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Abstract. Local Scale-Invariance theory is tested by extensive dynamical
simulations of the driven dimer lattice gas model, describing the surface growth of
the 2+1 dimensional Kardar–Parisi–Zhang surfaces. Very precise measurements
of the universal autoresponse function enabled us to perform nonlinear fitting with
the scaling forms, suggested by local scale-invariance (LSI). While the simple LSI
ansatz does not seem to work, forms based on logarithmic extension of LSI provide
satisfactory description of the full (measured) time evolution of the autoresponse
function.

PACS numbers: 05.70.Ln, 05.70.Np, 82.20.Wt
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Understanding universal scaling behavior of nonequilibrium dynamical systems
is a challenging task [1]. Critical phenomena can emerge away from equilibrium, but
due to the broken time reversal and translational symmetries, an extension of the
Renormalization Group method (RG), as the best tool, is not straightforward [2].
The lack of translational symmetry manifests in aging phenomena observed in glasses,
polymers, reaction-diffusion systems or cross-linked networks [3].

LSI theory is proposed [4] to generalize dynamical scaling to a larger set of local
scale transformations, including 𝑡 → 𝑡/(1 + 𝑡𝛾), analogously as conformal invariance
(CI) extends RG of equilibrium critical phenomena. As CI [5, 6] works well in case of
equilibrium universality classes, LSI aims at the same for nonequilibrium dynamical
ones [7]. LSI has been shown to reproduce the universal shapes of responses and
correlators in a large variety of models, as reviewed in detail in [7]. The predictive
power of generalized dynamical scaling alone was shown to be limited [8], and later the
role generalized Galilei invariance was recognized. Analogously to the logarithmic CI
generalization [9], Henkel suggested the logarithmic extension of LSI (LLSI) to make
the theory applicable for more general cases [10].

While many systems are described by a single dynamical length scale 𝐿(𝑡) ∼ 𝑡1/𝑧,
with the dynamical exponent 𝑧 [11, 12], aging ones are best characterized by two-time
quantities, such as the dynamical correlation and response functions [13]. In the aging
regime: 𝑠 ≫ 𝜏m and 𝑡− 𝑠 ≫ 𝜏m, where 𝜏m is a microscopic time scale, one expects the
following law for the autoresponse function of the field 𝜑:

𝑅(𝑡, 𝑠) =
𝛿 ⟨𝜑(𝑡)⟩
𝛿𝑗(𝑠)

⃒⃒⃒⃒
𝑗=0

= 𝑠−1−𝑎𝑓𝑅

(︂
𝑡

𝑠

)︂
(1)

where 𝑠 denotes the start and 𝑡 > 𝑠 the observation time, 𝑗 is the external conjugate
to 𝜑. This law contains the so-called aging exponent 𝑎, the universal scaling function,
with the asymptotic behavior 𝑓𝑅(𝑡/𝑠) ∼ (𝑡/𝑠)−𝜆𝑅/𝑧, and the autoresponse exponent
𝜆𝑅.

LSI has been shown to describe aging properties of diffusive, solvable models
with 𝑧 = 2 and mean-field like models, exhibiting long-range interactions [7], and
equilibrium interface models like Edwards–Wilkinson (EW) [14] and Acetri [15, 16].
It also provided agreement with the numerics in case of reaction-diffusion models
[17, 18, 19]. However, tests in the critical (1+1)-dimensional contact process showed
systematic deviations in the 𝑡/𝑠 → 1 limit [20, 10]. On a phenomenological level, these
discrepancies could be resolved by the more recent extension to LLSI [10], which we
shall recall below.

Numerical testing is easier in systems, which do not need to be tuned to criticality,
but exhibit generic scale invariance, like interface models. For nonequilibrium surface
growth dynamics the LLSI predictions have been found to be in agreement with the
simulations of the 1 + 1 dimensional Kardar–Parisi–Zhang (KPZ) model [21]. The
purpose of the present study is to extend such investigation to 2 + 1 dimensions in the
presence of high precision simulation data available by simulations of dimer models
describing KPZ surface growth [22, 23, 24].

