
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

Rapid Data Processing for Ultrafast X-Ray Computed Tomography 
Using Scalable and Modular CUDA based Pipelines

Frust, T.; Wagner, M.; Stephan, J.; Juckeland, G.; Bieberle, A.;

Originally published:

June 2017

Computer Physics Communications 219(2017), 353-360

DOI: https://doi.org/10.1016/j.cpc.2017.05.025

Perma-Link to Publication Repository of HZDR:

https://www.hzdr.de/publications/Publ-24546

Release of the secondary publication 
on the basis of the German Copyright Law § 38 Section 4.

CC BY-NC-ND

https://www.hzdr.de
https://www.hzdr.de
https://doi.org/10.1016/j.cpc.2017.05.025
https://www.hzdr.de/publications/Publ-24546
https://creativecommons.org/share-your-work/cclicenses/


Rapid Data Processing for Ultrafast X-Ray Computed

Tomography Using Scalable and Modular CUDA based

Pipelines

Tobias Frusta,∗, Michael Wagnerb, Jan Stephana, Guido Juckelanda, André
Bieberlea

aHelmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden,
Germany

bTechnische Universität Dresden, AREVA Endowed Chair of Imaging Techniques in
Energy and Process Engineering, 01062 Dresden, Germany

Abstract

Ultrafast X-ray tomography is an advanced imaging technique for the study
of dynamic processes basing on the principles of electron beam scanning. A
typical application case for this technique is e.g. the study of multiphase
flows, that is, flows of mixtures of substances such as gas-liquid flows in
pipelines or chemical reactors. At Helmholtz-Zentrum Dresden-Rossendorf
(HZDR) a number of such tomography scanners are operated. Currently,
there are two main points limiting their application in some fields. First,
after each CT scan sequence the data of the radiation detector must be
downloaded from the scanner to a data processing machine. Second, the
current data processing is comparably time-consuming compared to the CT
scan sequence interval. To enable online observations or use this technique
to control actuators in real-time, a modular and scalable data processing
tool has been developed, consisting of user-definable stages working indepen-
dently together in a so called data processing pipeline, that keeps up with
the CT scanner’s maximal frame rate of up to 8 kHz. The newly developed
data processing stages are freely programmable and combinable. In order
to achieve the highest processing performance all relevant data processing
steps, which are required for a standard slice image reconstruction, were in-
dividually implemented in separate stages using Graphics Processing Units

∗Corresponding author.
E-mail address: t.frust@hzdr.de

Preprint submitted to Computer Physics Communications May 29, 2017



(GPUs) and NVIDIA’s CUDA programming language. Data processing per-
formance tests on different high-end GPUs (Tesla K20c, GeForce GTX 1080,
Tesla P100) showed excellent performance.

Keywords: Computed tomography; Image reconstruction; Multithreading;
Parallel algorithms; Pipeline processing; Real-time systems

PROGRAM SUMMARY/NEW VERSION PROGRAM SUM-
MARY
Program Title: GLADOS/RISA
Licensing provisions: LGPLv3
Programming language: C++/CUDA
Supplementary material: Test data set, used for the performance analysis.
Nature of problem:
Ultrafast computed tomography is performed with a scan rate of up to 8 kHz. To
obtain cross-sectional images from projection data computer-based image recon-
struction algorithms must be applied. The objective of the presented program is to
reconstruct a data stream of around 1.3 GB s−1 in a minimum time period. Thus,
the program allows to go into new fields of application and to use in the future
even more compute-intensive algorithms, especially for data post-processing, to
improve the quality of data analysis.
Solution method:
The program solves the given problem using a two-step process: first, by a generic,
expandable and widely applicable template library implementing the streaming
paradigm (GLADOS); second, by optimized processing stages for ultrafast com-
puted tomography implementing the required algorithms in a performance-oriented
way using CUDA (RISA). Thereby, task-parallelism between the processing stages
as well as data parallelism within one processing stage are realized.

1. Motivation

The ROFEX (ROssendorf ultraFast Electron beam X-ray CT) scanners,
ultrafast electron beam X-ray computed tomography scanners (CT), were re-
cently developed at Helmholtz-Zentrum Dresden-Rossendorf [1]. This tech-
nique is used for a non-intrusive investigation of rapidly moving structures
in technical devices. Its most prominent application is the study of multi-
phase flows, which are widely found in many industrial applications, such as

2



in chemical reactors, heat exchangers or pipeline systems. Usually, in com-
puted tomography a radiation source is directed to an object of investigation
and the radiation is measured behind the object by a detector array. By
collecting the radiation attenuation data (so-called projections) from various
angular positions a data set, called sinogram, is acquired, which is subse-
quently used as input for a CT reconstruction algorithm. Frequently used
reconstruction algorithms are the so-called filtered back-projection [2] or al-
gebraic reconstruction techniques [3]. In this way computed tomography
produces cross-sectional or volumetric images of material distributions of the
scanned objects. Mostly known are CT scanners in hospitals or labs for non-
destructive testing. More recently also synchrotron light sources are being
used for X-ray tomography of small specimen [4, 5, 6]. Such scanners or
facilities are, however, not suited for multiphase flows since neither the scan-
ner nor the object of investigation can be rotated with the required speed.
For fast dynamic processes, such as multiphase flows or biomechanical mo-
tions, blurring effects occur which deteriorate image quality significantly [7].
Additionally, using electron beam tomography there are no artificial and un-
wanted motions introduced, because neither the scanner nor the object of
investigation need to be rotated mechanically.

