ϕk is
the angle between magnetization M and the wave vector
k. The term F (kd) = [1−exp(−kd)]/(kd) is derived from
the dipolar interaction with d being the film thickness.

In case of a thin film with tiny periodic thickness vari-
ations ∆d (SMMC with ∆d/d ≤ 0.1), quantized standing
spin-wave modes with k = 2πn/a0 and n = 1, 2, ... are
introduced where a0 is the patterning periodicity. In this
limit, Eqs. (1)–(3) provide a reasonable estimation of the
spin-wave dispersion under the condition that the mode is
far away from a crossing point in the f(H0) dependence
with another mode (such that effects of mode-coupling
can be neglected).34,39,42

For SMMCs with a pronounced modulation height,
this is not the case anymore. In this case, Eqs. (1)–(3)
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can be applied locally in order to estimate the k-vector
within a region of homogeneous thickness d if the ma-
terial parameters, the spin-wave frequency and the ef-
fective field in resonance are known. In Sec. IVB, a firm
agreement of such estimation to the results obtained from
micromagnetic simulations will be demonstrated.
Furthermore, this research employs semi-analytical

calculations of the frequency-dependent spin-wave prop-
erties based on the plane wave method (PWM)7,35,43

with details provided in Ref. [44]. A detailed descrip-
tion of the micromagnetic simulations employed in this
work can be found in the appendix (ii).

III. EXPERIMENTAL DETAILS

A. Sample Fabrication

Initially, a polycrystalline d = 36.8 nm thin permal-
loy (Ni80Fe20) film was deposited on a surface-oxidized
silicon substrate by electron beam physical vapor depo-
sition. To achieve an alternating film thickness, the sur-
face was pre-patterned by means of electron beam lithog-
raphy. Here, ma-N 2401 negative resist was employed
and structured into a stripe mask with a0 = 300 nm
periodicity and an individual nominal stripe width of
w = 166 nm. Subsequently, the uncovered magnetic ma-
terial was exposed to Ar-ion milling and 10 nm of the
magnetic material were removed.34 In this manuscript,
the resulting structure is referred to as an SMMC.
Subsequently, a cross-sectional TEM lamella of the

SMMC was prepared by in-situ lift-out using a Zeiss
Crossbeam NVision 40 system. In order to protect the
structure surface, a carbon cap layer was deposited by
precursor decomposition. Afterwards, a TEM lamella
was prepared using a 30 keV Ga FIB. Its transfer to a
3-post copper lift-out grid (Omniprobe) was done with a
Kleindiek micromanipulator. To minimize sidewall dam-
age, Ga ions with 5 keV energy were employed for a final
thinning of the TEM lamella until electron transparency
was achieved.

B. Electron Holography

Off-axis electron holography47 was employed as a
unique technique to quantitatively map the projected
magnetic induction48 at a spatial resolution of about
2 nm and a magnetic phase signal resolution of about
2π/100 rad. The imaging of the lamella was carried out in
remanence using a HITACHI HF3300 (I2TEM) transmis-
sion electron microscope with a 300 kV cold field emission
gun and two goniometer stages (a field-free Lorentz stage
and a standard high resolution stage).
Dedicated Lorentz modes combined with the CEOS B-

cor corrector allow to achieve a 0.5 nm spatial resolution
in a field-free environment (less than 0.1 mT). All holo-
grams were recorded in double-biprism configuration49

FIG. 3. (Color online) (a) Experimentally projected x-
component of the demagnetizing field Hd,x smoothed using a
Gaussian filter. (b) Same as (a) but with external Hd,x field
projection subtracted. (c) Simulation of the internal Hd,x

field. (d) The vertically averaged internal Hd,x field obtained
by measurement (blue arrow in (b)) and simulation (orange
arrow in (c)) normalized by the thickness profile. (e) Due to
the small thickness of the lamella, the internal Hd,x field is
scaled in order to resemble a 3D structure with continuous
magnetic material along the y-axis.

to avoid Fresnel fringes and to independently set the
interface area and the fringe spacing. At a tilt of 30◦

of the lamella’s long direction (x) with respect to the
optical axis (y), the sample was initially saturated by
means of the objective lens field. More details regarding
the measurement technique are provided in the appendix
(i). Furthermore, information regarding the setup can be
found in Ref. [50].