The KPZ equation [25] describes the evolution of the height function ℎ(x, 𝑡) in
the 𝑑 dimensional space relative to its mean position

𝜕𝑡ℎ(x, 𝑡) = 𝜈∇2ℎ(x, 𝑡) + 𝜆(∇ℎ(x, 𝑡))2 + 𝜂(x, 𝑡) , (2)

where 𝜆 is the amplitude of the up-down anisotropy, 𝜈 is a smoothing surface tension
coefficient and 𝜂 roughens the surface by a zero-average, Gaussian noise field exhibiting
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the variance ⟨𝜂(x, 𝑡)𝜂(x′, 𝑡′)⟩ = 2𝑇𝜈𝛿𝑑(x− x′)(𝑡 − 𝑡′). The letter 𝑇 is related to the
noise amplitude (the temperature in the equilibrium system).

This equation was inspired in part by the stochastic Burgers equation [26] and
can describe the dynamics of simple growth processes in the thermodynamic limit
[27], randomly stirred fluids [28], directed polymers in random media [29], dissipative
transport [30, 31], and the magnetic flux lines in superconductors [32].

The morphology of the surface is usually characterized by the roughness

𝑊 (𝐿, 𝑡) =

√︁
⟨ℎ2(x, 𝑡)⟩x − ⟨ℎ(x, 𝑡)⟩2x , (3)

where ⟨ ⟩x denotes an average over all spatial coordinates. Simple growth processes
are expected to be scale invariant and follow the Family-Vicsek scaling law [33]:

𝑊 (𝐿, 𝑡) ∼ 𝐿𝛼𝑓(𝑡/𝐿𝑧) , (4)

with the universal scaling function 𝑓(𝑢),

𝑓(𝑢) ∼
{︃
𝑢𝛽 for 𝑢 ≪ 1

const. for 𝑢 ≫ 1 .
(5)

Here, 𝛼 is the roughness exponent, describing the stationary state, where the
correlation length exceeds the lateral system size 𝐿. The growth regime is governed
by the growth exponent 𝛽. The ratio of these gives the dynamical exponent 𝑧 = 𝛼/𝛽.
KPZ is invariant to the Galilean symmetry [28], resulting in the exponent relation

𝑧 = 2/ (1 + 𝛽) . (6)

Discrete models set up for KPZ have been studied a lot in the past decades
[34, 35, 36]. A mapping between KPZ surface growth in two dimensions and driven
lattice gases has been advanced in [22]. This is based on the so called octahedron
model, characterized by binary variables, the edges, meeting in the up/down middle
vertexes. In this work we focus on the (2 + 1)-dimensional case, where up edges
in the 𝑥 or 𝑦 directions are represented by the slopes ’𝜎𝑥/𝑦 = 1’-s, the down ones
by ’𝜎𝑥/𝑦 = 0’. Thus deposition or removal of octahedra corresponds to a stochastic
cellular automaton with the simple update rules(︂

0 1
0 1

)︂
𝑝


𝑞

(︂
1 0
1 0

)︂
(7)

with probability 𝑝 (𝑞) for attachment (detachment). By considering edge values to be
lattice occupancy variables we can map the octahedron model onto self-reconstructing
dimers following an oriented migration in the bisection of 𝑥 and 𝑦 directions (see Fig.
in [22]). The surface heights can be reconstructed from the slope variables as

ℎ𝑖,𝑗 =

𝑖∑︁
𝑙=1

[2𝜎𝑥(𝑙, 1) − 1] +

𝑗∑︁
𝑘=1

[2𝜎𝑦(𝑖, 𝑘) − 1] . (8)

We have confirmed that this mapping using the parameterization: 𝜆 = 2𝑝/(𝑝 +
𝑞)−1 reproduces the one-point functions of the continuum model [22]. The case 𝑝 ≈ 𝑞,
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leading to 𝜆 ≈ 0, the EW model is recovered. Numerical results for the autocorrelation
have also been found to be in agreement with those of other KPZ models [24, 37, 38].
The dimer lattice gas can be studied by very efficient bit coded simulation methods
using graphic cards (GPU) as detailed in [39, 24].