In order to overcome these difficulties, the ROFEX-type scanners are
operated with a focused electron beam. The beam is circularly deflected
on a tungsten target and this way produces a moving X-ray source (see
Figure 1). The electron beam can be deflected up to 8 kHz which leads to a
corresponding frame rate. The scanners are equipped with a double layer ring
detector of about 400 pixels each. The spatial resolution is about 1 mm [1].
Examples, for which this imaging technique has proven its great value are for
instance the analysis of flow conditions in a gas-solid fluidized bed [9], the
visualization and quantitative analysis of dispersive mixing by a helical static
mixer [10] or the particle velocity measurement in spout fluidized beds [8].

Currently, the ROFEX scanners are operated in a batch mode, which is
given by the current data transfer and processing architecture. A recently
developed data processing toolkit that uses graphics processing units (GPUs)
achieves a reconstruction frame rate of up to 140 Hz [11]. However, for the
future it would be of very high value to operate the scanners in continuous
mode, e.g. to have an immediate visual feedback for the operator or to use
the scanner in a feed-back control loop. Especially for using the scanner in a
feed-back control loop several frames are required within a single control loop
to perform image analysis to come to a decision. Hence, rapid data process-

3



electron gun

focussing and
deflection coils

focussed 
electron beam

targets

X-ray 
spot

detector 
rings

object 
space

measuring
object

X-ray fan

Figure 1: Sketch of the measuring principle of the ROFEX CT scanners [8].

4



ing has to be able to reconstruct slice images at the typical scanner operating
rate between 2 kHz and 8 kHz. Finally, computationally intensive data pro-
cessing algorithms, like non-linear interpolations or algebraic reconstruction
algorithms, could then be implemented into the data processing pipeline and
performed on powerful compute nodes to increase image reconstruction and
analysis quality.

Thus, a modular and scalable data processing tool was constructed im-
plementing the software pipelining paradigm. The implemented algorithms
were accelerated using NVIDIA GPUs programmed with CUDA. In this pa-
per related work, the architecture of the modular data processing program
as well as performance results are presented.

2. Related work

Significant speedup over a parallel implementation on a single Central
Processing Unit (CPU) can be achieved, when exploiting data parallelism of
Graphics Processing Units (GPUs). Vázquez et al. [12, 13] presented a ma-
trix approach to tomographic reconstruction for the filtered back projection
algorithm as well as the Simultaneous Iterative Reconstruction Technique
(SIRT) using sparse matrix-vector products for the back and forward projec-
tion operations. This approach shows speedup of up to factor 42 compared
to the CPU implementation. Mueller et al. [14, 15] discuss the suitability
of different hardware accelerators, like GPUs, Field Programmable Gate Ar-
rays (FPGAs) or the IBM Cell B.E. architecture, for image reconstruction
algorithms. They concluded that GPUs prove to be more cost-efficient than
the other approaches. The filtered back projection as well as iterative recon-
struction methods have been accelerated on GPUs by Diéz et al. resulting
in significant speedup over their CPU implementation as well [16]. The AS-
TRA Toolbox [17] is a toolbox, with a MATLAB and Python interface, of
high-performance GPU primitives for 2D and 3D tomography. It supports
parallel and fan beam geometries with flexible source/detector geometries.

The general concept of stream processing has a long tradition as shown
by the review of Stephens [18]. There exist runtime environments, as well as
compiler techniques, e.g. StreamIt [19], Cg [20] or Auto-Pipe [21]. GStream [22]
implements the data streaming principle for GPU clusters. A similar ap-
proach was chosen by Vogelgesang et al. [23] in the UFO framework. Data
processing is modelled as the connection between processing nodes solving
a specific subproblem. Furthermore, this framework implements specific al-

5



gorithms for image reconstruction using OpenCL, e.g. the filtered back pro-
jection [2]. Up to now, image reconstruction for the ROFEX-scanners was
implemented using an in-house developed software [11]. The UFO framework
served as a comparison.

None of the available frameworks implementing the streaming paradigm
have become a standard in the scientific community so far. Some of them
are not open source or the future support is unclear. The UFO-framework is
the most related open-source library available. It is GLib-based and imple-
mented in the C programming language. On the contrary, the approach of
this publication makes use of the object-oriented programming features al-
ready being integrated in the C++11 programming standard and the C++
Standard Template Library’s (STL) concurrency support instead of relying
on an external library. Thus, a generic software pipeline and CUDA stages
for image reconstruction were developed.