The resulting electric and magnetic phase images are
illustrated in Fig. 2(a-b). The electric phase is sensi-
tive to different materials as well as the thickness along
the beam axis. The magnetic phase (here: the 20 times
amplified cosine) depicted in Fig. 2(b) appears as black
and white lines reflecting the local orientation of the pro-
jected in-plane B field with the absolute gradient being
proportional to its magnitude.

As explained in the appendix (i), the local thickness
distribution in beam direction could be obtained from
the electric phase. Together with the 2D structural infor-
mation according to Fig. 2(a), both were employed to re-
construct the remanent state of the lamella via static mi-
cromagnetic simulations.51 The resulting simulated mag-
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FIG. 4. (Color online) f(H0) dependences of the surface-modulated magnonic crystal with the gray scale representing the
dynamic response. (a) Measurement and (b-d) different simulations of the FMR response. (b) Simulation based on the
structural shape of the magnonic crystal. In (c-d) the internal demagnetizing field H int

d,x was added to a 36 nm thin film with

subsequent calculation of the FMR response. (c) is based on the measured H int
d,x field and (d) on the simulated one.

netic phase is shown in Fig. 2(c). Useful for comparison
is an additional simulation where the thickness variations
were not considered, as shown in the inset of Fig 2(c).

The simulation exhibits very similar features compared
to those obtained by the measurement. The phase irreg-
ularities mapped on the left side of the structure were
reproduced by the simulation in Fig. 2(c) and can be
related to a local thickness increase, since the features
vanish (see inset in 2(c)) when a flat lamella is assumed.
Next, the vertically averaged distribution of the inter-

nal demagnetizing field H int
d,x(x) along the lamella’s long

axis was extracted. To achieve this, the major contribu-
tion of the magnetization was gained and subtracted from
the measured projected magnetic phase by reemploying
the above mentioned static simulations. Figure 3(a) illus-
trates the resulting 2D distribution of the magnetic phase
generated by the Hd,x field with white (black) color rep-
resenting a positive (negative) sign of Hd,x. This means
that Hd,x is acting as demagnetizing or magnetizing field,
respectively. Figure 3(b) only depicts the projected in-
ternal Hd,x field isolated by subtraction of the contrast
generated by the simulated stray field outside the mag-
netic structure. Hence, the stray field features above the
SMMC in Fig. 3(a) vanish in 3(b). Moreover, there are
parasitic contribution to the projected internal field due
to the external strayfield in the front and in the back
of the lamella with respect to the beam direction. Such
contributions were also estimated using the static micro-
magnetic simulations.
In Fig. 3(d) the vertically averaged profiles of H int

d,x

are presented according to the arrows in Figs. 3(b-c).
The values taken from Figs. 3(b-c) are normalized by the
lamella thickness profile. Blue color represents the mea-
surement and orange color the simulation. The profiles
demonstrate a very good agreement between both the
measurement and the simulation and are corroborated
with the simulated H int

d,x(x)-distribution of a flat struc-

ture (orange dashed line), where the lamella thickness
was fixed to tavg.
Since further investigations focus on a 3D extended

MC and not on a thin (2D) lamella structure, system-
atic difference between the internal fields of both systems

need to be considered. As further described in the ap-
pendix (i), this circumstance is addressed by a scaling
of H int

d,x(x) with the result shown as black solid line in

Fig. 3(e). Apart from the apparent oscillations arising
from measurement noise, the result matches well the dis-
tribution obtained by the simulation (orange dashed line
in Fig. 3(e)) of an ideal 3D SMMC.

C. Magnetic Characterization

The magnetic characterization was carried out using
a broadband vector network analyzer ferromagnetic res-
onance (FMR) setup as described in the Refs. [34] and
[52]. Excitation of the spin system is achieved by cou-
pling a microwave signal via a coplanar waveguide to the
surface of a ‘flip-chip’-mounted sample. The transmis-
sion signal S21 is measured at several fixed excitation
frequencies f sweeping the external field H0. The ab-
solute value of S21 was recorded as the FMR-response.
The thin film properties were pre-characterized by FMR
yielding the values MS = 735 kA/m, D = 23.6 Tnm234

and the g-factor g = 2.11.