We performed extensive simulations of the dimer model on lattices with lateral
size of 𝐿 = 216 and periodic boundary conditions. The large systems serve to stay
clear of finite size effects. The initial state corresponded to the flat surface and rule (7)
was applied either by a random-sequential (RS) [24] or a sub-lattice parallel stochastic
cellular automaton (SCA) site selection algorithm.

We calculated the autoresponse function in a similar way as described in [24].
To introduce a perturbation, we used space-dependent attachment and detachment
probabilities

𝑝𝑖 =

{︃
𝑝0 + 𝑎𝑖𝜀/2 if 𝑝0 + 𝑎𝑖𝜀/2 ∈ [0, 1]

1 − 𝜀/2 + 𝑎𝑖𝜀/2 otherwise
(9)

and 𝑞𝑖 = 𝑝0 + 𝑞0 − 𝑝𝑖, respectively. Here, 𝑎𝑖 = ±1 and 𝜀 = 0.005 is a small parameter.
After the waiting time 𝑠 we used the same stochastic noise 𝜂 (random sequences), in
two realizations. System A evolved, up to the waiting time 𝑠, with the site-dependent
probabilities 𝑝𝑖 and 𝑞𝑖 and afterwards with the uniform ones 𝑝0 and 𝑞0 = 0. System
B evolved always with spatially uniform attachment and detachment.

From these simulations, we determined the time-integrated response function

𝜒(𝑡, 𝑠) =

∫︁ 𝑠

0

d𝑢 𝑅(𝑡, 𝑢) (10)

=
1

𝐿2

𝐿2∑︁
𝑟⃗

⟨
ℎ
(𝐴)
𝑟⃗ (𝑡, 𝑠) − ℎ

(𝐵)
𝑟⃗ (𝑡)

𝜀∆

⟩
= 𝑠−𝑎𝑓𝜒

(︂
𝑡

𝑠

)︂
,

where 𝑎 is the aging exponent for the autoresponse. Measurements were performed at
exponentially increasing times

𝑡𝑖+1 = (𝑡𝑖 + 10) · e𝑚, with 𝑚 > 0, 𝑡0 = 0 ,

up to 𝑡max = 200 · 𝑠. Throughout this paper time is measured in Monte-Carlo steps
(MCS), defined as one sweep over all lattice sites.

The random-sequential GPU implementation from [24] has been modified using
a novel combination of the dead border and double tiling domain-decomposition
schemes, which we call DTrDB, in order to eliminate previously observed correlations.
Details of this algorithm will be discussed elsewhere [40]. To speed up simulations
further, we introduced a SCA algorithm on GPUs, which uses a checkerboard pattern
for updates: A MCS is performed by updating all odd sites simultaneously with
𝑝 < 1 and all even sites afterwards [41]. The GPU implementations were tested by
comparing different schemes. Direct comparison of the GPU results with sequential
CPU simulations was impossible on the same level of accuracy, but consistency with
former simulations [24] could be achieved.

Results from various autoresponse calculations are summarized in Fig. 1(a). The
forms of the autoresponse function agree very well across all types of simulations. The
most notable difference is a constant factor (∼ 2.08) in the response functions between
the SCA and RS results, which is caused by model-dependent time-scales. Also note
the small shift between SCA (𝑝 = 0.95, 𝑞 = 0) and SCA* (𝑝 = 0.95, 𝑞 = 0.05) for
𝑠 = 30, caused by the different update probabilities.
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(b)

Figure 1. Simulation results of the integrated height autoresponse, comparing
variants obtained by RS and SCA simulations. (a): Aging collapse of the
functions. (b): Corresponding effective exponents, extrapolating to asymptotic
values. Slopes of DTrDB and SCA* are not shown, because the late-time regime
was too noisy, due to small sample sizes. The black straight line corresponds
to a linear fit to the SCA 𝑠 = 30 results. System and sample sizes are:
𝐿CPU* = 213, 𝑛CPU* = 39083 [24], all others use 𝐿 = 216, with 𝑛SCA,𝑠=30 =
23849, 𝑛SCA,𝑠=100 = 12012, 𝑛SCA*,𝑠=100 = 1390, 𝑛DTrDB,𝑠=30 = 830 and
𝑛DTrDB,𝑠=100 = 700.