3. Analysis of the current data flow structure

The basis for successfully operating real-time scanners are data trans-
fer and processing at scanning speed. Figure 2 shows a schematic overview
of the data transfer and processing for the existing ROFEX scanners be-
fore applying the optimizations presented in this work. Up to now, the
radiation detectors are sampled with a frequency of 1 MHz providing a con-
stant data stream with a bandwidth of around 1.3 GB s−1 that is stored in a
scanner-internal 32 GB-sized random-access memory (RAM). Thus, 25 s can
be captured during one CT scan sequence. Subsequently, the detector data is
downloaded from the scanner to a central data storage located in the nearby
data centre before the next scan sequence can be started. Unfortunately,
this data transfer process requires several minutes because of the used 1 Gbit
Ethernet (GbE) network data interface. As soon as the data is available on
the central data storage it is reconstructed using the reconstruction worksta-
tion which is connected to the data centre via a 10 GbE network. This is
another time-consuming data transfer.

Once the entire measurement data is temporarily stored in the RAM
of the workstation, the original reconstruction program processes the whole
block through different processing stages. Thus, the application has a very
high memory consumption on host side and furthermore, the processing la-
tency for one sinogram is very high. The workstation is equipped with an
NVIDIA Tesla K20c GPU and sufficient host memory to store the whole

6



Data centreMeasurement System

ROFEX
2 × 432 Detector

pixels

GSSNAS

(Central Data 
storage)

32
GByte
RAM

1.3 GByte/s

Data processing

CPU 
Host

Memory
GPU 

Device
Memory

Fan2Para

Log

Reco

PCI-E

1 GbE 10 GbE

Figure 2: System overview of original data transfer and processing consisting of the mea-
surement system, the data centre and the reconstruction workstation.

measurement in the RAM of the workstation. Unfortunately, not all data
processing algorithms are implemented for GPU usage and thus, multiple
data transfers from host to device and vice-versa are required increasing
data processing time again.

Altogether, the original data transfer and processing are not suited for
online or efficient application on GPU compute nodes due to the architecture
of the interconnection network and the design of the reconstruction program
itself. Therefore, the introduction of a new interconnection structure and the
implementation of a data processing tool being able to process a data stream
in real-time is mandatory.

4. Implementation of a real-time data processing software

4.1. GLADOS - Generic Library for Asynchronous Data Operations and
Streaming

Image processing (or rather stream processing in general) can be per-
ceived as a sequence of basic operations. For example, a simple image filter-
ing application can be divided into three tasks: loading data, filtering the
image and saving the result. By applying the so-called pipeline pattern [24]
each subproblem can be solved independently; these subproblems are called
stages. This program structure is applicable to a variety of problems requir-
ing stream processing. In order to solve these problems in a straightforward
way, independently from the required algorithms, the Generic Library for

7



Stage
(Own Host-thread and

CUDA-Stream)

Input queue
• Defined size
• Thread-safe

Output queue
• Defined size
• Thread-safe

n
GPU 1Stage

n-1
Stage
n+1

... ...
n

GPU i

...

Figure 3: Schematic diagram of the data processing pipelines’ structure. Stages commu-
nicate through thread-safe input and output queues.

Asynchronous Data Operations and Streaming (GLADOS) was developed.
It implements the pipeline pattern in a generic and portable way.

When working with heterogeneous systems, parallelism can be exploited
on multiple levels: data and task parallelism. Especially, when the prob-
lem size is comparatively small, a single function is not able to fully utilize
the whole device. Thus, creating a software pipeline offers the potential to
increase data throughput significantly. There are two options: task paral-
lelism between a) different input data or b) various subproblems. In the first
case, device functions can be called without any synchronization on host
side minimising the overhead. By using dynamic parallelism, a feature being
available since OpenCL 2.0 and CUDA 5.0, device functions can be launched
from threads running on the device. By using this function the overhead from
calling device functions on the host side can be decreased even further. The
drawback of that approach is a limited handling in terms of expandability
and usability. In the second case the processing chain is clearly divided into
several subproblems that can easily be connected with each other. Thus, ap-
proach b) promises a superior expandability and usability and was, therefore,
chosen to be realized.

GLADOS is implemented as a header-only library. Internally, it makes
use of C++11 and the concurrency support of the C++ STL. Figure 3 depicts
a schematic diagram of the pipeline’s structure as provided by GLADOS. The
core element is the stage. A stage is executed asynchronously with regard to
the main thread and the other stages and solves a specific subproblem (e.g.
image filtering). Each stage is composed of three parts: an input side, an
output side and an implementation.

8



The input and output side are responsible for inter-stage data exchange
only. They are connected with their respective counterparts of other stages.
For example, the output side of a stage which loads image data is connected
with the input side of the next stage which processes data. Data is transferred
from one stage to another using C++11 move semantics to prevent data
copies. An input side additionally stores the incoming data in a thread-safe
FIFO kind of way and makes it available to the underlying stage. The user
needs to declare the incoming and outgoing data types, routines for handling
the input and output callbacks and a run method which is the stage’s entry
point in the implementation of a stage. Other than that, the implementation
can be designed on the user’s choice.

During data processing the types of data may change, e.g. from single
to double precision. This usually requires memory allocation and has to
be prevented, especially in CUDA, since memory allocations require a syn-
chronization of all used threads. In this case, memory transfer operations
and kernel executions would not overlap and data processing would be in-
terrupted. Thus, a memory pool is introduced to manage the allocation of
memory in the constructor of all used device data structures. In this way,
maximum device task concurrency is ensured and data processing throughput
increases.