IV. RESULTS AND DISCUSSION

In this section, the results from two independent ap-
proaches to reconstruct the effective spin-dynamics in a
magnonic crystal are discussed. With both the knowl-
edge of (i) the structural shape and (ii) the internal Hd,x

field, dynamic simulations were performed.

A. Frequency dependence in backward-volume

geometry

Figure. 4 illustrates several f(H0) dependences ob-
tained from measurement and simulations. In 4(a) the
measured f(H0) is shown whereas 4(b) was obtained
from the remodeling of the sample structure and sub-
sequent FMR simulations. Details regarding both ap-
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proaches are found in the appendix (ii). The evident
similarity between both indicates a reliable representa-
tion of the sample structure by the micromagnetic model.
In contrast, Fig. 4(c) and (d) are obtained by simulating a
36 nm thin permalloy film with a virtually added periodic
distribution of H int

d,x. In 4(c) the measured field distribu-

tion was employed and in 4(d) the simulated one was
taken corresponding both to the two plots in Fig. 3(e).
A convincing qualitative agreement of all shown f(H0)
dependences with the measurement is obtained.
However, at second glance, a higher number of modes

can be found in Fig. 4(c), which is due to the measure-
ment noise in H int

d,x violating the mirror symmetry of the
internal field landscape. Especially at the edges of the
thick part, the different local demagnetizing fields lead
to the occurrence of two separate non-symmetric edge
modes with different energies. However, for the symmet-
ric H int

d field in Fig. 3(d), the f(H0) matches well the one
obtained in Fig. 3(b) with similar mode characteristics.

B. Mode profiles

Another way to test the level of similarity between the
different simulations presented above is to analyze the
mode profiles. For this purpose, the mode profiles at the
marked resonances at f = 12 GHz in Fig. 4 are plotted in
Fig. 5 and labeled with the respective mode number n. In
the figure, solid lines represent the result of the structure-
based simulation and the dashed lines correspond to the
simulation based on the demagnetizing field. Both plots
indicate a convincing agreement between both simula-
tions such that the individual character of the plotted
mode profiles reflects similar physics. Consequently, the
dynamics of the SMMC is to some extend similar to a
flat MC with a pronounced internal field structure, like
a bi-component MC. Such system can be well described
by the plane wave method,7,35,43,44, which was used in
addition for the calculation of the mode profiles in Fig. 5
confirming the results from the simulations. Note that
the frequency of 12 GHz was selected such that effects
from mode coupling are small and, thus, can be neglected
in the following discussion.
For the understanding of the nature of spin-wave

modes in an SMMC, it is very useful to analyze the limit
of a thin film with very tiny modulation ∆d → 0. In this
limit, the surface modulation generates very small pe-
riodic strayfields of perturbative character.39,42,48 These
fields introduce a base-periodicity a0, which is crucial for
the occurrence of standing spin-wave modes. But since
these fields are small in this limit, the spin-waves exhibit
a rather harmonic sinusoidal mode profile with 2n nodes
within a0 and with a dispersion equal to the thin film and
with a constant k-vector k = 2πn/a0 quantized due to
the number of nodes per period. The f(H0)-dependence
corresponding to the film limit is shown in Fig. 6(a).
Apart from the uniform mode (blue dashed line), the
above mentioned standing SW modes are calculated ac-
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FIG. 5. (Color online) Mode profiles of spin-waves (with cor-
responding mode number n) at different resonance positions
as marked in Figs. 4 and 8. They are derived by simulations
and PWM theory.

cording to the Eqs. (1)–(3) and plotted as orange lines.
The standing spin-wave modes (sketched in the inset of
Fig. 6(a)) can couple to the uniform mode and together
form the full spectrum of possible states accessible in
such structures.34,39,42 In Fig. 6(a), at the marked fre-
quency of 12 GHz, three states with lower energy than
the uniform one with n = 1, 2, 3 are found with the n = 2
state being the lowest. Note that for a given frequency,
the mode energy is reflected by the resonance field such
that for low (high) energy modes a high (low) external
field must be supplied to resonate at the same frequency.
Thus, at f = const., high resonance fields represent low
mode energy and reverse.
In contrast, in an SMMC with a pronounced modula-

tion, these states are present as well, but are shaped dif-
ferently by the internal field landscape. The reason for
that is the alteration of the spin-wave dispersion due to
the presence of locally different effective fields connected
with the magnetizing and demagnetizing fields generated
by H int