The aging exponent is often determined by performing a manual collapse of
the available datasets for different waiting times 𝑠. For RS simulations, the value
𝑎coll.
RS = 0.30(1) was determined in this way and published in [24]. For the SCA

simulations presented in Fig. 1(a), the value 𝑎coll.
SCA = 0.26(1) shows the best collapse.

However, this method requires visual inspection of plots to determine for which value
of 𝑎coll. the data collapse works best, which is prone to bias and underestimation of
the attached error margins.

Numerical computation of the aging exponent involves point-wise division of
autocorrelation functions for different waiting times:

𝜒(𝑡, 𝑠1)

𝜒(𝑡, 𝑠2)
=

𝑠𝑎1𝑓𝜒(𝑡/𝑠1)

𝑠𝑎2𝑓𝜒(𝑡/𝑠2)

(𝑡/𝑠1=𝑡/𝑠2)
=

(︂
𝑠1
𝑠2

)︂𝑎

Since the values ⟨𝜒(𝑡, 𝑠)⟩ are available only at discrete times an interpolation is required
to compute these ratios at arbitrary 𝑡/𝑠. The simplest option is a linear one, which
can also be performed on a double-logarithmic scale, reducing systematic errors when
the interpolation values follow a power law. In the implicit average over 𝑡 all points are
weighted with their statistical signal-to-noise ratio, which overall increases the weight
of early times, while in the visual method one is tempted to focus on late times.
The present method yields 𝑎SCA = 0.24(2), for the SCA simulations with 𝑞 = 0, and
𝑎DTrDB = 0.27(2), for our new RS simulations with 𝑝 = 1, 𝑞 = 0. For comparison,
we calculated 𝑎RS = 0.25(4) from the data published in [24], based on RS CPU and
GPU simulations. The present data suggest no significant difference between the aging
exponents of RS and SCA.

In order to determine the asymptotic scaling and corrections we determined (tail)
effective exponents via power-law fitting in intervals with increasing minimal values
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Table 1. Estimates for the height autoresponse exponent 𝜆𝑅, assuming 𝑧 =
1.611(2). Sample and system sizes are listed below Fig. 1. Error-margins were
estimated visually.

CPU* [24] SCA
𝑝 = 0.98, 𝑞 = 0.02 𝑝 = 0.95, 𝑞 = 0

𝜆𝑅/𝑧 1.25(3) 1.23(2)
𝜆𝑅 2.01(5) 1.98(4)

(𝑡min → 𝑇 ≃ 𝑡max/4), using the form:

𝑔𝑡min(𝑡) = 𝐶 · 𝑡𝜆𝑅,𝑡min,eff/𝑧 for 𝑡 ∈ (𝑡min, 𝑇 ) . (11)

The results are displayed in Fig. 1(b) for the three largest datasets. This method
suppresses short-wavelength noise but preserves scaling corrections of larger scales.
Only our best dataset (SCA, 𝑠 = 30) allows a reliable extrapolation for 𝜆𝑅,𝑡min→𝑇,eff/𝑧.
The effective exponent curve of the 𝑠 = 100 data breaks down at the end; still the
trend observed at early times is in agreement with the extrapolations for 𝑠 = 30. We
attribute this to larger oscillations, similarly as in the case of CPU RS updates, where,
however, the asymptotic value still appears to agree.

Table 1 summarizes the estimates for the autoresponse exponent 𝜆𝑅. Here we
assume 𝑧 = 1.611(2), that can be obtained by the scaling relation (6) and using our
former, high precision value 𝛽 = 0.2415(15) [23]. There is agreement between the
results for the considered waiting times across RS and SCA dynamics.