Last but not least, multiple compute devices can be used by duplicat-
ing the stages for each available device. In this case, one stage schedules
input data statically or dynamically between the accelerators. This way, the
application can be used on hardware with multiple heterogeneous compute
devices.

4.2. RISA - ROFEX in-situ analysis

The ROFEX scanners have a special geometry. Thus, data preprocess-
ing is required to transform detector data into a sinogram in order to be
able to apply standard reconstruction algorithms, such as the filtered back
projection [2]. Figure 4 shows the standard image reconstruction pipeline
for ROFEX data. First, there is an input stage, which loads the sinograms
from hard disk storage or receives them from an interconnection network. As
soon as the copy stage schedules and transfers data from host to device, all
processing steps are implemented on GPUs using CUDA.

The raw data stream is not ordered as required by the successive stages.
Thus, data is restructured into sinograms ordered by detector pixels and
projections (Figure 4 a) to simplify the subsequent operations and to make

9



Data input
Copy

(Host to
device)

CUDA 
Pipeline

Copy
(Device to

host)
Data 

output

Restructuring Attenuation
data

Fan to
parallel beam 
interpolation

Filtering Back 
projection

In Situ Visualization

3D visualization
over time

a) b) c) d) e)

Figure 4: The implemented ROFEX image processing pipeline with data preprocessing
and reconstruction from parallel beam sinogams (grey represents stages accelerated using
CUDA).

their implementation more straightforward. Therefore, this stage computes
a lookup table at program initialization storing the relation between un-
structured and restructured data. The CUDA kernel spans NfanDet×NfanProj

CUDA threads (NfanDet being the number of detectors and NfanProj being the
number of projections in the fan beam sinogram). Each CUDA thread copies
one element from the unordered to the ordered sinogram using the precom-
puted lookup table. It would have been possible to integrate the operation
into the existing fan to parallel beam rebinning stage after computing the
attenuation data, because both use a lookup table. Nevertheless, it is to be
expected that this operation is relatively cheap compared to the other stages
and thus, does not have a negative impact on the overall performance.

To compute the attenuation data (Figure 4 b) a dark measurement data
set with values Idark (electron beam is off, only the background noise of the
detectors is measured) and a reference measurement data set with values Iref
(measurement of the base substance, e.g. fluid, without the test subject)
need to be captured beside the data set Idata for the real measurement. The
attenuation value E for the pixel with the coordinates i, j is given in equa-
tion 1. It is mapped into CUDA by creating one CUDA thread for each pixel
computing equation 1 independently.

Eij = log

(
Iref,ij − Idark,ij
Idata,ij − Idark,ij

)
(1)

The fan beam to parallel beam interpolation stage (Figure 4 c) creates a

10



parallel beam sinogram, which also gives a more homogeneous noise distribu-
tion in the reconstructed image compared to the direct reconstruction from
fan beam geometry [25]. It is possible to solve the image reconstruction prob-
lem, without using this stage by using an algebraic reconstruction technique
with a direct application of the geometry. Nevertheless, this approach is not
promising when regarding performance because the analysis will show, that
in fact the back projection implementation is the bottleneck of the presented
application. This fan to parallel beam interpolation stage is implemented in
CUDA using another lookup table created at program initialization. It stores
the relations between the fan and user-definable virtual parallel beam geom-
etry. The CUDA kernel spans NparDet×NparProj CUDA threads, with NparDet

being the number of detectors and NparProj being the number of projections
in the parallel ray sinogram over 180 degrees. Each CUDA thread computes
one pixel in the parallel beam sinogram independently. Thus, NparDet and
NparProj can be used to balance between image quality and the required re-
construction rate. A symmetry property is valid, given in equation 2, for
parallel projections p(t, φ), where t represents the orthogonal distance of the
ray to the iso-center and φ the angle between the ray and the abscissa.

p(t, φ+ π) = p(−t, φ) (2)

By averaging rays measured twice at the opposite of the object, the CUDA
kernel transforms the projections distributed over 360◦ into a parallel beam
sinogram from 0◦ to 180◦ without loss of information.

The reconstruction procedure using the filtered back projection is split
into two stages: filtering (Figure 4 d) and back projection (Figure 4 e). Each
projection is transformed into the Fourier space via the Fast Fourier Trans-
form (FFT), weighted with a filter function and inversely transformed via
the inverse FFT. The FFTs are implemented using the cuFFT-library [26].
When implementing the back projection operation, there generally exist two
approaches: a ray driven and a pixel driven approach. The first one follows
the ray from a discrete projection and samples it into equally spaced parts.
At each sample it distributes the intensity of the projection over the neigh-
bouring pixels using a 2D-interpolation. The second approach starts at the
centre of a pixel in the reconstruction grid. From this point the intersection
with the discrete projections is determined by following the ray path. The
intersection does not necessarily line up with the discrete projections. Thus,
some kind of 1D-interpolation needs to be performed. In this case, the pixel
driven back projection method was chosen. It is much more suitable for

11



data-parallel execution compared to the ray driven approach. Furthermore,
it is computationally less expensive (1D- vs. 2D-interpolation) [25]. The im-
plemented CUDA-kernel spans Npixel × Npixel CUDA threads. Each CUDA
thread computes the attenuation coefficient for one pixel in the reconstruc-
tion grid. There are two different CUDA kernels implemented computing
the back projection algorithm: one applies a nearest-neighbour interpolation
using texture fetches and the second a linear interpolation.