d . The divergent internal field leads to locally dif-
fering solutions of Eq. (4) and moreover, to regions, where
there is no solution and thus, a damping of the SW ampli-
tude. Consequently, the mode profiles (depicted in Fig. 5
for f = 12 GHz) exhibit a locally altered k-vector and re-
gions in which the mode is suppressed due to the varying
internal field landscape (shown in Fig. 6(b)) instead of
an isotropic wave vector. The field distribution (orange
plot in Fig. 6(b)) is translated into a region map (roman
numbers) of negative (I,II) and positive (III,IV) internal
fields. The dashed lines represent the part of the field
landscape where the respective mode energy is sufficient
for a spin-wave excitation. Note that all modes in Fig. 5
can still be identified according to their total number of
nodes (2n) inside a period a0.
In order to understand the characteristic mode pro-

files in Fig. 5, it is useful to know the dependence of the
wave vector k on the effective field Hn

eff = Hn
0 + H int

d .



6

0.0 0.1 0.2 0.3 0.4 0.5

Field (T)

n=4

n=3

n=2

n=1

standing spin waves

0

15

20

f 
(G

H
z
)

25

n=1
n=2

10

Film limit

unifo
rm

(n=0) II I IIIIII IIIIV IV IV IV

4

0

In
te

rn
a
l d

e
m

a
g
.
fi
e
ld

(a) (b)

1

Location

2

f = 12 GHz

3
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localization and internal field landscape of an SMMC. The
H int

d field is negative in region I and II and positive in region
III and IV. Thus, modes with energy below the uniform mode
(flat black line) can only be excited in the regions where the
internal field is reduced (I,II).

At this point, the knowledge of the internal demagnetiz-
ing field H int

d becomes relevant again. As the H int
d field

itself depends on the location along the x-axis, the dis-
tribution H int

d (x) can be used to assign a specific k-value
with a location inside the MC. Moreover, this relation
can be used to identify regions where no k-value can be
attributed to the effective field which is important for
understanding the individual mode localization. For this
purpose, the spin-wave dispersion expressed by Eqs. (1)–
(3) is employed with H0 being replaced by the effective
field Hn

eff = Hn
0 + H int

d to consider both, the external
field of the nth spin wave in resonance Hn

0 as well as the
internal demagnetizing field H int

d . Accordingly, the de-
pendence of the effective field Hn

eff on the wave vector k
reads (for ϕk = 0◦):

µ0H
n
eff =− 1

2µ0MSF−Dk2+

[

1
4 (µ0MSF )

2
+

(

ω

γ

)2 ]
1
2

(4)

Eq. (4) can now be used, to correlate the wave vector k
with the effective field Hn

eff at f = 12 GHz (solid lines
in Fig. 7(a)). This is possible, since all other quantities,
such as MS, D and the g-factor (specified in Sec. III)
are known as well as the thicknesses dthick = 36 nm and
dthin = 26 nm of the two parts of the SMMC. The cor-
relation k(Hn

eff) is illustrated in Fig. 7(a) both for the
thick and the thin part. With the given resonance fields
Hn

0 in Fig. 5 and the knowledge of the internal demag-
netizing field H int

d (x), the effective fields Hn
eff(x) can be

calculated for all different locations in the SMMC and
for each spin-wave mode. The colored lines in Fig. 7(a)
correspond to the range of k-values associated with the
internal field landscape for each mode. Bright colors rep-
resent the edge regions (I,IV) and dark colors represent
the center regions (II,III). In Fig. 7(b), the H int

d (x) dis-
tribution (orange dashed line in Fig. 3(e)) is used, to cal-
culate the wave vector dependent on the location along
the x-axis.
With Fig. 7(a) and (b), the reason for the mode local-
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FIG. 7. (Color online) wave vector calculation for the reso-
nances marked in Fig. 5 dependent on (a) the effective field
and (b) the location along the x-axis. For modes 1–3, the
internal fields in the thin part are so high that the effective
field exceeds the vertex of the parabola in (a) and thus, this
region is avoided. In (a) bright lines correspond to the edge
(I,IV) and dark lines correspond to the center regions (II,III).

ization can be explained. For modes 1–3, the effective
field in the thin part (III,IV) exceeds 176 mT, which is
maximum value (vertex of the gray parabola in 7(a)) for
a defined spin-wave excitation in this region. Thus, all
three modes localize in the thick part (I,II) and avoid the
regions III and IV. Moreover, the calculations reveal that
mode 2 is only excited at the edges of the thick part (I).