Considering, that earlier results for the autocorrelation exponent marginally allow
𝜆𝐶 = 2 [24], which is predicted by Krug’s conjecture 𝜆𝐶 = 𝑑 [42, 43], it is interesting
to note, that 𝜆𝑅 = 2 seems to be satisfied within error margin. The possible equality
𝜆𝐶 = 𝜆𝑅 might point to the existence of a non-equilibrium fluctuation-dissipation
relation in (2+1)-dimensional KPZ. The autocorrelation function is defined as

𝐶(𝑡, 𝑠) = ⟨𝜑(𝑡)𝜑(𝑠)⟩ − ⟨𝜑(𝑡)⟩ ⟨𝜑(𝑠)⟩ ∼ 𝑠−𝑏(𝑡/𝑠)𝜆𝐶/𝑧 ,

with the aging exponent 𝑏 = −2𝛽 and definitions analgous to Eg. (1). However,
one must expect a different relation than in the (1+1)-dimensional case, because the
implied relation for the aging exponents 1 + 𝑎 = 𝑏 + 2/𝑧 [21] does not hold.

The quality of the available data allows a precise calculation of effective exponents.
Yet, the estimates for the asymptotic values carry larger uncertainties, due to the
unknown corrections to scaling. Thus, a next step in the KPZ aging studies is an
attempt to determine these corrections, assuming scaling forms for 𝜒𝑅. These forms
are based on the LSI hypothesis. For the time-integrated autoresponse, Eq. (10), LSI
theory for KPZ predicts the scaling function

𝑓𝜒,LSI(𝑡/𝑠) = 𝐴0(𝑡/𝑠)−𝜆𝑅/𝑧 (1 − 𝑠/𝑡)
−1−𝑎′

, (12)

where 𝐴0 is normalization factor and 𝑎′ is expected to be another universal exponent,
like the aging exponent 𝑎. A different form, adding logarithmic corrections was
proposed recently in [10]:

𝑓𝜒,L2LSI = (𝑡/𝑠)1−𝜆𝑅/𝑧
[︁
𝐴0

(︁
1 − (1 − 𝑠/𝑡)−𝑎′

)︁
+ (1 − 𝑠/𝑡)−𝑎′ ·

(︀
𝐴1 ln(1 − 𝑠/𝑡) + 𝐴2 ln2(1 − 𝑠/𝑡)

)︀]︁
, (13)
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Figure 2. Plots of Eq. (15) in case of SCA autoresponse calculations with
𝑝 = 0.95 and 𝑞 = 0. Sample sizes are 𝑛SCA,𝑠=30 = 23849 for 𝑠 = 30 (a) and
𝑛SCA,𝑠=100 = 12012 for 𝑠 = 100 (b). Best fits are determined from the region
1 ≤ 𝑡/𝑠 ≤ 10.

where the sum of logarithmic terms to second order results from the assumption, that
the primary field 𝜑 of the system is replaced by a doublet and the scaling dimensions
are represented by 2 × 2 matrices. The scaling function (13) resembles a form, which
contains the first two lowest order correction terms of a logarithmic series to (12). We
shall test by fitting if, an assumed more generalized power series form

𝑓𝜒,LJLSI = (𝑡/𝑠)1−𝜆𝑅/𝑧
[︁
𝐴0

(︁
1 − (1 − 𝑠/𝑡)−𝑎′

)︁
+ (1 − 𝑠/𝑡)−𝑎′ ·

𝐽∑︁
𝑗>0

𝐴𝑗 ln𝑗(1 − 𝑠/𝑡)

⎤⎦ , (14)

which, given enough terms, might fit a broad range of data, really supports the
expected L2LSI theory with the scaling (13). However, an LSI extension with triplets,
or beyond, would also give physical meaning to some terms with 𝑗 ≥ 3. Thus these
terms being relevant to describe the data would point to the necessity of higher orders
in the extension of LSI.

We have tested different (𝐽) levels of the series (14) with our data, obtained from
the most precise SCA simulations. Figure 2 shows plots of the ratio of data and best
fit. This is a visual representation of how well forms for 𝐽 ∈ [0, 3] describe the data:

⟨𝜒⟩ (𝑡/𝑠)

𝑠−𝑎𝑓𝜒,LJLSI(𝑡/𝑠)

!
= 1 for 𝑡/𝑠 > 1 . (15)