1 auto pipeline = glados::pipeline::Pipeline{};

2 // create stages

3 auto filter = pipeline.create<filter_stage>(configFile);

4 //...

5 //connect stages

6 pipeline.connect(source, h2d);

7 pipeline.connect(h2d, filter);

8 pipeline.connect(filter, backproject);

9 pipeline.connect(backproject, d2h);

10 pipeline.connect(d2h, sink);

11 //run the stages

12 pipeline.run(source, h2d, filter, backproject, d2h, sink);

13 //wait for termination

14 pipeline.wait();

Listing 1: The implementation of the filtered back projection algorithm using
GLADOS and RISA in C++.

The implemented stages can then be connected to a processing pipeline
using GLADOS. Listing 1 shows the implementation of the filtered back
projection algorithm using GLADOS and RISA in C++ as an example. This
application can now easily be extended or adapted by creating (lines 3-5),
connecting (lines 6-10), running (line 12) and waiting (line 14) for additional
or different stages. The termination of the program is realized using a sentinel
image sent out by the source stage. The sentinel is propagated from one
stage to another signalling the termination automatically. As soon as all
stages are terminated the application advances after line 14 in the given
example. Hence, the user does not necessarily require an understanding of

12



Transfer 
(Host to 
Device)

Re-
structuring

Attenuation 
data

Fan to 
parallel beam 
interpolation

Filtering
Back 

projection

Transfer 
(Device to 

Host)

1

1

1

1

1

1

1

2

2

2

2
2

2

2

Latency for input 1: 4.3 ms
Output every 0.7 ms

t

Figure 5: The time line of device functions captured with the NVIDIA Visual Profiler.
Memory transfer operations and CUDA kernels overlap. The markers 1 and 2 identify
two subsequent sinograms passed from one stage to another (NparDet = 256, NparProj =
1024, Npixel = 256).

the concrete implementation of the algorithms to configure a custom data
processing pipeline.

5. Performance analysis

The performance of the implementation is evaluated on multiple systems
and GPUs to quantify the scalability between different as well as multiple
GPUs. Measurements are taken on an Ubuntu 16.04 workstation equipped
with two Intel Xeon E5-2637 v3 CPUs (each with four physical cores at
3.5 GHz and active multithreading), 16 GiB RAM, the founders edition of
an NVIDIA GeForce GTX 1080 and an NVIDIA Tesla K20c. The code is
compiled with GCC 5.4 and CUDA 8. The analysis is performed with a test
data set consisting of 432 detector pixels and 500 projections per fan beam
sinogram captured at 2 kHz electron beam deflection frequency. The input
data type is 16 bit unsigned integer which is converted to single precision
floating point numbers during the computation of attenuation data. The back
projection kernel with linear interpolation was applied for all measurements.

In order to meet and exceed the required frame rates device utiliza-
tion was maximised using data and task parallelism. Figure 5 presents
the time line of the presented application in steady state for the config-
uration NparDet = 256, NparProj = 1024 and Npixel = 256 performed on a

13



No optimization Sine/cosine on host Constant Memory 16-times loop unrolling
200

250

300

350

400

450

500

A
ve

ra
ge

ke
rn

el
ru

nt
im

e
[µ

s]

Figure 6: Average kernel runtime of the back projection operation for different optimiza-
tion strategies (NparDet = 256, NparProj = 512, Npixel = 256, GeForce GTX 1080).

single GeForce GTX 1080 captured with the NVIDIA Visual Profiler. Each
coloured line corresponds to one processing stage. The dark blocks iden-
tify kernel executions respectively data transfer. It can be recognized that
memory transfer operations as well as CUDA kernels overlap. The pauses
between two consecutive executions of the back projection kernel appear to
origin from an overhead on host side. Furthermore, the software pipeline’s
structure can be clearly identified, following the pass of CT data sets from
one stage to another. Therefore, two markers 1 and 2 are added in the profiler
output identifying two consecutive sinogram data sets. The corresponding
data transfers and kernel executions were identified by having a look at the
kernel invocation time line on host side, which allows to link an image to its
associated kernel execution on the GPU device. It shows again, that multiple
images are processed simultaneously. The latency for sinogram 1 is 4.3 ms,
whereas all 0.7 ms one element is transferred from GPU to CPU memory.

The identification and removal of bottlenecks is mandatory when appli-
cations require the highest performance. In this application the back projec-
tion operation was identified as the most time-consuming part (see Figure 5).