It is important to note that in SMMCs with a pro-
nounced modulation, a classical uniform mode cannot
exist due to the variance of the internal fields. Instead,
mode 0 behaves as a quasi-uniform excitation of the cen-
ter of the thin part (III,IV) of the MC, which is supported
by the mode profile in Fig. 5 and by the range of k-values
in Fig. 7(b) reaching almost perfectly k = 0 in the center
of part III. Unlike the higher modes 2–4, the wave vector
of mode 0 and mode 1 is not only delimited by the vertices
of the parabolae in Fig. 7(a) where the energy becomes
too small for a spin-wave excitation. It is also delim-
ited by the uniform state (k = 0) at µ0Heff = 154 mT
such that regions of lower internal fields cannot be ex-
cited anymore. Due to that reason, mode 0 avoids the
thick part (I,II) as much as mode 1 avoids region I as
shown in Fig. 7(b) and confirmed by Fig. 5.

The only mode with sufficient energy to spread over
the full MC is mode 4. In Fig. 7(a) and (b) the dis-
tribution of the modes’ wave vector is plotted accord-
ing to Eq. (4). Expressed vividly, the mode can re-
arrange its 8 nodes in a way that the energy of the
mode is distributed equally over the full structure. The
number of nodes in the thick part m and in the thin
part l can be estimated by solving µ0H

thick
0 = µ0H

thin
0 ,

i.e. µ0H
m
0

(

d = 36nm, µ0H
thick
d = −39mT, k = mπ

w

)

=

µ0H
l
0

(

d = 26nm, µ0H
thin
d = 41mT, k = lπ

a0−w

)

with n = m + l and with Hthick
d and Hthin

d being the
average internal demagnetizing fields of the thick and the
thin part of the MC. Applying Eq. (4) yields a resonance
field of µ0H

m
0 = µ0H

l
0 = 103 mT and the node numbers

m = 5.29 and l = 2.71, which is coherent with the node



7

distribution in Fig. 5.
In short, it is observed, that three kinds of modes are

distinguished in the SMMC. (i) A quasi-uniform central
excitation of the thin part of the SMMC, which corre-
sponds to mode 0. (ii) k 6= 0 modes with sufficient energy
to extend over the full MC (e.g. mode 4) and (iii) k 6= 0
modes with insufficient energy enforcing a localization in
the thick part (I,II) of the MC, such as mode 1–3.
Modes of category (ii) adapt their wave vector such

that the mode energy is equally distributed over the full
structure while the total number of nodes (2n = m + l)
is conserved. For these modes, the wave vector must
be calculated separately for both the thick and the thin
part as explained above with the necessity of a steady
pinning i.e., equal SW amplitudes at the boundaries be-
tween thick and thin part.
This is different for the category (iii) of localized

modes. These modes exhibit a ‘damped’ trough in the
thin part where the local fields are too high for a spin-
wave excitation. The residual 2n − 1 nodes are being
condensed in the thick part, where the internal field is
reduced. Accordingly, the wave vector of these modes
is shifted to k = (2n − 1)π/w instead of 2πn/a0 in the
thin film limit. A full number of nodes within the thick
part would imply a perfect pinning at the edges of the
thick part. This assumption is employed for an accessible
description of the mode profiles and the angular depen-
dence (Sec. IVC), but as seen from Fig. 5, does lead to
significant deviations from the pinning calculated by the
plane-wave method and simulations like in case of mode
3.