Non-linear fits for 𝐽 > 0 do not converge using the classical least-squares
Levenberg–Marquardt algorithm [44, 45]. To obtain the parameters presented in
table 2, the Nelder-Mead method [46] was employed, which does not provide statistical
error estimates for the fit parameters. A Fit can end up in a multitude of local minima,
depending on the initial guesses and the choosen fit interval. Judging by the connected
variation in parameter values, the accuracy of the tabulated parameters should be
assumed to be no better than 20 %, except for the values of 𝜆𝑅/𝑧 which vary by less
than 5 %.
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Table 2. Parameters for best fits of 𝑓𝜒,LJLSI forms to KPZ autoresponse
functions for 1 ≤ 𝑡/𝑠 ≤ 200. Values for 𝜆𝑅/𝑧 in parenthesis result from fits
considering 𝑞 ≤ 𝑡/𝑠 ≤ 10, as presented in figure 2. 𝑎 = 0.24 for all fits. Error
margins are not given, because the method employed for fitting does not provide
meaningful estimates.

𝜆𝑅/𝑧 𝑎′ 𝐴0 𝐴1 𝐴2 𝐴3

𝑠
=

30

𝑓L0LSI 1.164 (1.167) 0.016 38.833
𝑓L1LSI 1.164 (1.144) 0.023 35.085 0.187
𝑓L2LSI 1.224 (1.219) 0.501 4.938 1.772 −0.431
𝑓L3LSI 1.224 (1.224) 0.505 4.790 1.716 −0.422 −0.004

𝑠
=

1
0
0 𝑓L0LSI 1.186 (1.191) 0.006 102.584

𝑓L1LSI 1.165 (1.142) 0.100 14.444 0.844
𝑓L2LSI 1.230 (1.224) 0.490 5.544 2.019 −0.472
𝑓L3LSI 1.230 (1.233) 0.475 5.506 1.914 −0.437 −0.008

It is apparent from figure 2 that the uncorrected LSI ansatz fails to describe
the asymptotic behavior of 𝜒, giving 𝜆𝑅/𝑧 ≈ 1.17. So does the logarithmic form
with 𝐽 = 1. The form with 𝐽 = 2, which is predicted by the theory yields much
better fits, with 𝜆𝑅/𝑧 ≈ 1.22, agreeing with the asymptotic value obtained earlier
𝜆tail
𝑅 /𝑧 = 1.23(2). The parameter fits presented in table 2 take into account the

observed time interval 1 ≤ 𝑡/𝑠 ≤ 200. When the fit is limited to the interval
1 ≤ 𝑡/𝑠 ≤ 10, the results for 𝜆𝑅 (values in parenthesis) do not change significantly.
This means, that the 𝑓𝜒,L2LSI form describes the corrections, affecting the autoresponse
function at early times, well enough to determine the correct asymptotic autoresponse
exponent just using early-time data.

The form with 𝐽 = 3 shows marginally better agreement with the data in figure 2.
In fits to the whole observed time interval, the amplitude 𝐴3 of the added third-order
term is severely suppressed (table 2). Adding another fit parameter, a slightly better
fit would be expected. The small absolute value of 𝐴3 in relation to 𝐴2 suggests, that
a third order correction does not carry physical meaning, supporting the L2LSI theory.

The values of the coefficients for 𝐽 = 2 and 3 are similar at different waiting times.
This satisfies our expectation, since aging is described by the 𝑠−𝑎 term in equation (10)
alone and the functional form of 𝑓𝜒(𝑡/𝑠) should not depend on 𝑠 explicitly. The
autoresponse functions we obtained by less precise simulations also agree with the
L2LSI theory, but they exhibit too much noise to exclude a logarithmic series like (14).

In conclusion, we provide numerical evidence that the L2LSI theory describes well
aging data of the autoresponse function for all measured times in case of the 2 + 1
dimensional KPZ surface growth. We obtained precise estimates for the autoresponse
exponent as well as for the aging exponents. In particular a 𝜆𝑅 = 2.00(6) estimate
seems to emerge from our high precision parallel simulations. For the autocorrelation
functions of the KPZ model 𝑓𝐶,L2LSI a form is yet to be proposed. Our GPU
simulations generate high precision correlation data for heights as well as density
variables that remains to be tested later against different aging functions [40].
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