14



Thus, an additional focus was directed to its optimization. Three strategies
have been analysed: a) the computation of the sine and cosine values on the
host side, b) the use of the architecture-specific constant memory for these
values and c) the unrolling of the loop over the projections. The strategy
of pre-computation was promising because the geometry and configuration
of the system is constant for a whole measurement. Thus, the computation
on host side and the required data transfer only needs to be executed at
program initialization. The computation of sine and cosine values on host
in combination with the use of constant memory improves the runtime by a
factor of 1.3 (see Figure 6). Thereof, 16-times loop unrolling enhances the
runtime by the factor of 1.3 again and, finally, the overall improvement fac-
tor is approximately 1.8. A commonly used metric for comparing the back
projection performance is given by the so-called Giga-Updates-Per-Second
(GUPS) metric, first introduced by Goddard et al. [27] (see equation 3).

GUPS =
N2

pixel ·Nproj

10243 · tbp,kernel
(3)

The measured GUPS values for the given back projection implementation on
different hardware configurations are given in Figure 7. For a small pixel-grid
size (Npixel < 160) the GUPS metric increases linearly, the kernel is memory-
bound. For a higher resolution grid, the kernel is compute-bound as shown
by the GUPS metric approximately being constant.

The maximum achievable reconstruction rate is depicted in Figure 8 for
a constant size of the parallel ray sinogram (NparDet = 256, NparProj = 512)
as a function of the reconstruction grid size. Regarding image quality there
is no additional benefit of increasing this pixel grid size above Npixel = 256.
The scanners have a maximum spatial resolution of 1 mm at an image size of
about 200 mm. Choosing a convenient value for Npixel is mandatory for gain-
ing the best performance. The measurement was taken on a single GeForce
GTX 1080 as well as a single Tesla K20c. Furthermore, reconstruction rates
were measured using both cards simultaneously with static scheduling. For
all tested configuration options the GeForce GTX 1080 is able to meet and
exceed the typical scan rate of 2 kHz (see highlighted dashed line). Tesla
K20c’s rates are lower by a factor of approximately 3 to 4. In this case, the
2 kHz could not be reached. The Tesla K20c has a 2.5 times lower theoretical
peak performance in single precision compared to the GeForce GTX 1080.
Furthermore, the GPU device memory bandwidth of the GTX 1080 is higher

15



64×64 96×96 128×128 160×160 192×192 224×224 256×256
Npixel×Npixel

0

20

40

60

80

100

120

140

G
ig

a-
U

pd
at

es
-P

er
-S

ec
on

d
(G

U
PS

)

Tesla P100
GTX 1080
Tesla K20c

Figure 7: The measured Giga-Updates-Per-Second metric for the back projection kernel
with linear interpolation on different GPU hardware, with NparDet = 256×NparProj = 512
and variable pixel grid Npixel.

16



128×128 160×160 192×192 224×224 256×256
Npixel×Npixel

1000

2000

3000

4000

5000

6000

7000

R
ec

on
st

ru
ct

io
n

ra
te

[H
z]

GeForce GTX 1080
Tesla K20c
Multi GPU (static scheduling)
Artihmetic sum of GTX 1080 and K20c
Typical data acquisition rate of ROFEX

Figure 8: Reconstruction rates for one GeForce GTX 1080 and one Tesla K20c, as well
as for both cards simultaneously with static scheduling for different resolutions in the
reconstructed image (NparDet = 256, NparProj = 512).

17



by a factor of 1.5 compared to the Tesla K20c. If the measured metrics
are compared with these theoretical quantities, the performance difference of
factor 3 to 4 is reasonable. The application is also able to use multiple het-
erogeneous accelerators simultaneously as shown by the reconstruction rates
in Figure 8. By applying a static scheduling using a round robin strategy
in the host to device copy stage, the obtained reconstruction rates increase.
The scheduling method uses an empirically determined weighting factor bas-
ing on the performance capability of the available GPUs in the system to
distribute input data.

Furthermore, the application was also tested on JURON, one of two pilot
systems developed by IBM and NVIDIA in the Pre-Commercial Procure-
ment during the Human Brain Project (HBP) Ramp-up phase. It is located
at Juelich Supercomputing Centre (JSC). It uses IBM Power8’ processors
and four NVIDIA Tesla P100 accelerators interconnected via NVLink on one
IBM Power S822LC for HPC (also known as IBM Minsky) compute node.
Figure 9 shows the measured reconstruction rates on a single node of this sys-
tem. First, it demonstrates that the maximum rate of 8 kHz can be reached
or even exceeded when using multiple GPUs. Second, the application does
not scale linearly. For each additional GPU all stages are duplicated and
thus, the number of host threads increases. At the same time, the number of
available physical cores in the system stays constant. Hence, it is more diffi-
cult for the scheduler of the operating system to distribute the host threads
over the available resources. The overhead to transfer elements between
stages increases as well. Third, the performance difference between a single
Tesla P100 and a single GeForce GTX 1080 is comparably marginal. This is
constituted in the implemented stages performing floating point operations
in single precision. In single precision the theoretical floating point perfor-
mance of a single Tesla P100 is 10.6 TFLOPS/s compared to 8.9 TFLOPS/s
of a single GeForce GTX 1080. This difference is negligible explaining the
marginal performance difference for our specific application. Nevertheless,
a careful investigation is required if the additional features of the Tesla se-
ries can be neglected in a specific use case. Furthermore, this fact cannot
easily be transferred to a system with multiple GPUs without regarding the
capabilities of the overall system.