C. Angular Dependence

Figure 8(a) shows the measurement and 8(b) the sim-
ulation of the angular dependence at f = 12 GHz. The
backward-volume direction (ϕH = 0◦, 180◦) is marked
by the orange line with the labeled resonances being the
same as in Fig. 4(b). ϕH = 90◦ and 270◦ both corre-
spond to the Damon-Eshbach geometry. Again, a satis-
factory reconstruction of the measurement by the simu-
lation based on the sample structure is obtained.
The most prominent resonance branch is the flat one

between 45◦–135◦ and 225◦–315◦. This mode corre-
sponds to the uniform mode around the Damon-Eshbach
geometry with negligible internal demagnetizing fields.
In the same angular range, there is a second less no-
ticeable resonance branch observed at lower external
fields corresponding to the n = 1 Damon-Eshbach mode.
Knowing that the n = 1 mode is identified at µ0H0 =
202 mT in the backward-volume direction, mode 1 can
be followed through a full 360◦ rotation of the external
field.
In order to analytically express the angular dependence

of a mode, Eqs. (1)–(3) can again be employed together
with the identity ϕk = ϕH . Around the backward-
volume direction, the high internal demagnetizing fields
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FIG. 8. (Color online) In-plane angular dependence of the
resonance fields of an SMMC with 10 nm modulation height,
where (a) is the measurement and (b) the corresponding sim-
ulation. The numbered resonances correspond to the mode
profiles shown in Figs. 5. The solid lines are calculations
based on Eq. (5) with parameters accounting for ϕH = 135◦–
225◦ provided in table I. For ϕH = 225◦–270◦, mode 1 was
described without consideration of an internal demagnetizing
field assuming a film thickness of d = 26 nm.

must also be taken into account with regard to the indi-
vidual mode localization. In order to include the demag-
netizing field into the angle-dependent spin-wave disper-
sion, µ0H0 was replaced by µ0H0 + µ0Hd · cos (2ϕH) in
Eq. (2) and by µ0H0 + µ0Hd · cos2ϕH in Eq. (3) analo-
gous to the description of a uniaxial anisotropy field.52–54

From Eqs. (1)–(3), a modified angular dependence is ob-
tained

µ0H
n
0 (ϕH) = − 1

2µ0Hd

(

cos(2ϕH)+cos2ϕH
)

−Dk2

− 1
2µ0MSF− 1

2µ0MS(1−F ) sin2ϕH+

[

1
4µ

2
0H

2
d sin

4ϕH

+ 1
2µ

2
0HdMSF sin2ϕH− 1

2µ
2
0HdMS(1−F ) sin4ϕH

+ 1
4

(

µ0MSF−µ0MS(1−F ) sin2ϕH
)2
+

(

ω

γ

)2 ]
1
2

(5)

with µ0H
n
0 the resonance field of the nth mode. The

angle-dependent resonance fields are calculated using
Eq. (5) employing simplified assumptions: (i) The wave
vector of localized k 6= 0 modes is defined by k =
(2n− 1)π/w and (ii) for the effective demagnetizing field
Heff

d the average value of the regions in which the modes
localizes is taken. (iii) As explained in Sec. IVB, for
modes localized in the thick as well as the thin part of
the MC (e.g. mode 4), the node number and the effective
field Heff

d are calculated separately for both parts.
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The calculated angle dependences according to Eq. (5)
are depicted in Fig. 8 as solid lines revealing a firm over-
all agreement to the measurement and the simulation.
The parameters used for the calculations according to
the above assumptions are provided in table I. Mode 3 is
the only one with major deviations from the resonance
positions in the colorplot. The discrepancy is likely due
a different pinning condition at the edge of the thick
part resulting in an overestimation of the wave vector by
k = (2n− 1)π/w. This is supported by the mode profile
in Fig. 5 revealing a reduced wave vector between the film
limit 2πn/a0 and (2n−1)π/w. A fitting angle-dependent
resonance position can be obtained for k = 4.3π/w (blue
dot-dashed line in Fig. 8(b)), which is coherent with the
number of nodes in Fig. 5.

For the calculations in and around the Damon-Eshbach
geometry, the internal demagnetizing fields were ne-
glected, i.e. , µ0H

eff
d = 0. Interestingly, a reliable re-

production of the behavior of mode 1 (dark blue line in
Fig. 8(b)) can only be obtained if a dynamically active
film thickness of only d = 26 nm (corresponding to the
thin part) is assumed.

V. CONCLUSION

Electron holography measurements were performed to
map the internal field landscape of a surface-modulated
magnonic crystal on the nanoscale. The measurements
confirm the locally alternating character of the demagne-
tizing field exhibiting a local ‘magnetizing’ effect. Micro-
magnetic simulations of the dynamic response proof the
dominating role of the internal demagnetizing field for
the eigenmodes of the magnonic crystal. The knowledge
about the local demagnetizing field was used to find sim-
plified expressions for the modes’ wave vector and the
mode localization revealing e.g., a node-redistribution
effect. With this, a simplified expression of the angle-
dependent spin-wave behavior is formulated treating lo-
cal internal fields equivalent to anisotropies.