18



1 2 3 4
Number of GPUs

4000

6000

8000

10000

12000

14000

R
ec

on
st

ru
ct

io
n

ra
te

[H
z]

Linear scaling
Tesla P100
GeForce GTX 1080
Maximum data acquisition rate of ROFEX

Figure 9: Measured reconstruction rates as a function of the number of used GPUs on
one IBM Power S822LC for HPC node at Juelich Super Computing Center. (NparDet =
256, NparProj = 512, Npixel = 256)

19



6. Summary and outlook

In this paper, a modular and scalable data processing pipeline program for
image reconstruction for ultrafast electron X-ray CT was presented and anal-
ysed for its scalability between different as well as multiple GPUs. Therefore,
a generic and universally applicable template library was used implementing
the pipeline pattern. Another application-specific library, called RISA, was
presented implementing the required processing stages for image reconstruc-
tion of ROFEX in CUDA. Finally, an application program was compiled
connecting the implemented processing stages to a pipeline using both li-
braries.

The performance analysis showed reconstruction rates of more than 2 kHz
for single GPU usage. By using multiple GPUs the maximum frame rate of
ROFEX at 8 kHz could even be exceeded. Thereby, the scalability of the
application between different as well as multiple GPUs could be proven.
Hence, visual inspection and active process feedback control are now at-
tainable. Furthermore, the reduced time-to-solution allows the utilization of
more complex algorithms for post-processing on GPU clusters, e.g. iterative
reconstruction algorithms or more compute-intensive interpolation methods
that will improve the quality of the slice images and thus, the content of
scientific results.

Both the most up to date versions of GLADOS and RISA source code
are available at https://github.com/HZDR-FWDF/[28].

Acknowledgement

The authors thank the Dresden GPU Center of Excellence (http://
gcoe-dresden.de) for the access to an NVIDIA Tesla K20c as well as the
Human Brain Project (https://www.humanbrainproject.eu/) for access to
an IBM Minsky Node.

The authors acknowledge the Helmholtz Association for support of the
research within the frame of the Helmholtz Energy Alliance ’Energy Efficient
Chemical Multiphase Processes’.

7. References

[1] F. Fischer, U. Hampel, Nuclear Engineering and Design 240 (2010) 2254
– 2259. doi:10.1016/j.nucengdes.2009.11.016.

20

https://github.com/HZDR-FWDF/
http://gcoe-dresden.de
http://gcoe-dresden.de
https://www.humanbrainproject.eu/
http://dx.doi.org/10.1016/j.nucengdes.2009.11.016


[2] A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging,
IEEE Press, 1988.

[3] R. Gordon, R. Bender, G. T. Herman, Journal of Theoretical Biology
29 (1970) 471 – 481. doi:10.1016/0022-5193(70)90109-8.

[4] A. Rack, S. Zabler, B. Müller, H. Riesemeier, G. Weidemann, A. Lange,
J. Goebbels, M. Hentschel, W. Görner, Nuclear Instruments and Meth-
ods in Physics Research Section A: Accelerators, Spectrometers, Detec-
tors and Associated Equipment 586 (2008) 327 – 344. doi:10.1016/j.
nima.2007.11.020.

[5] A. Rack, T. Weitkamp, S. B. Trabelsi, P. Modregger, A. Cecilia, T. dos
Santos Rolo, T. Rack, D. Haas, R. Simon, R. Heldele, M. Schulz,
B. Mayzel, A. Danilewsky, T. Waterstradt, W. Diete, H. Riesemeier,
B. Müller, T. Baumbach, Nuclear Instruments and Methods in Physics
Research Section B: Beam Interactions with Materials and Atoms 267
(2009) 1978 – 1988. doi:10.1016/j.nimb.2009.04.002.

[6] O. H. Seeck, C. Deiter, K. Pflaum, F. Bertam, A. Beerlink, H. Franz,
J. Horbach, H. Schulte-Schrepping, B. M. Murphy, M. Greve, O. Mag-
nussen, Journal of Synchrotron Radiation 19 (2012) 30–38. doi:10.1107/
S0909049511047236.

[7] G. A. Johansen, U. Hampel, B. T. Hjertaker, Applied Radiation and
Isotopes 68 (2010) 518 – 524. doi:10.1016/j.apradiso.2009.09.004.

[8] M. Bieberle, F. Barthel, Chemical Engineering Journal 285 (2016) 218
– 227. doi:10.1016/j.cej.2015.10.003.

[9] M. Bieberle, F. Barthel, U. Hampel, Chemical Engineering Journal
189–190 (2012) 356 – 363. doi:10.1016/j.cej.2012.02.028.

[10] S. Rabha, M. Schubert, F. Grugel, M. Banowski, U. Hampel, Chemical
Engineering Journal 262 (2015) 527 – 540. doi:10.1016/j.cej.2014.
09.019.

[11] A. Bieberle, T. Frust, M. Wagner, M. Bieberle, U. Hampel, Flow Mea-
surement and Instrumentation 53, Part A (2017) 180–188. doi:10.1016/
j.flowmeasinst.2016.04.004.

21

http://dx.doi.org/10.1016/0022-5193(70)90109-8
http://dx.doi.org/10.1016/j.nima.2007.11.020
http://dx.doi.org/10.1016/j.nima.2007.11.020
http://dx.doi.org/10.1016/j.nimb.2009.04.002
http://dx.doi.org/10.1107/S0909049511047236
http://dx.doi.org/10.1107/S0909049511047236
http://dx.doi.org/10.1016/j.apradiso.2009.09.004
http://dx.doi.org/10.1016/j.cej.2015.10.003
http://dx.doi.org/10.1016/j.cej.2012.02.028
http://dx.doi.org/10.1016/j.cej.2014.09.019
http://dx.doi.org/10.1016/j.cej.2014.09.019
http://dx.doi.org/10.1016/j.flowmeasinst.2016.04.004
http://dx.doi.org/10.1016/j.flowmeasinst.2016.04.004


[12] F. Vázquez, E. Garzón, J. Fernández, Journal of Structural Biology 170
(2010) 146 – 151. doi:10.1016/j.jsb.2010.01.021.

[13] F. Vázquez, E. M. Garzón, J. J. Fernández, The Computer Journal 54
(2011) 1861–1868. doi:10.1093/comjnl/bxr033.

[14] K. Mueller, F. Xu, N. Neophytou, Why do commodity graphics hard-
ware boards (GPUs) work so well for acceleration of computed tomog-
raphy?, 2007. doi:10.1117/12.716797.

[15] F. Xu, K. Mueller, Physics in Medicine and Biology 52 (2007) 3405.

[16] D. C. Dı́ez, H. Mueller, A. S. Frangakis, Journal of Structural Biology
157 (2007) 288 – 295. doi:10.1016/j.jsb.2006.08.010.

[17] W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt,
A. Dabravolski, J. D. Beenhouwer, K. J. Batenburg, J. Sijbers, Opt.
Express 24 (2016) 25129–25147. doi:10.1364/OE.24.025129.

[18] R. Stephens, Acta Informatica 34 (1997) 491–541. doi:10.1007/
s002360050095.

[19] W. Thies, M. Karczmarek, S. Amarasinghe, StreamIt: A Language for
Streaming Applications, Springer Berlin Heidelberg, Berlin, Heidelberg,
2002, pp. 179–196. doi:10.1007/3-540-45937-5_14.

[20] W. R. Mark, R. S. Glanville, K. Akeley, M. J. Kilgard, ACM Trans.
Graph. 22 (2003) 896–907. doi:10.1145/882262.882362.

[21] R. D. Chamberlain, M. A. Franklin, E. J. Tyson, J. H. Buckley, J. Buh-
ler, G. Galloway, S. Gayen, M. Hall, E. F. B. Shands, N. Singla, Com-
puter 43 (2010) 42–49. doi:10.1109/MC.2010.62.

[22] Y. Zhang, F. Mueller, in: 2011 International Conference on Parallel
Processing, pp. 245–254. doi:10.1109/ICPP.2011.22.

[23] M. Vogelgesang, S. Chilingaryan, T. d. Santos, A. Kopmann, in:
High Performance Computing and Communication 2012 IEEE 9th In-
ternational Conference on Embedded Software and Systems (HPCC-
ICESS), 2012 IEEE 14th International Conference on, pp. 824–829.
doi:10.1109/HPCC.2012.116.

22

http://dx.doi.org/10.1016/j.jsb.2010.01.021
http://dx.doi.org/10.1093/comjnl/bxr033
http://dx.doi.org/10.1117/12.716797
http://dx.doi.org/10.1016/j.jsb.2006.08.010
http://dx.doi.org/10.1364/OE.24.025129
http://dx.doi.org/10.1007/s002360050095
http://dx.doi.org/10.1007/s002360050095
http://dx.doi.org/10.1007/3-540-45937-5_14
http://dx.doi.org/10.1145/882262.882362
http://dx.doi.org/10.1109/MC.2010.62
http://dx.doi.org/10.1109/ICPP.2011.22
http://dx.doi.org/10.1109/HPCC.2012.116


[24] T. Mattson, B. Sanders, B. Massingill, Patterns for Parallel Program-
ming, first ed., Addison-Wesley Professional, 2004.

[25] J. Hsieh, Computed tomography : principles, design, artifacts and recent
advantages, SPIE Press, 2015. doi:10.1117/3.2197756.

[26] NVIDIA, CuFFT Library User’s Guide, 2016. URL: http://docs.

nvidia.com/cuda/pdf/CUFFT_Library.pdf.

[27] I. Goddard, A. Berman, O. Bockenbach, F. Lauginiger, S. Schuberth,
S. Thieret, in: Proc. SPIE 6498, Computational Imaging V, volume
6498, pp. 64980R–64980R–8. doi:10.1117/12.722160.

[28] Github repository for the presented libraries., 2017. URL: https://

github.com/HZDR-FWDF.

23

http://dx.doi.org/10.1117/3.2197756
http://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf
http://docs.nvidia.com/cuda/pdf/CUFFT_Library.pdf
http://dx.doi.org/10.1117/12.722160
https://github.com/HZDR-FWDF
https://github.com/HZDR-FWDF