TABLE I. Parameters used for the calculation of the angular
dependence between ϕH = 135◦–225◦.

mode no. n localisation d (nm) keff µ0H
eff
d (mT)

0 III 26 0 31.9

1 II 36 π/w -31.8

2 I 36 3π/w -57.0

3 I,II 36 5π/w -38.7

4
III,IV 26 2.71π

a0−w
-38.7

I,II 36 5.29π/w 40.9
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VII. APPENDIX

(i) Internal Demagnetizing Field Extraction
Figure 9(a) illustrates the working principle of off-axis
electron holography. Employing a Möllenstedt biprism,
the object- and the reference beam is precisely super-
imposed at the image plane. The recorded interference
fringe pattern is shown in Fig. 9(b) with tiny contrast
variations and fringe bending (see inset in Fig. 9(b)).
The holographic reconstruction by filtered Fourier trans-
formation (see Fig. 9(c)) yields the amplitude and phase
information depicted in Figs. 9(d),(e). Note that wave
averaging was employed to reduce the phase noise and
displacement removal and first-order aberration correc-
tions were used for matching the mean phase. A deeper
technical description of the acquisition of a TEM holo-
gram is provided in Refs. [47] and [55].

The electron phase is altered by the electric and mag-
netic properties of the sample and is, thus, key quan-
tity for the mapping of the demagnetizing field on the
nanoscale,45 given by

ϕ(x, z) = CE

tu(x,z)
∫

tl(x,z)

V (x, y, z)dy −
e

~

∫∫

S

BdA . (6)

V is the electrostatic potential constricted by the lamella
thickness t(x, z) = tu− tl along the y-direction and CE is
the interaction constant. The fist integral corresponds to
the electric phase ϕel and the second one to the magnetic
phase ϕmag, which is proportional to the magnetic induc-
tion B = µ0Hd + µ0M through the surface S enclosed
by the electron beam.

A separation of both phase contributions illustrated
in Figs. 2(a),(b), is realized by a second measurement
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FIG. 9. (Color online) Acquisition and reconstruction scheme
of an electron hologram. (a) Setup of electron holography
in TEM. (b) Hologram of a permalloy (Ni80Fe20) thin film
with ∆d = 10 nm surface modulation. (c) Fourier spec-
trum of the hologram showing two sidebands and one center
band. The filtered, inverse-Fourier-transformed upper side-
band yields the image wave represented by (d) the (wrapped)
amplitude and (e) the phase image.

ϕflipped of the upside-down-flipped56 specimen with

ϕel =
1

2
(ϕ+ ϕflipped) (7)

ϕmag =
1

2
(ϕ− ϕflipped) (8)

As evident from Eq. (6), ϕel contains the full informa-
tion about the 3D sample geometry (depicted in Fig. 10),
which was further used to rebuild the structure for micro-
magnetic simulations. As another implication, the gra-
dient of the magnetic phase returns purely the projected
in-plane components of the magnetic induction:

∇ϕmag(x, z) =
e

~

+∞
∫

−∞

B×dy

=
µ0e

~







tu(x,z)
∫

tl(x,z)

(M+Hint
d )×dy+

∞
∫

tu(x,z)

Hext
d ×dy+

tl(x,z)
∫

−∞

Hext
d ×dy







(9)

To obtain the internal demagnetizing field Hint
d , a de-

composition of B into the magnetization M and the de-
magnetizing field Hd is necessary. After removing the
contribution of the external strayfield (see Sec. III B),
the vertically averaged distribution of the internal Hd,x

FIG. 10. (Color online) Local lamella thickness t in beam
direction determined from the electric phase depicted in
Fig. 2(a).

field was obtained by employing a numerical mask inside
the magnetic region. In order to reduce the number of
artifacts, areas of large phase noise were neglected. To
achieve absolute field values in Tesla, the integrated mag-
netic phase was divided by the local lamella thickness t
(shown in Fig. 10). Thereby, the field was averaged with
the length of the vertical integration path and a Gaussian
filter was applied to improve the signal-to-noise ratio of
the extracted field distribution in Fig. 3(d).

To reconstruct the H int
d,x(x)-distribution of an extended

3D SMMC, a field scaling was necessary. First, system-
atic deviations between the thickness-varied and Gaus-
sian filtered simulation (solid orange line in Fig. 3(d))
and the simulation of a perfectly flat lamella (dashed
orange line in Fig. 3(d)) were quantified and corrected.
Second, systematic differences of the internal field in a
flat (tavg = 38.3 nm thick) 2D structure compared to
a 3D magnonic crystal needed to be regarded. There-
fore, a scaling function was defined based on the static
simulation of a flat quasi 2D lamella (dashed orange line
in Fig. 3(d)) and a 3D SMMC (dashed orange line in
Fig. 3(e)). Since the field values differ by more than one
order of magnitude, the scaling was performed logarith-
mically:

H3D
d,x(x) =

H2D
d,x(x)

∣

∣

∣H2D
d,x(x)

∣

∣

∣

·
∣

∣H2D
d,x(x)

∣

∣

(

log |H3D,sim
d,x

(x)|
log |H2D,sim

d,x
(x)|

)

(10)

Here, H3D
d,x(x) denotes the resulting 3D-corrected field

measurement and H2D
d,x(x) is the measured distribution

of the thin (2D) lamella. The same field distribu-

tions obtained by simulations are labeled H3D,sim
d,x (x) and

H2D,sim
d,x (x), respectively. Note that the index ‘int’ was

omitted in Eq. (10).

(ii) Micromagnetic Simulations Two kinds of
simulations were performed in this work, namely static

relaxations and dynamic FMR response calculations.
Both were calculated using the MuMax3-code.51

For a thorough reconstruction of the lamella structure,
static simulations were carried out. First, the average
thickness tavg of a flat lamella was varied until the mag-
netic phase inside the MC matched the mean phase ob-
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tained by measurement. With the help of that, the varia-
tions of the electric phase (Fig. 2(a)) inside the MC could
be translated into local thickness variations with the re-
sult shown in Fig. 10. In order to consider tiny thickness
variations in the static simulations, the saturation mag-
netization was scaled locally by M

′

S(x, y) = t(x, y)/tavg ·
MS with a cell size of 2.438 nm · 2.125 nm · 2.410 nm for a
high resolution. Note that the thickness along the beam
axis was fixed to the average value of tavg = 38.3 nm.
The material parameters MS, D

34 and g were selected
according to the values provided in Sec. III C. In order to
compare a perfect (flat) 2D lamella with a 3D SMMC, the
micromagnetic model above was modified omitting the
local scaling of MS with and without periodic boundary
conditions in y-direction.
The dynamic response simulations51 were performed

in two different ways. In order to obtain f(H0) de-
pendencies (see Fig. 4), pulsed57 simulations were cal-
culated. To simulate the angle-dependent spin-wave res-
onance (shown in Fig. 8), a continuous-wave approach58

was chosen. As the latter does not require Fourier trans-
formations in the frequency space, such simulations could
directly be carried out at f = 12 GHz. Two different

simulation geometries were selected: (a) a structural re-
construction of the shape of the MC and (b) an approach
using the internal demagnetizing field H int

d,x(x) only as an
additive field in a 36 nm thin permalloy film.
For (a) the structural reconstruction of the MC, the

micromagnetic model according to the electrical phase
image of the MC (Fig. 2(a)) was applied. Minor changes
of the simulation layout according to different average

values of a0 = 300 nm and w = 166 nm were regarded
and, furthermore, the geometry was symmetrized. The
modulation height was fixed to the value of ∆d = 10 nm
with a continuous film of 26 nm thickness underneath.
For an appropriate cross-sectional resolution, a cell size
of 2.344 nm · 4 nm · 2 nm was chosen with 128 · 16 · 18 cells
in total. In order to realize an infinite elongation of the
geometry periodic boundary conditions were applied.59

In the second approach, (b) the internal demagnetizing
field H int

d,x(x) of the MC was added to an unmodulated
continuous thin film. Due to the symmetry in z-direction,
a larger cell-size of 12 nm was chosen with 3 cells in
total along the z-axis. The cell size and the cell number
along the x- and y-axis as well as the 2D repetitions were
selected equivalently.
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